
Wireless Sensor Network, 2010, 2, 358-364 
doi:10.4236/wsn.2010.24047 Published Online May 2010 (http://www.SciRP.org/journal/wsn) 

Copyright © 2010 SciRes.                                                                                 WSN 

Accurate Angle-of-Arrival Measurement Using 
Particle Swarm Optimization 

Minghui Li, Kwok Shun Ho, Gordon Hayward 
Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, UK 

E-mail: minghui.li@ieee.org 
Received December 4, 2009; revised February 22, 2010; accepted March 19, 2010 

Abstract 
 
As one of the major methods for location positioning, angle-of-arrival (AOA) estimation is a significant 
technology in radar, sonar, radio astronomy, and mobile communications. AOA measurements can be ex-
ploited to locate mobile units, enhance communication efficiency and network capacity, and support loca-
tion-aided routing, dynamic network management, and many location-based services. In this paper, we pro-
pose an algorithm for AOA estimation in colored noise fields and harsh application scenarios. By modeling 
the unknown noise covariance as a linear combination of known weighting matrices, a maximum likelihood 
(ML) criterion is established, and a particle swarm optimization (PSO) paradigm is designed to optimize the 
cost function. Simulation results demonstrate that the paired estimator PSO-ML significantly outperforms 
other popular techniques and produces superior AOA estimates. 
 
Keywords: Array Signal Processing, Angle-of-Arrival (AOA) Estimation, Location Positioning, Particle Swarm 

Optimization, Smart Antennas 

1. Introduction 
 
Estimation of the incident signals’ directions, or angle-of- 
arrival (AOA) estimation, is a fundamental problem in 
numerous applications such as radar, sonar, radio as-
tronomy, and mobile communications. AOA measure-
ments can locate mobile units, and thus support and en-
hance location-aided routing, dynamic network planning 
and management, and different types of location-based 
services and applications [1], furthermore, it can improve 
communication efficiency and network capacity when 
integrated with adaptive array technology. 

In general, location estimates of mobile units are de-
rived from two types of measurements: AOA and range. 
The widely used range estimation models include re-
ceived signal strength (RSS), time of arrival (TOA) and 
time difference of arrival (TDOA), where cooperation 
and synchronization between the transmitter and receiver 
are required [1]. On the contrary, the AOA model can 
locate targets in a non-cooperative, stealthy and passive 
manner, which is highly desirable in military and sur-
veillance applications. The benefits of AOA measure-
ments for location estimation have been widely investi-
gated, and many AOA-alone [2-4] and hybrid systems 
[5-8] have been proposed. 

A chief goal of wireless communication research has 
long been to enhance the network capacity, data rate and 
communication performance. In comparison with solu-
tions of increasing spectrum usage, smart antenna tech-
nology provides a more practical and cost-efficient solu-
tion. The benefits of using smart antennas are that the 
sender can focus the transmission energy towards the 
desired user while minimizing the effect of interference, 
and the receiver can form a directed beam towards the 
sender while simultaneously placing nulls in the direc-
tions of the other transmitters. This spatial filtering capa-
bility leads to increased user capacity, reduced power 
consumption, lower bit error rates (BER), and larger 
range coverage [9,10]. A key component that aids the 
array to be ‘smart’ and adaptive to the environment is 
AOA estimation of the desired signals and co-channel 
interferers. To fully exploit the AOA capability in mobile 
communications, various Medium Access Control (MAC) 
protocols have been developed [11-13]. 

In recent years, AOA estimation has received consid-
erable attention from radar and communication commu-
nities, and several high resolution algorithms have been 
proposed based on the white Gaussian noise model, such 
as multiple signal classification (MUSIC) [14], maxi-
mum likelihood (ML) [15], and others [16,17]. However, 
in many circumstances, the emitters reside in a “radio 
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hostile” environment and the noise fields tend to be cor-
related along the array due to the dominant ambient noise 
[18]. Furthermore, the systems are often forced to work 
under unfavorable conditions involving low signal-to- 
noise ratio (SNR), highly correlated signals, and small 
array with few elements due to the cost, energy and size 
constraints. The standard AOA techniques become in-
competent in such scenarios. 

