

# **Further Results on Pair Sum Graphs**

# Raja Ponraj<sup>1</sup>, Jeyaraj Vijaya Xavier Parthipan<sup>2</sup>, Rukhmoni Kala<sup>3</sup>

Department of Mathematics, Sri Paramakalyani College, Alwarkurichi, India
Department of Mathematics, St. John's College, Palayamcottai, India
Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, India
Email: ponrajmaths@indiatimes.com, parthi68@rediffmail.com, karthipyi91@yahoo.co.in

Received January 3, 2012; revised February 9, 2012; accepted February 16, 2012

#### **ABSTRACT**

Let G be a (p,q) graph. An injective map  $f:V(G) \to \{\pm 1,\pm 2,\cdots,\pm p\}$  is called a pair sum labeling if the induced edge function,  $f_e:E(G) \to Z - \{0\}$  defined by  $f_e(uv) = f(u) + f(v)$  is one-one and  $f_e(E(G))$  is either of the form  $\{\pm k_1,\pm k_2,\cdots,\pm k_{q/2}\}$  or  $\{\pm k_1,\pm k_2,\cdots,\pm k_{(q-1)/2}\} \cup \{k_{(q+1)/2}\}$  according as q is even or odd. A graph with a pair sum labeling is called a pair sum graph. In this paper we investigate the pair sum labeling behavior of subdivision of some standard graphs.

Keywords: Path; Cycle; Ladder; Triangular Snake; Quadrilateral Snake

#### 1. Introduction

The graphs considered here will be finite, undirected and simple. V(G) and E(G) will denote the vertex set and edge set of a graph G. The cardinality of the vertex set of a graph G is denoted by p and the cardinality of its edge set is denoted by q. The corona  $G_1G_2$  of two graphs  $G_1$  and  $G_2$  is defined as the graph obtained by taking one copy of  $G_1$  (with  $p_1$  vertices) and  $p_1$ copies of  $G_2$  and then joining the ith vertex of  $G_1$  to all the vertices in the ith copy of  $G_2$ . If e = uv is an edge of G and w is a vertex not in G then e is said to be subdivided when it is replaced by the edges uw and wv. The graph obtained by subdividing each edge of a graph G is called the subdivision graph of G and it is denoted by S(G). The graph  $P_n \times P_2$  is called the ladder. A dragon is a graph formed by joining an end vertex of a path  $P_m$ to a vertex of the cycle  $C_n$ . It is denoted as  $C_n @ P_m$ . The triangular snake  $T_n$  is obtained from the path  $P_n$ by replacing every edge of a path by a triangle  $C_3$ . The quadrilateral snake  $Q_n$  is obtained from the path  $P_n$ by every edge of a path is replaced by a cycle  $C_4$ . The concept of pair sum labeling has been introduced in [1]. The Pair sum labeling behavior of some standard graphs like complete graph, cycle, path, bistar, and some more standard graphs are investigated in [1-3]. That all the trees of order ≤9 are pair sum have been proved in [4]. Terms not defined here are used in the sense of Harary [5]. Let x be any real number. Then |x| stands for the largest integer less than or equal to x and  $\lceil x \rceil$  stands for

the smallest integer greater than or equal to x. Here we investigate the pair sum labeling behavior of S(G), for some standard graphs G.

#### 2. Pair Sum Labeling

**Definition 2.1.** Let G be a (p,q) graph. An injective map  $f:V(G) \rightarrow \{\pm 1, \pm 2, \dots, \pm p\}$  is called a pair sum labeling if the induced edge function,

 $f_e: E(G) \to Z - \{0\}$  defined by  $f_e(uv) = f(u) + f(v)$  is one-one and  $f_e(E(G))$  is either of the form

$$\left\{\pm k_1, \pm k_2, \cdots, \pm k_{q/2}\right\}$$

or

$$\left\{\pm k_{1},\pm k_{2},\cdots,\pm k_{(q-1)/2}\right\}\bigcup\left\{k_{(q+1)/2}\right\}$$

according as q is even or odd. A graph with a pair sum labeling defined on it is called a pair sum graph.

**Theorem 2.2 [1].** Any path is a pair sum graph.

Theorem 2.3 [1]. Any cycle is a pair sum graph.

#### 3. On Standard Graphs

Here we investigate pair sum labeling behavior of  $C_n @ P_m$  and  $K_n^c + 2K_2$ .

**Theorem 3.1.** If n is even,  $C_n @ P_m$  is a pair sum graph.

**Proof.** Let  $C_n$  be the cycle  $u_1u_2u_3\cdots u_nu_1$  and let  $P_m$  be the path  $v_1v_2\cdots v_m$ .

Case 1.  $m \equiv 0 \pmod{4}$ 

Copyright © 2012 SciRes.

