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ABSTRACT

In this paper, we prove a common fixed point theorem in Intuitionistic fuzzy metric space by using pointwise R-weak
commutativity and reciprocal continuity of mappings satisfying contractive conditions.
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1. Introduction

Atanassove [1] introduced and studied the concept of
intuitionistic fuzzy sets as a generalization of fuzzy sets.
In 2004, Park [2] defined the notion of intuitionistic
fuzzy metric space with the help of continuous t-norms
and continuous #-conorms. Recently, in 2006, Alaca et al.
[3] defined the notion of intuitionistic fuzzy metric space
by making use of Intuitionistic fuzzy sets, with the help
of continuous fnorm and continuous f-conorms as a
generalization of fuzzy metric space due to Kramosil and
Michalek [4]. In 2006, Turkoglu [5] et al. proved
Jungck’s [6] common fixed point theorem in the setting
of intuitionistic fuzzy metric spaces for commuting map-
pings. For more details on intuitionistic fuzzy metric
space, one can refer to the papers [7-12].

The aim of this paper is to prove a common fixed point
theorem in intuitionistic fuzzy metric space by using
pointwise R-weak commutativity [5] and reciprocal con-
tinuity [9] of mappings satisfying contractive conditions.

2. Preliminaries

Definition 2.1 [13]. A binary operation
#:[0,1]x[0,1] = [0,1] is continuous #-norm if * satisfies
the following conditions:

1) * is commutative and associative;

2) * is continuous;

3) a*l=a forall ae[0,1];

4) a*b<c*d whenever a<c and b<d for all
a,b,c,d e [0,1].

Definition 2.2 [13]. A binary operation

*Corresponding author.

Copyright © 2012 SciRes.

0:[0,1]x[0,1] > [0,1] is continuous ¢-conorm if ¢ satis-
fies the following conditions:

1) ¢ is commutative and associative;

2) O is continuous;

3) a00=a forall ae[0,1];

4) a0b<cOd whenever a<c¢ and b<d for all
a,b,c,d 6[0,1].

Alaca et al. [3] defined the notion of intuitionistic
fuzzy metric space as:

Definition 2.3 [3]. A 5-tuple (X,M,N,*,0) is said
to be an intuitionistic fuzzy metric space if X is an arbi-
trary set, * is a continuous #-norm, ¢ is a continuous f-
conorm and M,N are fuzzy sets on X* x [0, ) satis-
fying the conditions:

1) M(x,y,t)+N(x,y,t)<1 for all x,yeX and
t>0;

2) M(x,y,0)=0 forall x,yeX;

3) M(x,y,t)=1 for all x,yeX and ¢>0 if and
only if x=y;

4) M(x,y,t)=M(y,x,t) forall x,yeX andz>0;

5) M(x,y,0)*M(y,z,s) <M (x,z,t+s) forall
x,y,ze X and s,t>0;

6) M(x,y,.):[0,0) >[0,1] is left continuous, for all
x,yelX;

7) }EEM(x,y,t):l forall x,yeXand ¢t>0;

8) N(x,y,0)=1 forall x,ye X;

9) N(x,y,t)=0 for all x,yeX and >0 if and
onlyif x=y;

10) N(x,y,t):N(y,x,t) forall x,ye X and¢>0;

11) N(x,y,0)0N(y,z,5)>N(x,z,t+s) forall
x,y,ze X and s,t>0;

12) N(x,y,.):[0,00) >[0,1] is right continuous, for
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all x,yeX;
13) limN(x,y,t)=0 forall x,yeX.
—0

The functions M (x,y,t) and N(x,y,t) denote the
degree of nearness and the degree of non-nearness be-
tween x and y w.r.t. ¢ respectively.

Remark 2.1 [12]. Every fuzzy metric space (X,M,*)
is an intuitionistic fuzzy metric space of the form
(X,M,1-M,*,0) such that #-norm * and z-conorm ¢
are associated as x0y=1-((1-x)*(1-y)) for all
x,yeX.

Remark 2.2 [12]. In intuitionistic fuzzy metric space
(X,M,N,*0), M(x,y,*) is non-decreasing and
N (x, y,<>) is non-increasing for all x,y e X .

Definition 2.4 [3]. Let (X,M,N,*0) be an in-
tuitionistic fuzzy metric space. Then

1) A sequence {x,} in X is said to be Cauchy se-
quence if, forall >0 and p>0,

limM(x xn,t) =1

n—o ntp?
and

limN(x

n—o0

xn,t)=0.

n+p?