In this paper, we propose an algorithm for accurate 
AOA measurement in colored noise fields and harsh ap-
plication scenarios. By modeling the unknown noise co-
variance as a linear combination of known weighting 
matrices, a maximum likelihood criterion is derived with 
respect to AOA and unknown noise parameters. ML cri-
teria may yield superior statistical performance, but the 
cost function is multimodal, nonlinear and high-dimen- 
sional. To tackle it efficiently, we propose to use the par-
ticle swarm optimization (PSO) paradigm as a robust and 
fast global search tool. PSO is a recent addition to evolu-
tionary algorithms first introduced by Eberhart and Ken-
nedy [19]. Most of the applications demonstrated that 
PSO could give competitive or even better results in a 
much faster and cheaper way, compared to other heuris-
tic methods such as genetic algorithms (GA) [20]. 

The PSO is designed to combine the problem-inde- 
pendent kernel and problem-specific features, which 
make the algorithm highly flexible while being specific 
and effective in the current application. Via extensive 
numerical studies, we demonstrate that the proposed al-
gorithm yields superior performance over other popular 
methods, especially in unfavorable scenarios involving 
low SNR, highly correlated signals, short data samples, 
and small arrays. 

The paper has been organized as follows. Section 2 
describes mathematical models of the signal and noise, 
and derives the ML criterion function. In Section 3, 
PSO-ML and the strategies for parameter selection are 
presented. Simulation results are given in Section 4, and 
Section 5 concludes the paper. 
 
2. Data Model and Problem Formulation 
 
We consider an array of M elements arranged in an arbi-
trary geometry and N narrowband far-field sources at 
unknown locations. The complex M-vector of array out-
puts is modeled by the standard equation 

( ) ( ) ( ) ( ), 1, 2, ...,t t t t  y A θ s n       (1) 

where  is the source AOA vector, and 

the kth column of the complex 
1[ , , ]T

N θ 
M N  matrix  A   

is the so called steering vector  ka  for the angle k . 

The ith element i ka   models the gain and phase ad-

justments of the kth signal at the ith element. Further-

more, the complex N-vector  ts  is composed of the 

emitter signals, and  tn  models the additive noise. 

The vectors of signals and noise are assumed to be sta-
tionary, temporally white, zero-mean complex Gaussian 
random processes with second-order moments given by 
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where ts  is the Kronecker delta,  H  denotes com-

plex conjugate transpose,  denotes transpose, and   T

 E   stands for expectation. Assuming that the noise 

and signals are independent, the data covariance matrix 
is given by 

     HtHE t  R y y APA Q         (3) 

Moreover, it is assumed that the number of sources is 
known or has been estimated using techniques, e.g., in 
[21]. The problem addressed herein is the estimation of 

 (and if necessary, along with the parameters in P and 

Q) from a batch of L measurements , …, 

θ

 1y  Ly . 

Under the assumption of additive Gaussian noise and 
Gaussian distributed signals, the normalized (with L) 
negative log-likelihood function of the data vectors takes 
the form (ignoring the parameter independent terms) [22] 

   1 ˆ, , g tr P Q R R loI   R           (4) 

where  tr   stands for trace, log   denotes the natu-

ral logarithm of the determinant, and  is the covari-
ance matrix of the measured data 
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              (5) 

In the follows, we focus on the ML criterion derived 
using parameterization of the noise covariance. Because 
this assumption applies no constraints to the signals, it is 
applicable to both cooperative and non-cooperative sce-
narios. 

Based on a Fourier series expansion of the spatial 
noise power density function, the noise covariance Q is 
assumed to be modeled by the following linear parame-
terization [18]: 

 
J

j j
j

 Q η Σ               (6) 

where 1,...,
T

J    η  is a vector of unknown noise 
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Fourier coefficients, jΣ  is a known function of the ar-

ray geometry given by 
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0,1,2,l   . It is assumed that j is known or has been 
estimated [18,21]. Similar descriptive models depicting 
the noise covariance as a linear combination of known 
weighting matrices are widely accepted in the literature 
[18,21,23,24]. 