Define

$$f:V(C_n@P_m) \rightarrow \{\pm 1,\pm 2,\cdots,\pm (m+n)\}$$

by

$$f\left(v_{\lfloor m/2 \rfloor - i + 1}\right) = i, 1 \le i \le \lfloor m/2 \rfloor$$

$$f\left(v_{\lfloor m/2 \rfloor + 2i - 1}\right) = -2i - 2, 1 \le i \le \lfloor m/4 \rfloor$$

$$f\left(v_{\lfloor m/2 \rfloor + 2i}\right) = -2i + 1, 1 \le i \le \lfloor m/4 \rfloor$$

$$f\left(u_{i}\right) = m/2 + 2i - 1, 1 \le i \le n/2$$

$$f\left(u_{n/2 + i}\right) = -m/2 - 2i + 1, 1 \le i \le n/2.$$

Here

$$f_{e}(E(C_{n}@P_{m}))$$
=\{3,5,7,\dots,(m+1)\}\cup\{-3,-5,\dots,-(m+1)\}\\
\cup\{m+4,m+8,\dots,(m+2n-4)\}\\
\cup\{-(m+4),-(m+8),\dots,-(m+2n-4)\}\\
\cup\{n-2,-(n-2)\}.

Therefore f is a pair sum labeling.

Case 2.  $m \equiv 2 \pmod{4}$ 

Define

$$f:V(C_n@P_m) \rightarrow \{\pm 1,\pm 2,\cdots,\pm (m+n)\}$$

by

$$f\left(v_{\lfloor m/2\rfloor - 2i}\right) = 1 - 2i, 1 \le i \le \lfloor (m+2)/4 \rfloor$$

$$f\left(v_{\lfloor m/2\rfloor - 2i+1}\right) = -2i - 2, 1 \le i \le \lfloor (m-2)/4 \rfloor$$

$$f\left(v_{\lfloor m/2\rfloor + i-1}\right) = i, 1 \le i \le \lceil m/2 \rceil + 1$$

$$f\left(u_i\right) = -\lfloor m/2\rfloor - 2i - 1, 1 \le i \le n/2$$

$$f\left(u_{n/2+i}\right) = |m/2| + 2i + 1, 1 \le i \le n/2$$

Here



Figure 1. A pair sum labeling of  $C_8@P_9$ .

$$f_{e}(E(C_{n}@P_{m}))$$

$$= \{-3, -5, -7, \dots, -m, -(m+1)\}$$

$$\cup \{3, 5, 7, \dots, (m+1)\}$$

$$\cup \{m+2, m+10, \dots, (m+2n)\}$$

$$\cup \{-(m+2), -(m+10), \dots, -(m+2n)\}$$

$$\cup \{(n-2), -(n-2)\}.$$

Hence f is a pair sum labeling.

Case 3.  $m \equiv 1 \pmod{4}$ 

Label the vertex  $u_i (1 \le i \le n)$ ,  $v_i (1 \le i \le m-1)$  as in Case 1. Then label -m-2 to  $v_m$ .

Case 4.  $m \equiv 3 \pmod{4}$ 

Assign the label m+2 to  $v_m$  and assign the label to the remaining vertices as in Case 2.

**Illustration 1.** A pair sum labeling of  $C_8 @ P_9$  is shown in **Figure 1**.

**Theorem 3.2.**  $K_n^c + 2K_2$  is pair sum graph if *n* is even.

**Proof:** Let  $u_1, u_2, \dots, u_n$  be the vertices of  $K_n$  and u, v, w, z. be the vertices in  $2K_2$ . Let

$$V\left(K_{n}^{c}+2K_{2}\right)=V\left(K_{n}^{c}\right)\cup V\left(2K_{2}\right)$$

and

$$E(K_n^c + 2K_2) = \{uv, wz, uu_i, vu_i, wu_i, zu_i : 1 \le i \le n\}.$$

Define

$$f:V\left(K_n^c+2K_2\right) \rightarrow \left\{\pm 1,\pm 2,\cdots,\pm (n+4)\right\}$$

by

$$f(u_i) = 2i - 1, 1 \le i \le n/2$$

$$f(u_{n/2+i}) = -(2i - 1), 1 \le i \le n/2$$

$$f(u) = n, f(v) = n + 3$$

$$f(w) = -n, f(z) = -(n + 3)$$

Here

$$f_{e}\left(E\left(K_{n}^{c}+2K_{2}\right)\right)$$

$$=\left\{n+1,n+3,n+5,\cdots,2n\right\}$$

$$\cup\left\{-(n+1),-(n+3),-(n+5),\cdots,-2n\right\}$$

$$\cup\left\{n-1,n-3,n-5,\cdots,1\right\}$$

$$\cup\left\{-(n-1),-(n-3),-(n-5),\cdots,-1\right\}$$

$$\cup\left\{n+4,n+8,n+12,\cdots,2n+2\right\}$$

$$\cup\left\{-(n+4),-(n+8),-(n+12),\cdots,-(2n+2)\right\}$$

$$\cup\left\{n+2,n,n-2,\cdots,2\right\}$$

$$\cup\left\{-(n+2),-n,-(n-2),\cdots,-2\right\}$$

$$\cup\left\{2n+3,-(2n+3)\right\}.$$

Therefore f is a pair sum labeling.

