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ABSTRACT

In this work we consider the Von Karman system with internal damping acting on the displacement of the plate and
using the Theorem due to Nakao [1] we prove the exponential decay of the solution.
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1. Introduction

Theodor von Karman (1910) [2] started the nonlinear
system of partial differential for great deflections and for
the Airy stress function of a thin elastic plate. For several
years this system was studied in different situations. Us-
ing frictional dissipation at boundary, I. Lasiecka et al.
[3-5] proved the uniform decay of the solution. G. P.
Menzala and E. Zuazua [6] by semigroup properties gave
the exponential decay when thermal damping was con-
sidered. For Viscoelastic plates with memory, J. E. M.
Rivera et al. [7,8] proved that the energy decays uni-
formly, exponentially or algebraically with the same rate
of decay of the relaxation function. C. A. Raposo and M.
L. Santos [9] gave a General Decay of solution for the
memory case. In [10-13] the authors consider the von
Karman system with frictional dissipations effective in
the whole plate, in a part of the plate or at the boundary.
It is shown in these works that these dissipations produce
uniform rate of decay of the solution when t goes to in-
finity. In this work we also consider the system with in-
ternal damping, which is the natural problem. A distinc-
tive feature of our paper is to use Nakao’s method to
show that the energy decays exponentially to zero.

2. Existence of Solution

We use the standard Lebesgue space and Sobolev space
with their usual properties as in [14] and in this sense
(~-) and (--) denotes the inner product in L* and
H; respectively and by |-| we denote the usual norm
in L”. Let Q be a bounded domain of the plane with
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regular boundary I'. For a real number T >0 we de-
note Q=Qx(0,T) and £=Tx(0,T). Here u=u(xt)
is the displacement, v =v(x,t) the Airy stress function
and 7 is the unit normal external in Q. With this no-
tation we have the following system

Uy —Au+u =[uv] in Q 1)
-A*v=[u,u] in Q )
u(0)=u,, u (0)=u, in Q ®3)
u=au/on=v=0v/on=0 in X (4)
where
duod*v _ d0%u 90°v  d°ud’v

[U’V]:_z_z_ o e T AT Az
OX* oy OXOYy OX0y 0y~ OX

Now using the same idea of [6] we have the following
result of existence of solution.

Theorem 2.1. For u, eH{(Q), u, el*(Q) there
exists u,v:Q — R such that

u,ve L (0,T;Hg ()
u el”(0,T;12(Q))

u,v weak solution of (1)-(4).
Proof. We defining the energy E(t) of the system

(1)-(4) by
2 2 1 2
£ (1) = (O #|auef +S[av(o)

This system is well posed in the energy space (see [15])
and we have and E’(t) < 0. Galerkin’s method together
with the dissipative properties of the energy give us
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global existence of solution in the energy space. Finally
using the results from [5] on the regularity properties of
von Karmam bracket the uniqueness follows.

3. Asymptotic Behaviour

In this section, we will use the Theorem of Nakao to
prove the exponential decay of the solution.
Theorem 3.1. (Theorem of Nakao) Let E(t) be a
nonnegative function on [O,oo) satisfying
sup E(s)<C,(E(t)-E(t+1))

seft,t+1]

where C, is a positive constant. Then we have

E(t)<Ce™ with w= .
(t)<Ce™ with w ]

Proof. See page 748 of [1].
In the sequel we have two lemmas,
Lemma 3.1. The functional F?(t)=
satisfies
J~t+1

Proof. Multiplying (1) by u, and integrating in Q,

we have
Sl +lauco
~([u(V)v(t)]u (1) +u (1) =o0.
Using (2) we obtain
(Lu@®vO]u0) = (u©).u®]v(©)
(&0 u0]v))- S 0 v)

E(t)-E(t+1)

|ds<F (t).

1d 2
=———|A
4 dt V(t)| ’
from where follows
d 1
EDUI (t)|2 +|Au (t)|2 +E|Av(t)|2}+2|ut (t)|2 =0 (5)
Performing integration in 0<t<t+1, we have
E(t+1)+2[ Ju,(s) ds = E(t) (6)

then

J-t+l

Lemma 3.2. The functional

(s)[ds<E(t)-E(t+1)=F(t). (7)

G (1) =8C sup [Au(s)|F (t)+2(1+C)[*|u, (1) dt

seft,t+1]

satisfies
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I (Jou o+ Jlaveo) Jor< 6" o).
Proof. First we note that
([u®)v®)]u(®)=u®).u@]v)
= (A% (1) v (1)) =—|av(t) ®)

From (7) we get t, €[t,t+1/4] and t, e[t+3/4,t+1]
such that

u () <2F(t), i=12. 9)

Multiplying (1) by u and integrating in  Q , we have

( (£)u(®)=uc(t

<[u v(©)]u(v)+(u(

Integrating from t, to t,
N (|Au (0 +|av(t)” )dt

= (u (t)u(t))-(u (t)u(t))

1 (O = (ue (), u () ot

Now, choosing C such that |u|<C|Au| and applying
Cauchy-Schuwarz inequality we get

I (Bl v Jo

<C sup {|Au |(|ut (t1)|+|ut (t2)|)}

selt,t+1]

H(1+C7) [P Ju (o) et
and using (9),
I (1w o] +faviof o

<8C sup |Au | (t )+2(1+C2)le|u[ (t)|2dt,

seft,t+1]

) +au(o)f

t),u(t))=0.

and using (8) we have

from where follows
t, 2 1 2
I, (|Au(t)| +E|Av(t)| jdtst(t). (10)

Now we are in position of to prove our principal result.
Theorem 3.2. The solution (u,v) satisfies

| ) ds<Ce™,

(11

for almost every t>1, with C,,w>0, constants inde-
pendents from t.
Proof. From (7) and (10) we obtain

(O +au(Of +Jav(f « [ u(
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J. [|ut () +|au () +%|A\’(t)|2j0|t <F*(t)+G(t).