Following the derivation in [25], P can be solved in 
terms of  and Q ,  A θ  η

   1ˆ H H H H
   P A A A RA A A A A

1
     (9) 

paradigm, which mimics animal social behaviors such as 
flocking of birds and the methods by which they find 
roosting places or food sources [19]. PSO starts with the 
initialization of a population of individuals in the search 
space and works on the social behavior of the particles in 
the swarm. Each particle is assigned a position in the 
problem space, which represents a candidate solution to 
the problem under consideration. Each of these particle 
positions is scored to obtain a scalar cost, named fitness, 
based on how well it solves the problem. These particles 
then fly through the problem space subject to both de-
terministic and stochastic update rules to new positions, 
which are subsequently scored. Each particle adaptively 
updates its velocity and position according to its own 
flying experience and its companions’ flying experience, 
aiming at a better position for itself. As the particles tra-
verse the search space, each particle remember its own 
personal best position that it has ever visited, and it also 
knows the best position found by any particle in the 
swarm. On successive iterations, each particle takes the 
path of a damped oscillatory movement towards its per-
sonal best and the global best positions. With the oscilla-
tion and stochastic adjustment, particles explore regions 
throughout the problem space and eventually settle down 
near a good solution. 
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1/2
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By substituting (9) back to (3) and (4), the ML crite-
rion function can be finally reduced to 

  1 , log logI    η Q GRG H H tr R   (11) 
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           (12) 

The ML estimates of  and  are obtained by 

minimizing (11). Based on the data model, the Cramer- 
Rao bound (CRB) for AOA estimation can be derived [18], 

 η

In Equation (13),  Re   represents the real part,  

denotes element-wise product, and 
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As illustrated in Figure 1, the algorithm starts by ini-
tializing a population of particles in the “normalized” 
search space with random positions x and random ve-
locities v, which are constrained between zero and one in 
each dimension. The position vector of the ith particle 

takes the form 1 1,..., , ,...,i N      x     , where 0 ,n    

1j  , 1,...,n N , 1,...,j J , , . A parti-

cle position vector is converted to a candidate solution 
vector in the problem space through a mapping. The 
score of the mapped vector evaluated by the likelihood 
function 

1N  1J 

 η1 ,I   (11) is regarded as the fitness of the 

corresponding particle. 
The ith particle’s velocity is updated according to (15) 

  1
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i i i i gc c     v v r p x r p x  k
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where pi is the best previous position of the ith particle, 
pg is the best position found by any particle in the swarm, 

1, 2,k   , indicates the iterations,   is a parameter 

called the inertia weight,  and  are positive con-

stants referred to as cognitive and social parameters re-
spectively,  and  are independent random vectors. 

1c 2c
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3. PSO-ML AOA Estimation and Parameter 

Selection 
 
Particle swarm optimization is a stochastic optimization  
 

           1
1 1 1 11

CRB Re
2

T TH H H H

L


       

θ PA R AP D R D PA R D PA R D               (13) 

  



M. H. LI  ET  AL. 

Copyright © 2010 SciRes.                                                                                 WSN 

361
 
 

Repeat for each iteration 

Repeat for each particle 

Map particle position to solution vector in problem space 

Evaluate fitness 

Update personal best position pi and global best position pg 

Update particle velocity 

Limit particle velocity 

Update particle position 

Clip or adjust particle position if required 

Test termination criteria 

Setup problem: 

 Define problem space 

 Define fitness function 

 Select PSO parameters 

Initialize swarm: 

 Random normalized positions

 Random velocities 

 

Solution is final global best position pg 
 

Figure 1. Flowchart illustrating main steps of PSO-ML 
technique. 
 