**Illustration 2.** A pair sum labeling of  $K_8^c + 2K_2$  is shown in **Figure 2**.

### 4. On Subdivision Graph

Here we investigate the pair sum labeling behavior of S(G) for some standard graphs G.

**Theorem 4.1.**  $S(L_n)$  is a pair sum graph, where  $L_n$  is a ladder on n vertices.

Proof. Let

$$V(S(L_n)) = \{u_i, v_i, w_i, a_j, b_j : 1 \le i \le n, 1 \le j \le n - 1\}$$
Let
$$E(S(L_n)) = \{u_i w_i, w_i v_i : 1 \le i \le n\}$$

$$\cup \{u_i a_i, a_i u_{i+1}, v_i b_i, b_i v_{i+1} : 1 \le i \le n - 1\}.$$

**Case 1:** *n* is even.

When n = 2, the proof follows from the Theorem 2.3. For n > 2,

Define

by 
$$f:V\left(S\left(L_{n}\right)\right)\rightarrow\left\{\pm1,\pm2,\pm3,\cdots,\pm\left(5n-2\right)\right\}$$
 by 
$$f\left(u_{n/2}\right)=-1,\ f\left(u_{n/2+1}\right)=-3$$
 
$$f\left(u_{n/2-i}\right)=10i+3,\ 1\leq i\leq (n-2)/2$$
 
$$f\left(u_{n/2+i+1}\right)=-10i+1,\ 1\leq i\leq (n-2)/2$$
 
$$f\left(w_{n/2}\right)=5,\ f\left(w_{n/2+1}\right)=-5$$
 
$$f\left(w_{n/2-i}\right)=10i+1,\ 1\leq i\leq (n-2)/2$$
 
$$f\left(w_{n/2+1+i}\right)=-\left(10i+1\right),\ 1\leq i\leq (n-2)/2$$
 
$$f\left(v_{n/2}\right)=3,\ f\left(v_{n/2+1}\right)=1$$
 
$$f\left(v_{n/2}\right)=3,\ f\left(v_{n/2+1}\right)=1$$
 
$$f\left(v_{n/2-i}\right)=10i-1,\ 1\leq i\leq (n-2)/2$$
 
$$f\left(u_{n/2-i}\right)=-10i-3,\ 1\leq i\leq (n-2)/2$$
 
$$f\left(u_{n/2-i}\right)=10i+5,\ 1\leq i\leq (n-2)/2$$
 
$$f\left(u_{n/2+i}\right)=-10i+3,\ 1\leq i\leq (n-2)/2$$
 
$$f\left(u_{n/2-i}\right)=10i-3,\ 1\leq i\leq (n-2)/2$$

When n = 4,

$$f_e(E(S(L_n))) = \{3,4,5,8,10,16,20,24,28\}$$

$$\cup \{-3,-4,-5,-8,-10,-16,-20,-24,-28\}.$$



Figure 2. A pair sum labeling of  $K_8^c + 2K_2$ .

For 
$$n > 4$$
,  

$$f_e\left(E\left(S\left(L_n\right)\right)\right)$$

$$= f_e\left(E\left(S\left(L_4\right)\right)\right) \cup \left\{(26, 36, 40, 44, 48, 38), (-26, -36, -40, -44, -48, -38), (46, 56, 60, 64, 68, 58), (-46, -56, -60, -64, -68, -58), \cdots, (10n - 34, 10n - 24, 10n - 20, 10n - 16, 10n - 12, 10n - 22), (-10n + 34, -10n + 24, -10n + 20, -10n + 16, -10n + 12, -10n + 22)\right\}.$$

Therefore f is a pair sum labeling.

**Case 2.** *n* is odd.

Clearly  $S(L_1) \cong P_3$  and hence  $S(L_n)$  is a pair sum graph by Theorem 2.2. For n > 1,