2) A sequence {x,} inXis said to be convergent to a
point xe X if, forall >0,

lim M (x,,x,1) =1

n—ow
and

lim N(xn,x,t) =0.
Definition 2.5 [3]. An intuitionistic fuzzy metric space
(X,M,N,*, <>) is said to be complete if and only if
every Cauchy sequence in X is convergent.

Example 2.1 [3]. Let X = {ln € N}U{O} and let *

n
be the continuous f-norm and ¢ be the continuous #-
conorm defined by a*b=ab and a0 b=min{l,a+b}

respectively, for all a,b €[0,1]. For each 7€ (0,0) and
x,y € X , define M and N by

t

— t>0
M (x,p,1) =4 t+[x=y|
0, t=0
and
A,
N(x,y,t)z t+|x—y|’
1, t=0

Clearly, (X,M,N,*0) is complete intuitionistic
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fuzzy metric space.

Definition 2.6 [3]. A pair of self mappings (4,S) of
a intuitionistic fuzzy metric space (X ,M,N ,*,0) is
said to be commuting if M (ASx,SA4x,t)=1 and
N(ASx,SAx,t) =0 forall xe X .

Definition 2.7 [3]. A pair of self mappings (4,S) of
a intuitionistic fuzzy metric space (X ,M,N ,*,0) is
said to be weakly commuting if
M(ASx,SAx,t) > M(Ax, Sx,t) and
N (ASx,84x,t) < N (Ax,Sx,t) forall xeX and ¢>0.

Definition 2.8 [12]. A pair of self mappings (A4,S)
of a intuitionistic fuzzy metric space (X,M,N,*,0) is
said to be compatible if IE?OM (ASx,,S4x,,t) =1, and

lim N (ASx,,S4x,,t)=0 for all >0, whenever {x,}

n?
n—0

is a sequence in X such that lim 4x, =lim Sx, =u for

some ue€X.

Definition 2.9 [5]. A pair of self mappings (4,S5) of
a intuitionistic fuzzy metric space (X M, N ,*,0) is
said to be pointwise R-weakly commuting, if given
x € X , there exist R >0 such that forall >0

M (ASx,Sdx,t ) M(Ax,Sx,éj,
and
N (ASx, S4x,1) < N(Ax, Sx,é)

Clearly, every pair of weakly commuting mappings is
pointwise R-weakly commuting with R =1.

Definition 2.10 [9]. Two mappings 4 and S of a In-
tuitionistic fuzzy metric space (X,M,N,*,0) are called
reciprocally continuous if ASu, > Az, SAu, > Sz,
whenever {u,} is a sequence such that Au, >z,
Su, — z for some z in X.

If 4 and S are both continuous, then they are obviously
reciprocally continuous but converse is not true.

3. Lemmas

The proof of our result is based upon the following lem-
mas of which the first two are due to Alaca et al. [12]:

Lemma 3.1 [12]. Let {u,} is a sequence in a in-
tuitionistic fuzzy metric space (X M, N ,*,0). If there
exists a constant k € (0, 1) such that

M (u,,u,,,,kt)>M (u,_,u,,t),

n+1»

N (u,,u,,,kt) < N(u, ,u,,t)

n+l» n?

forall n=0,1,2,---

Then {u,} isa Cauchy sequence in X.

Lemma 3.2 [12]. Let (X,M,N,*0) be intuitionistic
fuzzy metric space and for all x,ye X, >0 and if
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for a number ke(0,1), M (x,y,kt)>M (x,y,t) and
N(x,y,kt)< N(x,p,t). Thenx=y.

Lemma 3.3. Let (X,M,N,*0) be a complete in-
tuitionistic fuzzy metric space with continuous #-norm *
and continuous f-conorm ¢ defined by ¢*f>¢ and
(1-2)0(1-t)<(1-1) forall r€[0,1]. Further, let (4,S)
and (B,T) be pointwise R-weakly commuting pairs of
self mappings of X satisfying:

(1) A(X)cT(X),B(X)=S(X),

(3.2) there exists a constant k € (0,1) such that

M (Ax,By,kt) > M(Ty,By,t) *M(Sx, Ax,t)

*« M (Sx, By,at)* M (Ty, Ax,(2—a)t)* M (Ty,Sx,t)

N (Ax,By,kt) < N(Ty,By,t) O N(Sx, Ax,t)
0 N(Sx,By,at) O N(Ty, Ax,(2—a)t) ¢ N(Ty,Sx,1)

for all x,yeX, t>0 and a<€(0,2). Then the con-
tinuity of one of the mappings in compatible pair (4,5)
or (B,T) on (X,M,N,*0) implies their reciprocal
continuity.