Three components typically contribute to the new ve-
locity. The first part refers to the inertial effect of the 
movement. The inertial weight ω is considered critical 
for the convergence behavior of PSO [26]. A larger ω 
facilitates searching new area and global exploration 
while a smaller ω tends to facilitate fine exploitation in 
the current search area. In this study, ω is selected to 
decrease during the optimization process, thus PSO tends 
to have more global search ability at the beginning while 
having more local search ability near the end. Given a 
maximum value ωmax and a minimum value ωmin, ω is 
updated as follows: 
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where [rK] is the number of iterations with time de-
creasing inertial weights, 0< r < 1 is a ratio, and K is the 
maximum iteration number. Based on empirical practice 
and extensive test runs, we select ωmax = 0.9, ωmin = 0.4, 
and r = 0.4-0.8. The second and third components intro-
duce stochastic tendencies to return towards the parti-
cle’s own best historical position and the group’s best 
historical position. Constants c1 and c2 are used to bias 
the particle’s search towards the two locations. Follow-
ing common practice in the literature [27], c1 = c2 = 2, 
although these values could be fine-turned for the prob-
lem at hand. 

Since there was no actual mechanism for controlling 
the velocity of a particle, it is necessary to define a 
maximum velocity to avoid the danger of swarm explo-
sion and divergence [28]. The velocity limit is applied to 
vi along each dimension separately by 
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,
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          (17) 

where d = 1,…, N + J. Like the inertial weight, large 
values of VMAX encourage global search while small val-
ues enhance local search. In this study, VMAX is held con-
stant at 0.5, the half dynamic range, throughout the opti-
mization. 

The new particle position is calculated using (18), 
1k k k

i i i
  x x v              (18) 

If any dimension of the new position vector is less 
than zero or greater than one, it is clipped to stay within 
this range. It should be noted that, at any time of the op-
timization process, two components representing AOA in 
a position vector are not allowed to be equal. 

The final global best position pg is taken as the ML es-
timates of AOA and noise parameters. Some previous 
works demonstrate that the performance of PSO is not 
significantly affected by changing the swarm size P. The 
typical range of P is 20 to 50, which is sufficient for 
most problems to achieve good results [29]. In addition, 
PSO is robust to control parameters; and the convergence 
and stability analysis is presented in [28]. 
 
4. Simulation Results 
 
Two examples are presented to evaluate PSO-ML against 
the least square estimator (LSE) [24], MUSIC [14], and 
the unconditional maximum likelihood (UML) method 
[15]. LSE is a superior direction finding technique in 
colored noise fields established based on a similar noise 
model, MUSIC is one of the most popular techniques, 
and UML represents the best estimator under white 
Gaussian noise assumption [30]. 

The selected PSO parameters are summarized in Ta-
ble 1. The PSO algorithm starts with random initializa-
tion, and is terminated if the maximum iteration number 
K is reached or the global best particle position is not 
updated in 20 successive iterations. We have performed 
300 Monte Carlo experiments for each point of the plot. 
 
4.1. Example 1 
 
Assume that two equal-power correlated signals with the 
correlation factor r = 0.95, impinge on a four-element 
uniform linear array (ULA) from 90 and 95. The num-
ber of snapshots is 80. The situation is challenging, since 
the separation of emitters is about 0.19 beam width, the  
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Table 1. Selected PSO parameters. 

Parameter Value 

c1 2.0 

c2 2.0 

P 20 

K 200 

MAXV  0.5 

max  0.9 

min  0.4 

r 0.5 

 
conventional resolution limit. The noise covariance is 
modeled as a linear combination of known matrices (6), 
J = 3, and  1,1/ 4,1/ 9η . Similar noise models are 

used in the literature [29]. Figure 2 depicts the combined 
AOA estimation root-mean-squared errors (RMSE) ob-
tained using PSO-ML, LSE, MUSIC and UML as a 
function of SNR, and compares them with the corre-
sponding CRB (13) (theoretically best performance). 
Figure 3 shows the resolution probabilities for the same 
methods. Two sources are considered to be resolved in 
an experiment if both estimation errors are less than the 
half of their angular separation. 