Define

by 
$$f\left(u_{(n+1)/2}\right) = 6, \ f\left(u_{(n-1)/2}\right) = 12$$

$$f\left(u_{(n+3)/2}\right) = -12, \ f\left(a_{(n-1)/2}\right) = -9$$

$$f\left(a_{(n+1)/2}\right) = 3$$

$$f\left(u_{(n+3)/2+i}\right) = 10i + 10, \ 1 \le i \le (n-3)/2$$

$$f\left(u_{(n-1)/2-i}\right) = -(10i + 10), \ 1 \le i \le (n-3)/2$$

$$f\left(v_{(n+3)/2+i}\right) = -(6+10i), \ 1 \le i \le (n-3)/2$$

 $f: V(S(L_n)) \to \{\pm 1, \pm 2, \dots, \pm (5n-2)\}$ 

$$f\left(v_{(n-1)/2-i}\right) = 6 + 10i, 1 \le i \le (n-3)/2$$

$$f\left(w_{(n+3)/2+i}\right) = -10i + 2, 1 \le i \le (n-3)/2$$

$$f\left(w_{(n-1)/2-i}\right) = 10i - 2, 1 \le i \le (n-3)/2$$

$$f\left(v_{(n+1)/2}\right) = 2, f\left(v_{(n-1)/2}\right) = 10$$

$$f\left(v_{(n+3)/2}\right) = -10, f\left(b_{(n-1)/2}\right) = -6$$

$$f\left(b_{(n+1)/2}\right) = 4, f\left(w_{(n+1)/2}\right) = -4$$

$$f\left(w_{(n-1)/2}\right) = 8, f\left(w_{(n+1)/2}\right) = -8$$

$$f\left(a_{(n+1)/2+i}\right) = -(10i + 12), 1 \le i \le (n-3)/2$$

$$f\left(a_{(n-1)/2-i}\right) = 10i + 12, 1 \le i \le (n-3)/2$$

$$f\left(b_{(n+1)/2+i}\right) = -(10i + 4), 1 \le i \le (n-3)/2$$
Therefore
$$f_e\left(E\left(S\left(L_3\right)\right)\right)$$

$$f_e(E(S(L_3)))$$
= {2,3,4,6,9,18,20,-2,-3,-4,-6,-9,-18,-20}

and

$$f_e\left(E\left(S\left(L_5\right)\right)\right) = f_e\left(E\left(S\left(L_3\right)\right)\right)$$

$$\cup \{24, 30, 34, 38, 42, 36, -24, -30, -34, -38, -42, -36\}$$

when n > 5,

$$f_{e}\left(E\left(S\left(L_{n}\right)\right)\right)$$

$$= f_{e}\left(E\left(S\left(L_{s}\right)\right)\right) \cup \left\{\left(40,50,54,58,62,52\right),\right.$$

$$\left(-40,-50,-54,-58,-62,-52\right),$$

$$\left(60,70,74,78,82,72\right),$$

$$\left(-60,-70,-74,-78,-82,-72\right),...,$$

$$\left(10n-30,10n-20,10n-16,$$

$$10n-12,10n-8,10n-18\right),$$

$$\left(-10n+30,-10n+20,-10n+16,$$

$$-10n+12,-10n+8,-10n+18\right).$$

Then *f* is a pair sum labeling.

**Illustration 3.** A pair sum labeling of  $S(L_7)$  is shown in **Figure 3**.

**Theorem 4.2.**  $S(C_nK_1)$  is a pair sum graph

**Proof.** Let

$$V\left(S\left(C_{n}K_{1}\right)\right) = \left\{u_{i}: 1 \leq i \leq 2n\right\} \cup \left\{w_{i, v_{i}}: 1 \leq i \leq n\right\}$$



Figure 3. A pair sum labeling of  $S(L_7)$ .

Let

$$E(S(C_nK_1)) = \{u_iu_{i+1} : 1 \le i \le 2n-1\}$$
  
$$\cup \{u_{2i-1}w_i : 1 \le i \le n\} \cup \{v_iw_i : 1 \le i \le n\}.$$

Case 1. n is even.

Define

$$f: S(C_nK_1) \rightarrow \{\pm 1, \pm 2, \cdots, \pm 4n\}$$

$$f(u_i) = 2i - 1, 1 \le i \le n$$

$$f(u_{n+i}) = -(2i - 1), 1 \le i \le n$$

$$f(w_i) = 2n - 1 + 2i, 1 \le i \le n/2$$

$$f(w_{n/2+i}) = -2n + 1 - 2i, 1 \le i \le n/2$$

$$f(v_i) = 3n - 1 - 2i, 1 \le i \le n/2$$

 $f(w_{n/2+i}) = -3n+1+2i, 1 \le i \le n/2$ 

Here

$$f_{e}(E) = \{4,8,12,\dots,(4n-4)\}$$

$$\cup \{-4,-8,-12,\dots,-(4n-4)\}$$

$$\cup \{2n+2,2n+8,2n+14,\dots,5n-4\}$$

$$\cup \{-(2n+2),-(2n+8),-(2n+14),\dots,-(5n-4)\}$$

$$\cup \{5n+2,5n+6,5n+10,\dots,7n-2\}$$

$$\cup \{-(5n+2),-(5n+6),-(5n+10),\dots,-(7n-2)\}.$$

Then f is pair sum labeling.

**Case 2.** *n* is odd.

Define

$$f:V\left(S\left(C_{n}K_{1}\right)\right)\rightarrow\left\{\pm1,\pm2,\cdots,\pm4n\right\}$$
 by 
$$f\left(u_{i}\right)=4n-2i+2,1\leq i\leq n$$
 
$$f\left(u_{n/2+i}\right)=-4n+2i-2,1\leq i\leq n$$
 
$$f\left(w_{i}\right)=-n-1+i,1\leq i\leq \left\lceil n/2\right\rceil$$
 
$$f\left(w_{\left\lceil n/2\right\rceil+i}\right)=n-i,1\leq i\leq \left\lceil n/2\right\rceil$$
 
$$f\left(v_{i}\right)=-2n-2+2i,1\leq i\leq \left\lceil n/2\right\rceil$$
 
$$f\left(v_{\left\lceil n/2\right\rceil+i}\right)=2n+2-2i,1\leq i\leq \left\lceil n/2\right\rceil$$