Proof. First, assume that 4 and S are compatible and S
is continuous. We show that 4 and S are reciprocally
continuous. Let {u,} be a sequence such that Au, — z
and Su, >z forsome zeX as n—>oo.

Since S is continuous, we have SA4u, - Sz and
SSu, — Sz as n—>o and since (A4,S) is compati-
ble, we have
1imM(ASun,SAun,t)=l,}i_r)£10N(ASun,SAun,t)=0

n—ow

= lim M (ASu,,Sz,t)=1,lim N (ASu,,SAz,t) =0
Thatis ASu, - Sz as n—> . By (3.1), for each n,
there exists v,€ X such that 4Su,=Tv,. Thus, we have
SSu, - Sz, SAu, > Sz, ASu, - Sz and Tv, —> Sz
as n—oo whenever ASu, =Tv,.
Now we claim that Bv, =Sz as n—>o.
Suppose not, then taking o =1 in (3.2), we have
M (ASu,,Bv, kt)=M (Tv,,Bv,,t)*M (SSu

M (SSu,, Bv,,at)*M(Tv,,
* M (Tv,,SSu,,t)

0 ASun,t)
ASu,,(2-a)t)

N(ASu,,Bv,,kt)< N(Tv,,Bv,,t) O N(SSu,, ASu,,t)
O N(SSu,,Bv,.at) ¢ N(Tv,, ASu,,(2—a)t)
ON(Tvn,SSu",t)

Taking n — o, we get

M(Sz,an,kt) > M(Sz,an,t)*M(Sz,Sz,t)
*M(Sz,an,t)*M(Sz,Sz,t)*M(SZ,SZ,I)
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N(Sz,an,kt) < N(SZ,an,t) o N(Sz,Sz,t)
0 N(SZ,an,t) O N(SZ,SZ,[) 0 N(Sz,Sz,t)
That is,
M(Sz,an,kt) > M(Sz,Bvﬂ, ),

N (S8z,Bv,,kt) < N(Sz,Bv,,t)

n’

by the use of Lemma 3.2, we have Bv, — Sz as n — .
Now, we claim that Az =Sz. Again take o =1 in
(3.2), we have

M(Az,Bvﬂ,kt) > M(Tvn,an,t)*M(Sz,Az,t)
* M (Sz,Bv,,t)* M (Tv,, Az,t)* M (Tv,,Sz,t)

no

N(Az,Bv kt)SN(Tv Bv t)ON(Sz,Az,Z)

ON(SZ,an,t)ON(Tvn,Az,t) ON(Tv Sz,t)

n— o
M(Az,Sz,kt) > M(Sz,Sz,t)*M(Sz,Az,t)
*M(Sz, Sz,t)*M(Sz,Az,t)*M(Sz,Sz,t)

N(Az, Sz,kt) < N(Sz, Sz,t) O N(SZ,Az,t)
O N(SZ,SZ,I) o N(Sz,Az,t) o N(SZ,SZ,t)

M(Az, Sz,kt) > M(Sz,Az,t),
N(Az, Sz,kt) < N(Sz,Az,t)

therefore, by use of Lemma 3.2, we have Az = Sz.
Hence, S4u, — Sz, ASu, - Sz=A4z as n—>o.
This proves that 4 and S are reciprocally continuous
on X. Similarly, it can be proved that B and T are recip-
rocally continuous if the pair (B,T) is assumed to be
compatible and 7 is continuous.

4. Main Result

The main result of this paper is the following theorem:

Theorem 4.1. Let (X,M,N,*0) be a complete in-
tuitionistic fuzzy metric space with continuous f-norm *
and continuous #-conorm ¢ defined by ¢*¢>¢ and
(1-1)0(1-t)<(1-¢) forall ¢e[0,1].

Further, let (4,5) and (B,T) be pointwise R-weakly
commuting pairs of self mappings of X satisfying (3.1),
(3.2). If one of the mappings in compatible pair (4,S)
or (B,T) is continuous, then 4, B, S and T have a
unique common fixed point.

