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ABSTRACT 

The paper investigates the response of non-initially stressed Euler-Bernoulli beam to uniform partially distributed mov- 
ing loads. The governing partial differential equations were analyzed for both moving force and moving mass problem 
in order to determine the behaviour of the system under consideration. The analytical method in terms of series solution 
and numerical method were used for the governing equation. The effect of various beam observed that the response 
amplitude due to the moving force is greater than that due to moving mass. It was also found that the response ampli- 
tude of the moving force problem with non-initial stress increase as mass of the mass of the load M increases. 
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1. Introduction 

In the recent years all branches of transport have experi- 
enced great advances characterized by increasing higher 
speeds and weight of vehicles. As a result, structures and 
media over or in which the vehicles move have been sub- 
jected to vibrations and dynamic stresses far larger than 
ever before. Many scholars have studied vibration of 
elastic and inelastic structures under the action of moving 
loads for many years, and effort are still being made to 
carry out investigation dealing with various aspect of the 
problem [1-15]. The structures on which these moving 
loads are usually modeled are by elastic beams, plates or 
shells. The problem of elastic beam under the action of 
the moving loads was considered by Willis [2]. He made 
the assumption that the mass of the beams is smaller than 
that of the load and obtained an approximate solution of 
the problem. Yoshida [3] studied the vibration of a beam 
subjected to moving concentrated moving using finite 
element method. A simply supported to a constant mov- 
ing force at uniform speed was considered by Krylov [4] 
who used the method of expansion of the associated Ei- 
gen modes. He assumed the mass of the load to be 
smaller than that of the beam. Bolotin [5] carried out a 
dynamic analysis of the problem involving a concen- 
trated mass traversing a simply supported beam at con- 
stant speed. His approach involves using Galerkin’s me-
thod. The response of finite simply supported Euler- 
Bernoulli beam to a unit force moving at a uniform ve- 
locity was investigated by steel [8] The effects of this  

moving force on beams with and without an elastic 
foundation were analysed. In all the studies discussed 
above it was only the force effects of the moving loads 
are taken into consideration. The moving load problem 
involving both the inertia effect as well as the force ef- 
fects were not considered for several years. This type of 
dynamical problem was first considered by Saller [6], 
later by Jeffcott [7] whose iterative method became di-
vergent in some cases. Recently, Esmailzadeh and Go- 
rashi [9] worked on the vibration analysis of beams trav-
ersed by uniform partially distributed moving masses 
using analytical-numerical method. They discovered that 
the inertia effect of the distributed moving mass is of 
importance in the dynamic behaviour of the structure. 
The critical speeds of the moving load were also calcu- 
lated for the mid span of the beam. The length of the dis- 
tributed moving mass was also found to affect the dy- 
namic response.  

This paper deals with the response of non-initially 
stresses Euler-Bernoulli beam with an attached mass to 
uniform partially distributed moving loads. The main 
objectives of this paper are  

1) To present the analysis of the dynamic response of a 
non-initially stressed finite elastic Euler-Bernoulli beam 
with an attached mass at the end x = L, but arbitrary sup- 
ported at the end x = 0, to uniform partially distributed 
moving load. 

2) To present a very simple and practical analytical- 
numerical technique for determine the response of beams 
with non-classical boundary conditions carrying mass. 
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2. Mathematical Model 

With reference to Figure 1, it is assumed that a uniform 
simply supported Euler-Bernoulli beam of finite length L, 
having an attached mass at x = L acted upon initially at 
time t = 0, by mass M, over fixed length of the beam with 
a specified constant velocity v. The load is in contact 
with the beam throughout the motion. 

3. The Governing Equations 

The governing equations describing the vibration behav- 
iour of a uniform non-initially stressed Euler-Bernoulli 
with an attached mass at the end x = L but traversed by a 
concentrated moving loads are 


4 4 2

14 4 2
,

Y Y Y Y
EI a EI m c f x t

tx x t t

   
   

   
  (1) 

where, E the is the modulus of elasticity, I is the second 
moment of area of the beam’s cross-sectional, m is the 
mass per unit length of the beam, 1  is the damping 
constant, , Y is the deflection of the beam, 
x is the spatial coordinate, t is the time and f(x, t) is the 
applied force (i.e. the resultant concentrated force caused 
by the moving mass). 

a
   0c x a m x

The applied force per unit length F(x, t) is the uniform 
partially distributed moving load which is defined as 
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M: is the mass of the load. 
g: is the acceleration due to gravity. 
 : is the fixed length of load. 
 : is the length of the beam. 

The differential operator 
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Figure 1. The mathematical model of the problem. 