Here

$$f_{e}\left(E\left(S\left(C_{n}K_{1}\right)\right)\right)$$

$$=\left\{8n-2,8n-6,\cdots4n+10,40+6\right\}$$

$$\cup\left\{-\left(8n-2\right),-\left(8n-6\right),\cdots,-\left(4n+10\right),-\left(4n+6\right)\right\}$$

$$\cup\left\{2n-2,-2n+2\right\}$$

$$\cup\left\{3n,3n-3,3n-6,\cdots,3\left(n+1\right)/2\right\}$$

$$\cup\left\{-3n,-\left(3n-3\right),-\left(3n-6\right),\cdots,-3\left(n+1\right)/2\right\}$$

$$\cup\left\{3n-1,3n-4,\cdots,3\left(n+7\right)/2\right\}$$

$$\cup\left\{-\left(3n-1\right),-\left(3n-4\right),\cdots,-3\left(n+7\right)/2\right\}.$$

Then f is pair sum labeling.

**Illustration 4.** A pair sum labeling of  $S(C_7K_1)$  is shown in **Figure 4**.



Figure 4. A pair sum labeling of  $S(C_7K_1)$ .

**Theorem 4.3.**  $S(P_nK_1)$  is a pair sum graph. **Proof.** Let

$$V(S(P_nK_1)) = \{u_i : 1 \le i \le 2n - 1\} \cup \{w_i, v_i : 1 \le i \le n\}$$

Let

$$E(S(P_nK_1)) = \{u_iu_{i+1} : 1 \le i \le 2n - 2\}$$
  
$$\cup \{u_{2i-1}w_i : 1 \le i \le n\} \cup \{v_iw_i : 1 \le i \le n\}.$$

Case 1. n is even.

When n = 2, the proof follows from Theorem 2.2. For n > 2, Define

$$f:V(S(P_nK_1)) \rightarrow \{\pm 1,\pm 2,\cdots,\pm (4n-1)\}$$

bv

$$f(u_n) = 1, f(u_{n-1}) = -2$$
$$f(u_{n+1}) = 2$$

$$f(u_{n-1-2i}) = -5i-2, 1 \le i \le n/2-1$$

$$f(u_{n-2i}) = -(5i+3), 1 \le i \le n/2-1$$

$$f(u_{n+1+2i}) = 5i + 3, 1 \le i \le n/2 - 1$$

$$f(u_{n+2i}) = 5i + 2, 1 \le i \le n/2 - 1$$

$$f(w_{n/2}) = 4$$
,  $f(w_{n/2+1}) = -5$ 

$$f(w_{n/2-i}) = -5i - 4, 1 \le i \le (n-2)/2$$

$$f(w_{n/2+i+1}) = 5i + 4, 1 \le i \le (n-2)/2$$

$$f(v_{n/2}) = -6, f(v_{n/2+1}) = 6$$

$$f(v_{n/2-i}) = -5i - 5, 1 \le i \le (n-2)/2$$

$$f(v_{n/2+i+1}) = 5i + 5, 1 \le i \le (n-2)/2$$

Here

$$f_e\left(E\left(S\left(P_4K_1\right)\right)\right) = \{1, 2, 3, 9, 15, 17, 19\}$$

$$\cup \{-1, -2, -3, -9, -15, -17, -19\}.$$

For n > 4,

$$f_{e}\left(E\left(S\left(P_{n}K_{1}\right)\right)\right) = f_{e}\left(E\left(S\left(P_{4}K_{1}\right)\right)\right)$$

$$\cup\left\{20,25,27,29\right\} \cup \left\{-20,-25,-27,-29\right\}$$

$$\cup\left\{30,35,37,39\right\} \cup \left\{-30,-35,-37,-39\right\} \cup,\cdots,$$

$$\cup\left\{5n-10,5n-5,5n-3,5n-1\right\}$$

$$\cup\left\{-(5n-10),-(5n-5),-(5n-3),-(5n-1)\right\}.$$

Then f is pair sum labeling.

**Case 2.** *n* is odd.

Since  $S(P_1K_1) \cong P_3$ , which is a pair sum graph by Theorem 2.3. For n > 1, Define

by 
$$f(v_{(n+1)/2}) = 1, f(u_{(n+1)/2}) = 8$$

$$f(u_{(n+1)/2}) = 1, f(u_{(n+1)/2}) = 8$$

$$f(u_{(n+1)/2}) = -8$$

$$f(u_{(n+1)/2-2i)} = -10i + 1, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(u_{(n+1)/2-2i)} = -10i + 1, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(u_{(n+1)/2-2i)} = -10i - 1, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(u_{(n+1)/2-2i)} = -10i - 1, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(u_{(n+1)/2-2i)} = -2, f(w_{(n+1)/2}) = -5$$