As can be seen from Figures 2 and 3, PSO-ML yields 
significantly superior performance over LSE, MUSIC 
and UML as a whole, by demonstrating lower estimation 
RMSE and higher resolution probabilities. PSO-ML 
produces excellent AOA estimates with RMSE ap-
proaching and asymptotically attaining the theoretic  
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Figure 2. AOA estimation RMSE of PSO-ML, LSE, MUSIC 
and UML versus SNR. Dashdot line represents theoretic 
CRB. Two correlated sources impinge on four-element 
ULA at 90 and 95, r = 0.95. Number of snapshots is 80. 
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Figure 3. Resolution probabilities of PSO-ML, LSE, MU-
SIC and UML versus SNR. Two correlated sources impinge 
on four-element ULA at 90 and 95, r = 0.95. Number of 
snapshots is 80. 
 
lower bound. On the other hand, as a standard high- res-
olution method, MUSIC fails almost in the whole SNR 
range. Although UML is an optimal technique in white 
Gaussian noise, it completely fails when SNR is lower 
than 15 dB and only produces acceptable estimates in 
high SNR region. It is worth noting that the advantages 
of PSO-ML over the other methods are more prominent 
when SNR is low, and the benefits can be extended to 
other unfavorable conditions. 
 
4.2. Example 2 
 
In the second example, we consider an 8-element ULA. 
Two emitters are present at 80 and 83 with a sepa-
ration of 0.23 beamwidth, r = 0.9. The number of 
snapshots is 30. In the noise model (6), J = 5 and 

 1,0.75,0.5,0.25,0.1η . Figure 4 illustrates the RMSE 

values obtained from PSO-ML, LSE, MUSIC and UML. 
The resolution probabilities for the same methods are 
shown in Figure 5. 

As expected, PSO-ML significantly outperforms LSE, 
MUSIC and UML and produces more accurate estimates 
by showing lower RMSE and higher resolution prob-
abilities. We select a different scenario in this example, 
although the source separation in terms of array beam-
width is similar, the data sample is much shorter and 
there is more freedom in the noise model as compared 
with Example 1. As shown in Figures 2-5, the benefits 
of PSO-ML over LSE with colored noise model and 
UML and MUSIC under white Gaussian noise assump-
tion appear to be more prominent in unfavorable scenar-
ios involving low SNR, short data samples, closely 
spaced and highly correlated sources, and unknown noise 
environment. 
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Figure 4. AOA estimation RMSE of PSO-ML, LSE, MUSIC 
and UML versus SNR. Dashdot line represents theoretic 
CRB. Two correlated sources impinge on eight-element 
ULA at 80 and 83, r = 0.9. Number of snapshots is 30. 
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Figure 5. Resolution probabilities of PSO-ML, LSE, MU-
SIC and UML versus SNR. Two correlated sources impinge 
on eight-element ULA at 80 and 83, r = 0.9. Number of 
snapshots is 30. 

 
5. Conclusions 
 
Arising from the requirements of radio localization, effi-
cient communication by directional transmission and 
interference suppression, and exploration of angular di-
versity for various benefits such as location-aided routing 
and network management, AOA measurement is an im-
portant technology of growing practical interest in nu-
merous applications such as radar, radio astronomy, and 
mobile communications. In this paper, we propose an 
algorithm for AOA estimation in colored noise fields and 
unfavorable application scenarios based on the maximum 
likelihood principle and implemented using the PSO pa-

radigm. Simulation results demonstrate that PSO-ML 
significantly outperforms other popular techniques and 
produces more accurate AOA estimates, especially in 
unfavorable scenarios. 
 
8. References 
 
[1] G. Mao, B. Fidan and B. Anderson, “Wireless Sensor 

Network Localization Techniques,” Computer Networks, 
Vol. 51, No. 10, 2007, pp. 2529-2553. 