There exists t" e[t,,t

E(1)=

] such that

ut*

‘Au

+%‘Av(t

t

2(F2( )+G2(t ))

From (6) we get

E(t)=E(t)+2[) [u(s) os.
Then
E(t)<E(t")+2[ Ju (s) ds,
and
sup E(5)<E(t)+3]u(s) o

Now using (11) and (12) we obtain

sup E(s)<2(F*(t)+G*(t))+3F(t)

seft,t+1]

<5F?(t)+16C sup |Au(s)|F(t)

seft,t+1]

+ 4(1+ CZ)J':+l|ut (s)|2 ds

<(9+4C?)F*(t ()+l sup E(s)

seft,t+1]
+128C°F2(t),
then
sup E(s)<(274+8C*)F

set,t+1] 2 (t) ’
and finally by Theorem of Nakao follows
E(t)<Ce™
1

with w=————.
275+8C

REFERENCES

[1] M. Nakao, “A Difference Inequalit and Its Application to
Journal of the Mathe-
matical Society of Japan, Vol. 30, No. 4, 1978, pp.

Nonolinear Evolution Equation,”

747-762. doi:10.2969/jmsj/03040747

[2] T.V. Kéarman, “Festigkeitsprobleme im Maschinenbaum.
Encyklopadie der Math,” Wiss. V/4C, Leipzig, 1910, pp.

311-385.

Copyright © 2012 SciRes.

(12)

(3]

(4]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

D.C.PEREIRA ET AL.

M. Horn and I. Lasiecka, “Uniform Decay of Weak Solu-
tions to a Von Karman Plate with Nonlinear Boundary
Dissipation,” Differential and Integral Equations, Vol. 7,
No. 4, 1994, pp. 885-908.

M. Horn and I. Lasiecka, “Global Stabilization of a Dy-
namical Von Karman Plate with Nonlinear Boundary
Feedback,” Applied Mathematics & Optimization, Vol. 31,
No. 1, 1995, pp. 57-84. doi:10.1007/BF01182557

M. Horn, A. Favini, |. Lasiecka and D. Tataru, “Global
Existence, Uniqueness and Regularity to a Von Karman
System with Nonlinear Boundary Dissipation,” Differen-
tial and Integral Equations, Vol. 9, No. 2, 1996, pp.
267-294.

G. P. Menzala and E. Zuazua, “Energy Decay Rates for
the Von Karméan System of Thermoelastic Plates,” Dif-
ferential and Integral Equations, Vol. 11, No. 5, 1998, pp.
755-770.

J. E. M. Rivera and G. P. Menzala, “Decay Rates of Solu-
tions of a Von Karman System for Viscoelastic Plates
with Memory,” Quarterly of Applied Mathematics, Esta-
dos Unidos, Vol. 82, No. 1, 1999, pp.181-200.

J. E. M. Rivera, H. P. Oquendo and M. L. Santos, “As-
ymptotic Behavior to a Von Karman Plate with Boundary
Memory Conditions,” Nonlinear Analysis, Vol. 62, No. 7,
2005, pp. 1183-1205. doi:10.1016/j.na.2005.04.025

C. A. Raposo and M. L. Santos, “General Decay to a Von
Karman System with Memory,” Nonlinear Analysis, Vol.
74, No. 3, 2011, pp. 937 - 945.
doi:10.1016/j.na.2010.09.047

G. Avalos and I. Lasiecka, “Uniform Decays in Nonlinear
Thermoelastic System,” In: W. Hager and P. Pardalos,
Eds., Optimal Control, Theory Algorithms and Applica-
tion, Kluwer, 1998, pp. 1-23.

G. Avalos, I. Lasiecka and R. Triggiani, “Uniform Stabil-
ity of Nonlinear Thermoelastic Plates with Free Boundary
Conditions,” International Series of Numerical Mathe-
matics, Vol. 133, 1999, pp. 13-32.

H. Koch and A. Stahel, “Global Existence of Classical
Solutions to the Dynamical Von Karman Equations,”
Mathematical Methods in the Applied Sciences, Vol. 161,
1993, pp. 581-586. doi:10.1002/mma.1670160806

J. Puel and M. Tucsnak, “Boundary Stabilization for the
Von Karman Equations,” SIAM Journal on Control and
Optimization, Vol. 33, No. 1, 1996, pp. 255-273.
doi:10.1137/S0363012992228350

A. Adams, “Sobolev Spaces,” Academic Press, New York,
1975.

G. P. Menzala, V. Bisognin, E. Bisognin and E. Zuazua,
“On Exponential Stability for Von Karman Equations in
the Presence of Thermal Effects,” Mathematical Methods
in the Applied Sciences, Vol. 21, No. 5, 1988, pp. 393-
416.

AM


http://dx.doi.org/10.2969/jmsj/03040747
http://dx.doi.org/10.1007/BF01182557
http://dx.doi.org/10.1016/j.na.2005.04.025
http://dx.doi.org/10.1016/j.na.2010.09.047
http://dx.doi.org/10.1002/mma.1670160806
http://dx.doi.org/10.1137/S0363012992228350