$$f(w_{(n+1)/2-2i)} = -5i + 7, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i)} = -5i + 7, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i)} = -5i + 7, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i)} = -5i + 7, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i)} = -5i + 7, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i)} = -5i + 7, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i)} = -5i + 7, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i)} = -5i + 8, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i)} = -5i + 8, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i)} = -5i + 8, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i)} = -5i + 8, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i)} = -5i + 8, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i)} = -5i + 8, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i)} = -5i + 8, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i)} = -5i + 8, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i)} = -5i + 8, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i)} = -5i + 8, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i)} = -5i + 8, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i)} = -5i + 8, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i)} = -5i + 8, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i)} = -5i + 8, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i)} = -5i + 8, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i)} = -5i + 8, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i}) = -5i + 8, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i}) = -5i + 8, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i}) = -5i + 8, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i}) = -5i + 8, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i}) = -5i + 8, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i}) = -5i + 8, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i}) = -5i + 8, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i}) = -5i + 8, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i}) = -5i + 8, 1 \le i \le \lfloor n/2 \rfloor - 1$$

$$f(w_{(n+1)/2-2i}) = -5i + 8, 1 \le i \le \lfloor n/2 \rfloor - 1$$

For n = 4,

shown in **Figure 5**.

$$f_e\left(E\left(S\left(T_n\right)\right)\right) = \left\{3,5,7,8,12,13,15,18,22,23,26,30\right\}$$

$$\cup\left\{-3,-5,-7,-8,-12,-13,-15,-18,-22,-23,-26,-30\right\}.$$
For  $n > 4$ 

$$f_e\left(E\left(S\left(T_n\right)\right)\right) = f_e\left(E\left(S\left(T_4\right)\right)\right)$$

$$\cup\left\{\left(32,38,40,42,46,50\right),\left(-32,-38,-40,-42,-46,-50\right),\left(52,58,60,62,66,70\right),\left(-52,-58,-60,-62,-66,-70\right),\cdots,\left(10n-28,10n-22,10n-20,10n-18,10n-14,10n-10\right),\left(-10n+28,-10n+22,-10n+20,-10n+18,-10n+14,-10n+10\right)\right\}.$$

Then f is pair sum labeling.

**Case 2.** *n* is odd.

Clearly  $S(T_1) \cong C_6$ , and hence  $S(T_1)$  is a pair sum graph by Theorem 2.3.

For > 1, Define

$$f: V(S(T_n)) \rightarrow \{\pm 1, \pm 2, \dots, \pm (5n+1)\} \cong C_6$$

$$f(u_{n+1}) = -8, f(u_n) = 3$$

$$f(u_{n-1}) = -2, f(u_{n-2}) = -15$$

$$f(u_{n+2}) = -5, f(u_{n+3}) = 4$$

$$f(u_{n+4}) = 15$$

$$f(u_{n-1-2i}) = -14 - 5i, 1 \le i \le (n-3)/2$$

$$f(u_{n-2-2i}) = -10i - 4, 1 \le i \le (n-3)/2$$

$$f(u_{n+3+2i}) = 14 + 5i, 1 \le i \le (n-3)/2$$

$$f(v_n) = 5, f(v_{n-1}) = -7$$

$$f(v_{n-2}) = -4, f(v_{n+1}) = -3$$

$$f(v_{n+2}) = 7, f(v_{n+3}) = 2$$

$$f(v_{n-1-2i}) = -11 - 5i, 1 \le i \le (n-3)/2$$

$$f(v_{n+1+2i}) = 11 + 5i, 1 \le i \le (n-3)/2$$

$$f(v_{n+1+2i}) = 11 + 5i, 1 \le i \le (n-3)/2$$

$$f(v_{n+2+2i}) = 13 + 5i, 1 \le i \le (n-3)/2$$

$$f(w_{(n+1)/2}) = 8, f(w_{(n-1)/2}) = 11$$

$$f(w_{(n+3)/2}) = -9,$$

$$f(w_{(n-1)/2-i}) = -12 - 5i, 1 \le i \le (n-3)/2$$

$$f\left(w_{(n+3)/2+i}\right) = 12 + 5i, 1 \le i \le (n-3)/2$$
Here  $n = 3$ ,
$$f_e\left(E\left(S\left(T_n\right)\right)\right) = \{1, 2, 4, 5, 7, 8, 13, 17, 19\}$$

$$\cup \{-1, -2, -4, -5, -7 - 8, -13, -17, -19\}.$$
For  $n > 3$ ,
$$f_e\left(E\left(S\left(T_n\right)\right)\right) = f_e\left(E\left(S\left(T_3\right)\right)\right)$$

$$\cup \{(31, 33, 34, 35, 38, 39), (-31, -33, -34, -35, -38, -39),$$

$$(41, 43, 44, 45, 48, 49), (-41, -43, -44, -45, -48, -49), \cdots,$$

$$(5n + 6, 5n + 8, 5n + 9, 5n + 10, 5n + 13, 5n + 14),$$

$$(-5n - 6, -5n - 8, -5n - 9, -5n - 10, -5n - 13, -5n - 14)\}.$$

Then f is pair sum labeling.