Proof. Let x, € X . By (3.1), we define the sequences
{x,} and {y,} inXsuch thatforall n=0,12,--

Vau = A%y, =T 05 Yy = BXy, = 8%y, We show
that { yn} is a Cauchy sequence in X. By (3.2) take
a=1-4,8¢(0,1), we have
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M (yzm,yZn+2 ,kt) =M (B)cz,m,sz”+2 ,kt) =M (Ax2n+2,Bx2n+1,kt) > M(sz,Hl,szm,t)
*M(Sx2n+2,Ax2n+2,t)*M(Sx2n+2,Bx2n+l,(l —ﬂ)t) *M(sz,m ,Ax2”+2,(1 +/3)t)*M(Tx2”+1,Sx2n+2,t)
=M (V25 Vo) M (Va5 Voo st) M (¥315 Vars (1= BYE) 5 M (335 Vapiao (14 B)2) £ M (3, 72150)
=M (V25 Vot ¥ M (Va5 Voot 1M (V3 7200050 ¥ M (V2005 Varas B FM (V3 720151)
2 M (V25 Vo) M (V2015 Y20258) ¥ M (V2,05 V2 B)
Now, taking S — 1, we have
M (V205 Yoz kt) 2 M (92,5 Y20058) ¥ M (V20105 V2i258) ¥ M (V015 V200251
M (Va1 Voo k) 2 M (92 Y20058) ¥ M (V20105 V20 1258) 2 M (92, V2,0051)
M (V305 Voo kt) 2 M (92,5 ¥051)
Similarly, we can show that
M (Vsi2s Vaness k) 2 M (V3015 20251)
Also,
N(y2n+1 ,y2,1+2,kt) = N(szm, Ax2n+2,kt) = N(Ax2’1+2,BX2n+1 ,kt) < N(szm,B)ch+1 ,t) o N(Sx2n+2, Ax2n+2,t)
(1= B)t)ON(Tx,,.,, Axy, 5, (1+ B) 1) ON (Tx,, 1, 5%, 1)
= N (205 Y200151) ON (P20015 ¥2251) © N (V2,05 201 (1= B)E)ON (335 Y225 (14 B) ) O N (325 ¥2051)
= N (Vo> Vanetst) ON (V2015 Y200251) 0 00 N (225 ¥200150) © N (Va1 Vanias BE) O N (5 Y2151
SN (Y205 V20et51) ON (Va5 Vananst) O N(Vaits Vanns Bt)

Taking S —1, we get

N(y2n+l’y2n+2’kt) < N(yZn’erH-l’t) 0 N(y2n+l’y2n+2’t) 0 N(y2n+l’y2n+2’t)
N(y2n+l’y2n+2’kt) < N(yZn’erH-l’t) 0 N(y2n+l’y2n+2’t) < N(yZn’y2n+l’t)
N(y2n+l’y2n+2’kt) < N(yZn’erH-l’t)

Similarly, it can be shown that Since A(X ) cT (X ) , therefore there exists a point
pe€X suchthat Sz=A4z=Tp.

N(y2”+2 ’y2"+3’kt) < N(y2"+1 ,y2,1+2,t) Now, again by taking o =1 in (3.2), we have
Therefore, for any 7 and ¢, we have M (Az,Bp,kt) = M (Tp,Bp,t)* M (Sz, Az,t)

M (3,0 y,0kt) = M (3, 1 3,00), *M (Sz,Bp,t)* M (Tp, Az,t)* M (Tp, Sz,1)
N(y,,,y,,+1,kt) < N(J’n-] ’yn’t) M(Az,Bp,kt) > M(Az,Bp,t)*M(Az, Az,t)

M (Az, B, M(Az, A M(Az, A
Hence, by Lemma 3.1, {y,} isa Cauchy sequence in * M (dz, Bp,t)* M (z, Az, t) « M (4z, 4z1)

X. Since X is complete, so {y,} converges to z in X. Its and
subsequences {Ax,,}, {Tx,,,}, {Bx,,,} and N(Az, Bp.kt) < N(Tp,Bp.1) 0 N(Sz, dz.1)
{Sx,,,,} also converge to z.

Now, suppose that (4,S) is a compatible pair and S O N(Sz,Bp,t) 0 N(Tp, Az,t) O N(Tp,Sz,t)

is continuous. Then by Lemma 3.2, 4 and S are recipro- <

cally continuous, then SAx, - Sz , ASx, > Az as N(Az.Bp.kt) < N(Az.Bp.1) O N(dz. 4z.1)

n—>00. <>N(Az,Bp,t)ON(Az,Az,t)ON(Az,Az,t)
As, (4,S) is a compatible pair. This implies

M (Az,Bp,kt) > M (Az,Bp,t),
lim M (ASx,,SAx,,t) =1,lim N (ASx,,SAx,,t) = 0;

”*‘” N(Az,Bp,kt) < N(Az,Bp,t)
This gives M (Az,Sz,t)=1,N(A4z,82,6)=0 as n—>x.
Hence, Sz = Az. Thus, by Lemma 3.2, we have Az = Bp.
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Thus, Az=Bp=Sz=Tp.
Since, 4 and S are pointwise R-weakly commuting
mappings, therefore there exists R >0, such that

M (ASz,S4z,1) > M(Az,Sz,%j -1
and
N (ASz,84z,1) < N(AZ,SZ,%J =0

Hence, ASz =S4z and ASz=SAz = AAz = SSz.

