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ABSTRACT 

The boundary layer flow of viscous incompressible fluid over a stretching cylinder has been considered to study flow 
field and temperature field. Due to non-linearity, a numerical approach called Keller-box technique has been used to 
compute the values of velocity function f and temperature field at different points of dynamic region. The expressions 
for skin friction and Nusselt number have also been obtained. The dependence of velocity profile and temperature pro- 
file on the dimensionless parameter of practical interest has been analyzed in detail by graphs. The dependence of Skin 
friction and Nusselt number has been seen through tables.  
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1. Introduction 

The boundary layer flow and heat transfer due to stretch- 
ing flat plates or cylinders are of practical importance in 
fiber technology and extrusion processes, and of theo- 
retical interest as well. The production of polymer sheets 
and plastic films is based on this technology. There are 
number of examples which include the cooling of an in- 
finite metallic plate in a cooling bath, the boundary layer 
along material handling conveyers, the aerodynamic ex- 
trusion of plastic sheets, the boundary layer along a liq- 
uid film in condensation processes, paper production, 
glass blowing, metal spinning and drawing plastic films, 
and polymer extrusion. The quality of the final product 
depends on the rate of heat transfer at the stretching sur- 
face. Sakiadis [1] was the first to consider the boundary 
layer flow on a moving continuous solid surface. Crane 
[2] extended this concept to a stretching sheet with line- 
arly varying surface speed and presented an exact solu- 
tion for the steady two-dimensional flow over stretching 
surface in a quiescent fluid. Since then, many authors 
have considered various aspects of this problem and ob- 
tained similarity solutions. A similarity solution is one in 
which the number of independent variables is reduced by 
at least one, usually by a coordinate transformation. The 
idea is analogous to dimensional analysis, but instead of 
parameters, like the Reynolds number, the coordinates 
themselves are collapsed into dimensionless groups that 
scale the velocities [3]. 

The boundary layer flow due to a stretching vertical 

surface in a quiescent viscous and incompressible fluid 
when the buoyancy forces are taken into consideration 
have been considered in the papers [4-11]. Lin and Shih 
[12,13] considered the laminar boundary layer and heat 
transfer along horizontally and vertically moving cylin-
ders with constant velocity and found that the similarity 
solutions could not be obtained due to the curvature ef-
fect of the cylinder. In the present paper, we find velocity 
and temperature field for boundary layer flow past a 
stretching cylinder where cylinder is continuously mov-
ing with    0U x U x l  velocity. Due to nonlinearity 
of the problem, we use the numerical approach called 
Keller-box technique [14]. Since the lateral surface of 
cylinder changes according to curvature parameter γ = 
0.0, 0.25, 0.5, 0.75, 1, so we have studied the influence 
of γ on velocity and temperature fields. The expressions 
of skin friction fC  and Nusselt number xNu  have 
been obtained. They have been discussed in respect to 
pertinent parameters like prandtl number Pr, curvature 
parameter γ and thermal variable parameter ε. 

2. Mathematical Formulation of the Problem 

Consider a steady, axisymmetric boundary layer flow of 
a viscous incompressible fluid along a continuously 
stretching cylinder as shown in Figure 1. It is assumed 
that the stretching velocity  U x  is of the form  
   0U x U x l  where 0  is positive constant and l is 

characteristic length. Under these assumptions along with 
the boundary layer approximations, the equations which  

U
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Figure 1. Physical model and coordinate system. 
 
model the problem under consideration are  
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where u and v are the velocity components in the x- and 
r-directions, respectively. The continuity Equation (2.1) 
can be satisfied by introducing a stream function  ,  

such that 
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so that the momentum equation becomes 
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together with boundary conditions  

     0 0, 0 1, 0f f f         (2.6) 

The Equations (2.5) and (2.6) constitute a non-linear 
boundary-value problem in infinite domain  0, . Since 
no prescribed methods are available to deal with non- 
linear boundary equations that to be in infinite domain, so 
we solve it by numerical method called Keller-box me- 
thod for different curvature parameter γ. 

3. Skin Friction Coefficient  

Surface shear stress is calculated by  

 0w
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u U
U f
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Therefore, the skin friction coefficient is given by  
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4. Heat Transfer Problem 

The heat flow problem for the stretching cylinder to the 
fluid in the absence of energy dissipation, is governed by  
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with boundary conditions  
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Defining the dimensionless temperature by  

P

T T

T T
 







 

It has been observed that for liquid metals the thermal 
conductivity   varies with temperature in an approxi- 
mately linear manner in the range from F to F. 
Therefore, we assume 

00 0400
  as  1     

Now, the Equation (4.1) reduces to  
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Equation (4.3) again constitutes a non-linear boundary 
value problem involving velocity function f. We again use 
Keller-box method for different values of flow parame- 
ter  , 　γ and Pr . 

5. Local Nusselt Number 

The energy is transit by virtue of temperature gradient is 
given by  
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T U
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Hence, nusselt number is calculated as  
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where Rex Ux v  is the local Reynolds number. 