**Illustration 6.** A pair sum labeling of  $S(T_5)$  is shown in **Figure 6**.

**Theorem 4.5.**  $S(Q_n)$  is a pair sum graph.

$$V\left(S\left(Q_{n}\right)\right) = \left\{u_{i} : 1 \le i \le 2n + 1\right\}$$
  
$$\cup \left\{v_{i} : 1 \le i \le 3n\right\} \cup \left\{w_{i} : 1 \le i \le 2n\right\}$$

and

$$E(S(Q_n))\{u_iu_{i+1}: 1 \le i \le 2n\}$$

$$\cup \{u_{2i+1}w_{2i}, v_{3i}w_{2i}: 1 \le i \le n\}$$

$$\cup \{u_{2i-1}w_{2i-1}, w_{2i-1}v_{3i-2}: 1 \le i \le n\}$$

$$\cup \{v_iv_{i+1}: 1 \le i \le 3n-1\} - \{v_{3i}v_{3i+1}: 1 \le i \le n\}.$$

#### **Case 1.** *n* is even.

When n = 2, Define  $f(u_1) = 11$ ,  $f(u_2) = 6$ ,  $f(u_3) = 1$ ,  $f(u_4) = -6$ ,  $f(u_5) = -11$ ,  $f(w_1) = 9$ ,  $f(w_2) = 2$ ,  $f(w_3) = -4$ ,  $f(w_4) = -9$ ,  $f(v_1) = 7$ ,  $f(v_2) = 5$ ,  $f(v_3) = 3$ ,  $f(v_4) = -3$ ,  $f(v_5) = -3$ -5,  $f(v_6) = -7$ . When > 2, Define

$$f: V(S(Q_n)) \rightarrow \{\pm 1, \pm 2, \cdots, \pm (7n+1)\}$$

by

$$f(u_{n+1}) = 1, f(u_{n-1}) = 6$$

$$f(u_{n-2}) = 8, f(u_{n+1}) = -6, f(u_{n+2}) = -8$$

$$f(u_{n-2-2i}) = 14i + 8, 1 \le i \le (n-2)/2$$

$$f(u_{n-1-2i}) = 14i + 6, 1 \le i \le (n-2)/2$$



Figure 6. A pair sum labeling of  $S(T_5)$ .

$$f(u_{n+1+2i}) = -14i - 6, 1 \le i \le (n-2)/2$$

$$f(u_{n+2+2i}) = -14i - 8, 1 \le i \le (n-2)/2$$

$$f(w_n) = 2, f(w_{n-1}) = 9$$

$$f(w_{n+1}) = -4, f(w_{n+2}) = -9$$

$$f(w_{n-2i}) = 14i - 4, 1 \le i \le (n-2)/2$$

$$f(w_{n-1-2i}) = 14i + 4, 1 \le i \le (n-2)/2$$

$$f(w_{n+1+2i}) = -14i + 4, 1 \le i \le (n-2)/2$$

$$f(w_{n+2+2i}) = -14i - 4, 1 \le i \le (n-2)/2$$

$$f(v_{3n/2}) = 3, f(v_{3n-1/2}) = 5$$

$$f(v_{3n-2/2}) = 7, f(v_{3n+1/2}) = -3$$

$$f(v_{3n+2/2}) = -5, f(v_{3n+3/2}) = -7$$

$$f(v_{3n/2-3i}) = 14i - 2, 1 \le i \le (n-2)/2$$

$$f(v_{3n/2-1-3i}) = 14i + 2, 1 \le i \le (n-2)/2$$

$$f(v_{3n/2+1+3i}) = -14i + 2, 1 \le i \le (n-2)/2$$

$$f(v_{3n/2+2+3i}) = -14i, 1 \le i \le (n-2)/2$$

$$f(v_{3n/2+2+3i}) = -14i, 1 \le i \le (n-2)/2$$

Here

$$f_{e}\left(E\left(S\left(Q_{n}\right)\right)\right) = \{3, -3, 5, -5, 7, -7, 8, -8, \\ 12, -12, 14, -1416, -16, 17, -17\}$$

$$\cup \{18, 22, 26, 28, 30, 34, 40, 42\}$$

$$\cup \{-18, -22, -26, -28, -30, -34, -40, -42\}$$

$$\cup \{46, 50, 54, 56, 58, 62, 68, 70\}$$

$$\cup \{-46, -50, -54, -56, -58, -62, -68, -70\}$$

$$\cup \{74, 78, 82, 86, 84, 90, 96, 98\}$$

$$\cup \{-74, -78, -82, -86, -84, -90, -96, -98\} \cup, \cdots,$$

$$\cup \{14n - 38, 14n - 34, 14n - 30, 14n - 28, \\ 14n - 26, 14n - 22, 14n - 16, 14n - 14\}$$

$$\cup \{-14n + 38, -14n + 34, -14n + 30, -14n + 28, \\ -14n + 26, -14n + 22, -14n + 16, -14n + 14\}.$$

Then *f* is pair sum labeling.