[2] D. Niculescu and B. Nath, “Ad Hoc Positioning System 
Using AOA,” Proceedings of IEEE Infocom 2003, San 
Francisco, 30 March-3 April 2003, pp. 1734-1743. 

[3] M. Gavish and A. Weiss, “Performance Analysis of Bear- 
ing-Only Target Location Algorithms,” IEEE Transac-
tions on Aerospace and Electronic Systems, Vol. 28, No. 
3, 1992, pp. 817-828. 

[4] T. Biedka, J. Reed and B. Woerner, “Direction Finding 
Methods for CDMA Systems,” Proceedings of 30th Asi-
lomar Conference on Signals, Systems and Computers, 
Pacific Grove, 3-6 November 1996, pp. 637-641. 

[5] Z. Gu and E. Gunawan, “Radiolocation in CDMA Cellu-
lar System Based on Joint Angle and Delay Estimation,” 
Wireless Personal Communications, Vol. 23, No. 3, 2002, 
pp. 297-309. 

[6] L. Cong and W. Zhuang, “Hybrid TDOA/AOA Mobile 
User Location for Wideband CDMA Cellular Systems,” 
IEEE Transactions on Wireless Communications, Vol. 1, 
No. 3, 2002, pp. 439-447. 

[7] J. Ash and L. Potter, “Sensor Network Localization via 
Received Signal Strength Measurements with Directional 
Antennas,” Proceedings of 42th Annual Allenton Con-
ference on Communication, Control, and Computing, 
Champaign-Urbana, September 2004, pp. 1861-1870. 

[8] T. Chen, C. Chiu and T. Tu, “Mixing and Combining 
with AOA and TOA for the Enhanced Accuracy of Mo-
bile Location,” Proceedings of 5th European Personal 
Mobile Communications Conference, Glasgow, 22-25 April 
2003, pp. 276-280. 

[9] M. H. Li, Y. L. Lu, H.-H. Chen, B. Wang and I.-M. Chen, 
“Angle of Arrival (AOA) Estimation in Wireless Net-
works,” In: J. Feng, Ed., Wireless Networks - Research, 
Technology and Applications, Chapter 5, Nova Science 
Publishers, Inc., New York, 2009, pp. 135-164. 

[10] J. Liberti and T. Rappaport, “Smart Antennas for Wire-
less Communications,” Prentice Hall, Upper Saddle River, 
1999. 

[11] S. Bellofiore, J. Foutz, R. Govindarajula, I. Bahceci, C. 
Balanis, A. Spanias, J. Capone and T. Duman, “Smart 
Antenna System Analysis, Integration, and Performance 
for Mobile Ad-Hoc Networks (MANETs),” IEEE Trans-
actions on Antennas and Propagation, Vol. 50, No. 5, 
2002, pp. 571-581. 

[12] H. Koubaa, “Reflections on Smart Antennas for MAC 
Protocols in Multihop Ad Hoc Networks,” Proceedings 
of European Wireless’02, Florence, 25-28 February 2002, 

Copyright © 2010 SciRes.                                                                                 WSN 



M. H. LI  ET  AL. 
 

Copyright © 2010 SciRes.                                                                                 WSN 

364 

pp. 25-28. 

[13] H. Singh and S. Singh, “Tone Based MAC Protocol for 
Use with Adaptive Array Antennas,” Proceedings of 
IEEE Wireless Communications and Networking Con-
ference, Atlanta, 21-25 March 2004, pp. 1246-1251. 

[14] R. Schmidt, “Multiple Emitter Location and Signal Pa-
rameter Estimation,” IEEE Transactions on Antennas and 
Propagation, Vol. 34, No. 3, 1986, pp. 276-280. 

[15] M. H. Li and Y. L. Lu, “A Refined Genetic Algorithm for 
Accurate and Reliable DOA Estimation with a Sensor 
Array,” Wireless Personal Communications, Vol. 43, No. 
2, 2007, pp. 533-547. 

[16] M. H. Li and Y. L. Lu, “Improving the Performance of 
GA-ML DOA Estimator with a Resampling Scheme,” 
Signal Processing, Vol. 84, No. 10, 2004, pp. 1813-1822. 