6. Discussions and Results 

In the course of analysis of the problem of boundary 
layer flow past a stretching cylinder and heat transfer 
with variable thermal conductivity, we come across the 
following results: 

The Equation (2.5) together with boundary conditions 
(2.6) constitutes a non-linear boundary value problem of 
order three. We use Keller-box [16] technique of implicit 
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finite difference to find  f   and  f   so that the 
velocity components of viscous incompressible fluid 
over stretching cylinder may be obtained. Referring Fig- 
ure 2, we see that the transverse velocity component has 
not been influenced by curvature parameter γ within the 
dynamic region [0, 1.25], thereafter, as curvature of 
stretching cylinder decreases, this velocity component 
decreases. Physically, as 0  , the outer surface of 
cylinder behaves like a flat surface. It means as 1.0  , 
the viscosity effect reduces due to contact area of surface 
with fluid tends to the tangential position. 

Looking at the Figure 3, we see that the effect of cur- 
vature parameter on horizontal component of velocity 
field is almost nil within the dynamic region [0, 0.75]. 
This velocity component approaches to zero asymptoti- 
cally within the region  0.75, . In this case, the veloc- 
ity within  is free stream velocity and in this 
region, as γ increases, the velocity component increases. 

 0.75,

Reading the Table 1, we see that . Thus, 
as Reynolds number increases 

1/2Ref xC 
fC  decreases. It is well 

known fact that as Rex  increases, the viscous forces 
decreases, in turn fC  decreases. In the present case, 

fC  depends on curvature parameter γ. We see that as γ  

increases 
1

Re
2 f xC  increases which means as γ in- 

creases, the viscous forces start reducing. 
Reading the Figures 4 and 5, we see the trend of the 

behavior of temperature profile. According to Figure 4, 
where Pr = 1.0, we note the following:  
 

 

Figure 2. Transverse velocity profiles for different values of γ. 

 

Figure 3. Horizontal velocity profiles for different values of γ. 
 

Table 1. The variation of 
1

Re
2 f xC  with respect to cur- 

vature parameter γ. 

　 0.0 0.25 0.5 0.75 1.0 

 0f  –1.0000 –1.094378 –1.188715 –1.281833 –1.459308

 
1) In case constant thermal conductivity 0  , cur- 

vature parameter γ has no effects on temperature field 
within dynamic region [0, 0.7]. As the flow boundary 
layer is thinner than the thermal boundary layer, there- 
fore, this dynamic region is sub interval of flow dynamic 
region. In free stream, as curvature increases, the heat 
transfer from surface to fluid enhances. 

2) When thermal conductivity is variable, that is 
0.2  , we see that there is no region which has not 

been affected by curvature parameter γ. In this case, as γ 
increases, the heat transfers becomes fast from surface to 
fluid too.  

3) If further 0.4  , transfer of heat is in better posi- 
tion than the case where 0.2  . 

The Figure 5 shows the pattern of temperature field 
variation when the thermal conductivity parameter 

0.1  . We see that in the case Pr = 1.0, we see that 
curvature parameter γ does not having any effect on heat 
transfer within dynamic region [0, 0.75] while for Pr = 
2.0 and Pr = 3.0, the curvature parameter influences the 
heat transfer everywhere. The enhancement in γ acceler- 
ates the heat transfer in both the cases Pr = 0.2 and Pr = 
0.4. 
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Figure 4. Temperature profiles for different values of γ and 
ε with Pr = 1.0. 
 

 

Figure 5. Temperature profiles for different values of γ and 
Pr with ε = 0.1. 
 

The Equation (5.2) establishes the relation between the 
coefficient of convectional heat transfer, i.e. Nusselt num- 
ber Nux and Reynolds number. We see that 2 Rex xNu  . 
Further, we conclude that as Reynolds number increases,  

Table 2. Temperature gradient –θ'(0) at the outer surface of 
cylinder for different values of pertinent parameters. 

Pr γ ε = 0.0 ε = 0.2 ε = 0.4 

0.0 –0.985286 –0.862122 –0.770792 

0.25 –1.079447 –0.949659 –0.853754 

0.5 –1.173899 –1.037605 –0.937245 

0.75 –1.267214 –1.124397 –1.09536 

1.0 

1.0 –1.359308 –1.209949 –1.100545 

ε γ Pr = 1.0 Pr = 2.0 Pr = 3.0 

0.0 –0.918691 –1.403426 –1.774590 

0.25 –1.000921 –1.490347 –1.862539 

0.5 –1.100088 –1.574003 –1.946728 

0.75 –1.189821 –1.656050 –2.028463 

0.1 

1.0 –1.278325 –1.736990 –2.108424 

 

i.e. Rex

Ux

v
  increases when viscosity decreases, so  

the decrease in viscosity enhances the magnitude of rate 
of convectional heat transfer in case of stretching cylin- 
der. Also, the coefficient of convectional heat depends on 
Prandtl number Pr, curvature parameter γ and thermal 
variable parameter ε. The behavior of the coefficient of 
convectional heat transfer may be studied from Table 2 
with respect to pertinent parameters. 

7. Conclusion 

The curvature of stretching cylinder is very vital pa- 
rameter affecting flow and temperature field both. In case 
of thermal conductivity, curvature helps to enhance the 
heat transfer. The reduction in fluid viscosity accelerates 
the rate of convectional heat transfer. 
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