Similarly, B and T are pointwise R-weakly commuting
mappings, we have BBp = BTp =TBp =TTp.

Again, by taking =1 in (3.2),

M(AAZ,Bp,kt) > M(Tp,Bp,t) *M(SAZ, AAz,t)
*M(SAZ,Bp,t)*M(Tp,AAz,t)*M(Tp,SAz,t)
M(AAZ,Az,kt) > M(Tp,Tp,t)*M(AAz,AAz,t)
*M(AAZ, Az,t)*M(Az, AAZ,t)*M(Az, AAz,t)
and
N(AAZ, Bp,kt) < N(Tp, Bp,t) 0 N(SAZ, AAz,t)
ON(SAZ,Bp,t) 0 N(Tp,AAz,t) o N(Tp,SAz,t)

N(AAZ,Az,kt) < N(Tp,Tp,t) 0 N(AAZ,AAz,t)
0 N(AAZ,Az,t) 0 N(Az,AAz,t) o N(Az, AAz,t)

M(AAZ,AZ,kt) > M(AAZ, Az,t),
N(AAz,Az,kt) < N(AAZ,Az,t)

By Lemma 3.2, we have SAz= AAz = Az. Hence
Az is common fixed point of 4 and S. Similarly by (3.2),
Bp = Az is a common fixed point of B and 7. Hence,
Az 1is a common fixed point of 4, B, S and T.

Uniqueness: Suppose that Ap(# Az) is another com-
mon fixed point of 4, B, S and T.

Then by (3.2), take a =1

M(AAZ,BAp,kt) > M(TAp,BAp,t)*M(SAZ,AAz,t)
*M(SAZ,BAp,t) *M(TAp, AAz,t) *M(TAp,SAz,t)

M(AZ,Ap,kt) > M(Ap,Ap,t)*M(Az,Az,t)
*M(Az,Ap,t)*M(Ap,Az,t)*M(Ap,Az,t),

N(AAZ,BAp,kt) < N(TAp,BAp,t) 0 N(SAZ,AAz,t)
o N(SAZ,BAp,t) 0 N(TAp,AAz,t) o N(TAp,SAz,t)
N(Az,Ap,kt) < N(Ap,Ap,t) o N(Az,Az,t)
o N(Az,Ap,t) 0 N(Ap,Az,t) O N(Ap,Az,t)
This gives
M(AZ,Ap,kt) > M(AZ,Ap,t), and
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N(Az,Ap,kt) < N(Az,Ap,t)

By Lemma 3.2, Ap = Az.

Thus, uniqueness follows.

Taking §=7=1, in above theorem, we get fol-
lowing result:

Corollary 4.1. Let (X,M,N,*,0) be a complete in-
tuitionistic fuzzy metric space with continuous #-norm *
and continuous z-conorm ¢ defined by ¢*z>¢ and
(1-1)0(1-¢)<(1-¢) for all r€[0,1]. Further, let 4
and B are reciprocally continuous mappings on X satis-
fying

M (Ax,By,kt)= M (y,By,t)*M (x, Ax,1)

*M(x,By,at)*M(y,Ax,(Z—a)t)*M(y,x,t)

N (Ax,By,kt) < N(y,By,t) 0 N(x,Ax,1)
o N(x,By,at) o N(y,Ax,(Z—a)t) o N(y,x,t)

forall u,ve X, t>0 and ae(0,2) then pair 4 and
B has a unique common fixed point.

We give now example to illustrate the above theorem:
Example 4.1. Let X = [O,oo) and let M and N be
t

defined by M(M,V,t) =m
+|u—-v

u—v
and N (u,v,t)= u
t+ |u - v|
Then (X M, N *, 0) is complete intuitionistic fuzzy
metric space. Let 4, B, S and T be self maps on X defined
as:

Ax:Bx:% and Sx=Tx=2x forall xe X .

Clearly,
1) either of pair (4, S) or (B, T) be continuous self-map-
pings on X;
2) A(X)c=T(X),B(X)cS(X);
3) {4, S} and {B, T} are R-weakly commuting pairs as
both pairs commute at coincidence points;
4) {4, S} and {B, T} satisfies inequality (3.2), for all
x,y€ X ,where ke(0,1).
Hence, all conditions of Theorem 4.1 are satisfied and x
= 0 is a unique common fixed point of 4, B, S and T.
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