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ABSTRACT 

For an operator  on a Banach space S X , let ,Lat S X

S

 be the collection of all its invariant subspaces. We consider 

the index function on  and we show, amongst others, that if  is a bounded below operator and if  ,S X Lat

 ,iM Lat S X , , then  If in addition i I  i i
i I

ind M


   
 
 .

i I

in M
  i




i I

ind M

 d




iM  are index 1 invariant sub-

spaces of , with nonzero intersection, we show that S    ii I
M


<Mi ind

i Iind  . Furthermore, using the index 

function, we provide an example where for some  ,iM Lat S X =i ii I i I
, holds M M  . 
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1. Introduction, the Index Function 
If  is an operator on a Banach space S X , then a 
closed subspace M  of X  is called invariant for  if 

. The collection of all invariant subspaces of an 
operator  is denoted by 

S
SM M

S  ,La Xt S . It forms a com- 
plete lattice with respect to intersections and closed spans. 
One of the important notions in the general theory of 
operators, such as bounded below operators, is the index 
of an element in  ,Lat S X , which is defined as follows. 
(This definition is taken from [1].)  

Definition 1.1. The map  

     0   : ,ind Lat S X  

is defined as  =ind M
 = 0M

dim M SM = 0d M and in  if 
and only if . We say that M  has index  if 

.  
n

=ind M n
The index function plays an essential role in the study 

of invariant subspaces of Banach spaces. (For example, 
see an extensive study in [2] for index 1 invariant sub- 
spaces in Banach spaces of analytic functions.) In this 
article we generalize and extend the results obtained in 
[3], utilizing new proving techniques, deriving algebraic 
properties of the index functions. Moreover, we provide 
new results that are applied in Bergman space theory. 
Amongst others, and as a corollary to our main result, we 
show that if  ,iM Lat S X

ind 
,  and  

 then ,  
= 1

 i ii I
nd M


iind M

  <
i I

M i   0ii I
M




where ii I
M iM ,   denotes the closed span of 

i I   . (Equivalently, ii I
M

ii I

  is the closure of  
M

 ). An analogous result, but in not such a general 
setting as the one presented here, was proved by Richter 
([2], Corollary 3.12), using operator theoretical tools and 
results from analysis. Here we prove our general result 
using only algebraic tools and a rather standard result 
from functional analysis. Furthermore, we provide an 
example where for some i  ,M Lat S X

=
,  

i ii I i I
M M   holds, and we present an application 

of this result in Bergman space theory.  

2. Algebraic Properties of the Index  
Function—Main Results 

In the sequel we denote with I  an index subset of , 
and with 


X  a Banach space.  

Theorem 2.1. Let  be a commutative ring with 
identity and let i

R
,A A

i

 be free unitary R-modules such 
that A  are free submodules of A , . Then  i I

  = .i i i
i I i Ii I

rank A A rank A A rank A A
 

        
   

 

,

 

Proof. We shall prove this theorem using mathe- ma- 
tical induction. Henceforth at first we establish the fol- 
lowing equation (which it is the initial step of mathe- 
matical induction.) We supposes that A B   are free 
unitary R-modules that are free submodules of A , then  
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   
     A A B 



=

rank A A rank A B

rank A A B rank

 

  
    (  ) 

To prove ( ), consider the following sequence  

   0
f g

A A B A A A B A        0,A B    

where        = ,f y y y  ,     , =g x y x y  and 
 denotes the equivalence class in the appropriate 

quotient module. We claim that the sequence above is 
exact. 