[17] M. H. Li and Y. L. Lu, “Dimension Reduction for Array 
Processing with Robust Interference Cancellation,” IEEE 
Transactions on Aerospace and Electronic Systems, Vol. 
42, No. 1, 2006, pp. 103-112. 

[18] M. H. Li and Y. L. Lu, “Angle-of-Arrival Estimation for 
Localization and Communication in Wireless Networks,” 
Proceedings of 16th European Signal Processing Con-
ference, Lausanne, 25-29 August 2008. 

[19] R. C. Eberhart and J. Kennedy, “A New Optimizer Using 
Particle Swarm Theory,” Proceedings of 6th Symposium 
on Micro Machine and Human Science, Nagoya, 4-6 Oc-
tober 1995, pp. 39-43. 

[20] M. H. Li and Y. L. Lu, “Source Bearing and Steering- 
Vector Estimation Using Partially Calibrated Arrays,” 
IEEE Transactions on Aerospace and Electronic Systems, 
Vol. 45, No. 4, 2009, pp.1361-1372. 

[21] J.-J. Fuchs, “Estimation of the Number of Signals in the 
Presence of Unknown Correlated Sensor Noise,” IEEE 
Transactions on Signal Processing, Vol. 40, No. 5, 1992, 
pp. 1053-1061. 

[22] B. Ottersten, M. Viberg, P. Stoica and A. Nehorai, “Exact 
and Large Sample Maximum Likelihood Techniques,” 

Radar Array Processing, In: S. Haykin, J. Litva and T. J. 
Shepherd, Ed., Springer-Verlag, New York, 1993, pp. 
99-152. 

[23] F. Vanpoucke and A. Paulraj, “A Harmonic Noise Model 
for Direction Finding in Colored Ambient Noise,” IEEE 
Signal Processing Letters, Vol. 2, No. 4, 1995, pp. 135-137. 

[24] A. G. Jaffer, “Maximum Likelihood Direction Finding of 
Stochastic Sources: A Separable Solution,” Proceedings 
of International Conference on Acoustics, Speech, and 
Signal Processing, New York, 11-14 April 1988, pp. 2893- 
2896. 

[25] K. E. Parsopoulos and M. N. Vrahatis, “Recent Ap-
proaches to Global Optimization Problems through Parti-
cle Swarm Optimization,” Natural Computing, Vol. 1, No. 
2-3, 2002, pp. 235-306. 

[26] R. C. Eberhart and Y. Shi, “Particle Swarm Optimization: 
Developments, Applications and Resources,” Proceed-
ings of 2001 Congress on Evolutionary Computation, 
Seoul, 27-30 May 2001, pp. 81-86. 

[27] M. Clerc and J. Kennedy, “The Particle Swarm-Explo- 
sion, Stability and Convergence in a Multidimensional 
Complex Space,” IEEE Transactions on Evolutionary 
Computation, Vol. 6, No. 1, 2002, pp. 58-73. 

[28] R. C. Eberhart and Y. Shi, “Comparing Inertia Weights 
and Constriction Factors in Particle Swarm Optimiza-
tion,” Proceedings of 2000 Congress on Evolutionary 
Computation, San Diego, 16-19 July 2000, pp. 84-88. 

[29] J. F. Böhme and D. Kraus, “On Least Squares Methods 
for Direction of Arrival Estimation in the Presence of 
Unknown Noise Fields,” Proceedings of International 
Conference on Acoustics, Speech, and Signal Processing, 
New York, 11-14 April 1988, pp. 2833-2836. 

[30] P. Stoica and A. Nehorai, “Performance Study of Condi-
tional and Unconditional Direction-of-Arrival Estima-
tion,” IEEE Transactions on Acoustics, Speech and Sig-
nal Processing, Vol. 38, No. 10, 1990, pp. 1783-1795. 

 


	Received December 4, 2009; revised February 22, 2010; accepted March 19, 2010