H(x) is function such that 
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                (4) 

Hence the governing equations describing the vibra-
tion behaviour of a uniform non-initially stressed Euler- 
Bernoulli beam with an attached mass at the end x = L 
becomes 
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Subject to the following boundary conditions 
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The corresponding initial conditions are 

   ,0 0, ,0 0Y x Y x              (8) 

4. Solution to the Initial-Boundary Value 
Problem 

We assumed a solution in the form of a series 
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where  iy x  are the known Eigen functions of the  
beam. 

The Eigen functions satisfying the following equation 
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where i  are natural frequencies. 

  cos sin cosh sinhi i i i iy x a x b x c x d x       (12) 

is the solution to Equation (10) and a, b, c, d are con- 
stants coefficients and  iT x  are functions of time to be 
determined 

We further assumed 
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S ubstituting Equation (9) into Equation (5), we have 
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Multiply both sides of the R. H. S. of Equation (14) by 
 jy x  and taking the definite integrals of both sides 

along the length  of the beam with respect to x, we 
have 

L
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Evaluation the first definite integral in Equation (15) 

by carrying out integration by part with respect to x  
using the following two properties of singularity function 
[ ] 
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Similar arguments to second, third to fifth definite in-
tegral in (15) hence evaluating the integrals using Tay-
lor’s series expansion and applying orthogonality proper-
ties of the characteristics function  iy x  the R. H. S. of 
(15), we finally obtain 
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Substituting Equation (18) into the R. H. S. of Equation (14) we have 
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Considering Equations (10) and (11), then Equation (19) becomes 
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The Equation (20) must be satisfied for arbitrary  iy x  and this possible only when the expression in the curl 
bracket is equal to zero. Hence 
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The system of Equation (21) is a set of coupled ordi- 

nary second order differential equations and it is easily 
observed that a numerical approach is required to solve it. 

5. Simply Supported Non-Initially Eu-
ler-Bernoulli Beam 

The Eigen functions 
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We obtain the set of exact governing differential equa- 
tion for the vibration of the beam by employing Equation 
(22) and evaluating the exact values of the integral in 
Equation (15) and we finally obtain  
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T t i j i j

m i j L L

  

 







              

                            

          











 


   

         
2

1

π π
sin cos

2

π π π π
sin cos sin cos

π 2 2

n

i
i

i
i j i j

i j L L

Mv i i
T t i j i j i j i j

m i j L L i j L L



 


         
 

    

                            
 



 


       (23) 

 
Note for the case i = j we replace the expression in- 

volving 
i

i j
 by 

π

2L


 

To solve Equation (23) recourse can be made to a nu-
merical method, but two interesting cases are to be tack-
led. 

5.1. The Moving Forces Non-Initially Stressed  
Euler-Bernoulli Beam 

A moving force problem is one in which the inertia ef-
fects of the moving load are neglected and only the force 
effects are retained. In other words by neglecting all the 
terms on the R. H. S. of Equation (23) except the first term.  
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5.2. The Moving Mass Non-Initially Stressed 
Euler-Bernoulli Beam 

This is the case in which both the inertia effect as well as 
the force effect are taken into consideration. The entire 
Equation (23) is the moving mass problem To obtain 
results given in this paper, an approximate central dif- 
ference formulas have been made used of, for the deriva- 
tives in Equation (23) for both cases [5.1 and 5.2]. Thus, 
for N modal shapes, Equation (23) are transformed to a 
set of N linear algebraic equations, which are to be 
solved for each interval of time. Regarding the definition 
of approximation involved, in order to ensure the stabil- 
ity and convergence of the solution, sufficiently small 
time steps have been utilized. 

Computer programe was developed and the following 
numerical data which are the same as those in reference 
[ ] were used for the purpose of comparison  

11 2 6 42.07*10 N/m , 1.04*10 m ,

3.3 m/s, 70 kg, 9.8,

7.04 kg/m, 8 kg/m and 10 kg/m,

10 m, 0.1 and 1.0

E I

v m g

M

L

 
  

 

 

Hence we have the graphs of results. See Figures 2-5. 

5.3. Numerical Simulation 

The displacement profiles of the beam are display graph-
ically to demonstrate the effect of the mass, the angular 
frequency and the viscous damping magnifica- tion fac-
tor.  

5.4. Discussion of Result and Conclusion 

From the response profile of the beam it was observed 
that the beam has more than one mode of vibration with  
 

 

Figure 2. Deflection against time for different values of 
damped coefficient. 

 

Figure 3. Deflection against time for  = 0.1 with different 
values of mass. 

 

 

Figure 4. Deflection against length for different values of 
damped coefficient. 

 

 

Figure 5. Magnification factor against frequency ratio for 
different values of damped coefficient. 
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each mode having a different natural frequency. The am- 
plitude increases with increase in viscous damping. Also 
it was observed from Figure 5 that as the mass of the 
load increase the amplitude is also increases and the val-
ue of the magnification factor occurs for a value   less 
than one for . 0.1
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