[ ]

For its proof we first show that f  and g  are well- 
defined homomorphisms. Letting    y A A B    and 
x A B   , we obtain that  

           = , = ,f y x y x  y x y y . Hence, f  is 
well defined. Moreover, f  is a homomorphism, since  

             
      

       

= ,

                  = , ,

= , =

f y z y z y

y y z

f r y r y r y r

 

   
    , , .

z

z

y y r



R

 

Similarly, if     ,x y A A A B   1, and x A , 

2x B , then  

       
  

1 1 1

1 1

, =g x x y y x x y 
  

1

= = ,

y

x y x

   

   y x y

  
  

 

since 1 1x y A B   . Thus, g  is well defined. 
Moreover, g  is a homomorphism, since  

          
       
    

  

, ,

= ( , )

= , =

= =

g x y x y

g x x y y

   
  

g x x y y x x

x y x y x y

 

  

   y y

x y

     
      

 

and  

 
            

 
, = ,

= ,

=

.

g r x y g rx ry

r x y

rx ry

r



 R
 

It remains to show that ker g  = im f . For this let  
    ,x y A A A B    be such that    , = 0.g x y  

Then   = 0,x y  and thus x y A   B . This im- 
plies that =x A y   B , i.e.,    /

=
A A

x  /A B
y   where-  

fore     A A  i
/ /A B

, mx y  f ker  im, and hence g f . 

Conversely, if      im,x y f  then =x A y B  
=

 
and hence x A B   y A B   . It follows that  

      , =g x y x y = 0  so that im kerf g

 

 . The proof 
of the claim is complete. 

Since A A B   is a free module, it is in particular 
projective, and hence the above exact sequence splits 
(see [4]). Therefore  

   = .A A A B A A B    A A B   



 

The above equation immediately implies ( ). Now 
since finite intersection and finite sum of free submo- 
dules of A , are also free submodules of A , a standard 
use of Mathematical Induction concludes the proof of the 
theorem.  

As every vector space is free over its ground field, the 
following is an immediate consequence of the above 
theorem.  

Corollary 2.1. If X  is a Banach space and  an 
operator on 

S
 ,iX , for all M Lat S X i I

=i i i
i I i Ii I

ind M ind M ind M
 

      
  

 

S

 ,

,   

 

In the case where  is a bounded below operator, 
like the shift operator on Banach spaces of analytic func- 
tions, the following, which is the fundamental lemma of 
this article, holds.  

Lemma 2.1. Suppose i Lat S X i I, M  , where 
 is a bounded below operator on a Banach space X .  S
1) We have  

.i i i
i I i I i I

ind M ind M ind M
  

          
   

2) If ,Lat S X
, 2m m   , ,n i I

 contains an invariant subspace of 
index  and i   

=n m
, with  

ii I , then there are invariant subspace ,iN i I , 
such that  

= , , and = .i i i i
i I i I

ind N n i I ind N ind N
 

   
 

  

Proof. 1) Once more, we shall make use of mathe- 
matical induction to prove this corollary. We assume that 

 , ,M N Lat S X  and we show that  

 ind M ind N ind M N ind M ind N    

ind M ind N
<ind M 

<ind N

  

(as the initial step of mathematical induction.) If either 
 or  is infinite, then there is nothing to 

prove. So we may assume that  and  
 . Thus there are finite-dimensional subspaces 

1M  and  of 1N M  and , respectively, such that N

1=M SM M , 1=N SN N , where  
and . We find that  

1 =dimM ind M

1 =dimN ind N

 
   

1 1

1 1

1 1

=

=

.

M N SM M SN N

S M N M N

S M N M N

M N

   

  

   

 

S

 

Since  is a bounded below operator, its range is 
closed (see, e.g., [5], Proposition 6.4, chapter VII), and 
henceforth the second to last expression as the sum of a 
closed and a finite-dimensional subspace, it is closed. 
Since M N M  is dense in N  we obtain that the 
last inclusion in above relations is actually an equality. 
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From this it follows that  

   1 1 =

.

ind M N dim M N

ind M ind N

  

 

  ind M N

 ,Lat S X  ,Lat S X

 

Now, since the closed span of a finite number of 
elements in  is an element of , the 
proof of (1) follows by mathematical induction. 