**Case 2.** *n* is odd.

 $S(Q_1)$  is a pair sum graph follows from Theorem 2.3.When n > 1. Define

by 
$$f(u_{n+1}) = -6, f(u_n) = 7, f(u_{n-1}) = 8$$

$$f(u_{n-2}) = 22, f(u_{n+2}) = -3, f(u_{n+3}) = -8$$

$$f(u_{n-2}) = 14i + 20, 1 \le i \le (n-3)/2$$

$$f(u_{n-2-2i}) = 14i + 22, 1 \le i \le (n-3)/2$$

$$f(u_{n-2-2i}) = 14i + 22, 1 \le i \le (n-3)/2$$

$$f(u_{n-2-2i}) = 14i + 22, 1 \le i \le (n-3)/2$$

$$f(u_{n+3+2i}) = -14i - 20, 1 \le i \le (n-3)/2$$

$$f(w_n) = 5, f(w_{n-1}) = 4, f(w_{n-2}) = 20$$

$$f(w_n) = 5, f(w_{n-1}) = 4, f(w_{n-2}) = 20$$

$$f(w_{n-1-2i}) = 14i + 10, 1 \le i \le (n-3)/2$$

$$f(w_{n-2-2i}) = 18 + 14i, 1 \le i \le (n-3)/2$$

$$f(w_{n+2+2i}) = -14i - 10, 1 \le i \le (n-3)/2$$

$$f(w_{n+3+2i}) = -18 - 14i, 1 \le i \le (n-3)/2$$

$$f(v_{(3n+3)/2}) = 6, f(v_{(3n-1)/2}) = 3$$

$$f(v_{(3n-3)/2}) = 10, f(v_{(3n-5)/2}) = 16$$

$$f(v_{(3n+5)/2}) = 14, f(v_{(3n+7)/2}) = -16$$

$$f(v_{(3n+5)/2-3i}) = 14i + 12, 1 \le i \le (n-3)/2$$

$$f(v_{(3n+5)/2-3i}) = 14i + 6, 1 \le i \le (n-3)/2$$

$$f(v_{(3n+7)/2+3i}) = -14i - 12, 1 \le i \le (n-3)/2$$

$$f(v_{(3n+7)/2+3i}) = -14i - 14, 1 \le i \le (n-3)/2$$

$$f(v_{(3n+7)/2+3i}) = -14i - 14, 1 \le i \le (n-3)/2$$

$$f(v_{(3n+7)/2+3i}) = -14i - 14, 1 \le i \le (n-3)/2$$

$$f(v_{(3n+7)/2+3i}) = -14i - 14, 1 \le i \le (n-3)/2$$

$$f(v_{(3n+7)/2+3i}) = -14i - 14, 1 \le i \le (n-3)/2$$
For  $n = 3$ ,
$$f_e(E(S(Q_n))) = \{1, 2, 6, 8, 9, 11, 12, 15, 30, 34, 38, 42\}$$

$$\cup \{-1, -2, -6, -8, -9, -11, -12, -15, -30, -34, -38, -42\}.$$

$$n > 3$$
,



Figure 7. A pair sum labeling of  $S(Q_4)$ .

$$f_{e}\left(E\left(S(Q_{n})\right) = f_{e}\left(E\left(S\left(Q_{3}\right)\right)\right)$$

$$\cup\left\{\left(46,50,54,56,58,62,68,70\right),\right.$$

$$\left(-46,-50,-54,-56,-58,-62,-68,-70\right),$$

$$\left(74,78,82,84,86,90,96,98\right),$$

$$\left(-74,-78,-82,-84,-86,-90,-96,-98\right),\cdots,$$

$$\left(14n-24,14n-20,14n-16,14n-14,\right.$$

$$14n-12,14n-8,14n-2,14n\right)$$

$$\left(-14n+24,-14n+20,-14n+16,-14n+14,\right.$$

$$\left.-14n+12,-14n+8,-14n+2,-14n\right\}.$$

Then *f* is pair sum labeling

**Illustration 7.** A pair sum labeling of  $S(Q_4)$  is shown

in **Figure 7**.

## 5. Acknwledgements

We thank the referees for their valuable comments and suggestions.

#### REFERENCES

- R. Ponraj and J. V. X. Parthipan, "Pair Sum Labeling of Graphs," *The Journal of Indian Academy of Mathematics*, Vol. 32, No. 2, 2010, pp. 587-595.
- [2] R. Ponraj, J. V. X. Parthipan and R. Kala, "Some Results on Pair Sum Labeling," *International Journal of Mathematical Combinatorics*, Vol. 4, 2010, pp. 53-61.
- [3] R. Ponraj, J. V. X. Parthipan and R. Kala, "A Note on Pair Sum Graphs," *Journal of Scientific Research*, Vol. 3, No. 2, 2011, pp. 321-329.
- [4] R. Ponraj and J. V. X. Parthipan, "Further Results on Pair Sum Labeling of Trees," *Applied Mathematics*, Vol. 2, No. 10, 2011, pp. 1270-1278. doi:10.4236/am.2011.210177
- [5] F. Harary, "Graph Theory," Narosa Publishing House, New Delhi, 1998.