2) To prove that the equality in 1) can actually occur 
let us assume that   2m m  ,  and that con- 
tains an invariant subspace M  with index . Without 
loss of generality let 

m
 2 ,= 1, ,3,I l

ii I
m n

 in 
N L = ,N n i I


1

 ,  
. At first we assume that   1 2 3< < < <n  lnn n

=  , . We shall construct   

 ,at S X ind
  =ii I

N m

i

in
m

 with i i , and  
. As in the proof of part 1) there is an 

dimensional subspace 
d
- M  of M  such that   

1=M SM M . Let  1 2 1
, , , n g g g 1 be a basis for M   

and define  to be the smallest invariant subspace of  1N

S 1 2, , which contains  1
, ng g  kN

1 21 1
, ,

g

S

. Define  to be 

the smallest invariant subspace of  which contains  

 , nkn nk k
g g  

 = 2,3, , 1k l 

N

S 1 21 1
, , , ml l

g , where , and si-  

milarly define  to be the smallest invariant subspace   l

n nof  which contains g g g  


N
S

. It is easy  

to observe that ii I  is the smallest invariant sub- 
space of  which contains  1 2, , , mg g g

ind


1

, , , n

. 
Claim:  1 1

Proof of Claim: 
=N n

Let  be the linear span of  1 2g g g . Then 

1M 1SN SM



1 1= =m n

. We have , thus  
implies that . Furthermore, 

1 1  is closed, since 1  is closed and  is 
finite dimensional. We note that 1  is invariant 
for , thus by definition of 1  we have  

. This implies that  

1 = 0M SM
 1 = 0

SN


N
ind



SN

N di

SN
N 

= N

SN

S
SN 1 1   

Similarly we see that  for  
and that   

=i id N n

=n m

in = 2,3, ,i l


 =jn

  =ii I
N m

=m 
ind

Finally if  and ii I , then there is at 
least one index  such that jn . If j I =   for 
some , then set j . If also  

i  then set i . In this case we are 
done because 

i I

j
 j

I
= 

=

=N M
=N M, \In i

M M . So suppose that that there is 
some  such that j . Since 


I nj  =ind M   there 

is an jn -dimensional subspace jM  of M  such that 

j . Define  = 0SM M jN  to be the smallest inva- 
riant subspace which contains all of jM . As in the arg- 
ument given above it follows that =j j . Clearly, 

j , thus 
ind N n

N  M =
i I iM N  and the proof of part (2) is 

now complete.  
Corollary 2.2. Under the hypothesis of Lemma 2.1 part 

(2), for the family of  ,t X S i I

=i i
i I i I

N N
 



iN La , , it holds:  

 

Proof. To see this, observe that by applying the con- 
clusion of Lemma 2.1 part (1) to the equation of  Cor- 
ollary 2.1 we obtain   = 0ind N ii I

. Hence  
 = 0N

=i ii I i I
N N 

S

ii I
. Therefore by the definition of direct sum 

(of vector spaces), we get  

.  

If  is a bounded below operator on X  the fol- 
lowing is true:  

 ,iCorollary 2.3. Suppose that Lat S X i I, M  , 
. = 1iind M

If 0M  ii I
, then strict inequality holds in Lem- 

ma 2.1 (a), that is, 

   <i ii I i I
ind M ind M  .  

 0ii I
M


   0ind M, then ii I

Proof. If 
= 1iind M i I

, and 
since ,  , then by [2] Theorem 3.16,  

  = 1ind M ii I
. Thus from Lemma 2.1 (a) and the 

equation in Corollary 2.1 , we obtain,  
  <ind M ind Mi ii I i I  .  

The next theorem, which is our main result, follows 
immediately from Corollary 2.1 and Lemma 2.1, part (1).  

Theorem 2.2. if X  is a Banach space and  is a 
bounded below operator, then for 

S
 ,iM Lat S X

i I
, 

 

.i i i
i Ii I i I

ind M ind M ind M
 

              
 

S


= 2m

S

,  

 

Remark 2.1. We would like to note that [2], Pro- 
position (2.16), Richter proved a special case of our 
Lemma 2.1 when  is the shift operator on any Banach 
space  of analytic functions on an open and con- 
nected subset of the complex plane and .  

Example 2.1. It is well known ([6], Corollary 6.5) that 
when  is the shift operator on a weighted Bergman 
space on the unit disk, then for all  m  

N m

=m mN N

 there 
are invariant subspaces m , of index . Thus, for this 
operator Corollary 2.2 applies and we have  

 .  
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