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ABSTRACT 

This paper introduces an interval valued linear fractional programming problem (IVLFP). An IVLFP is a linear frac-
tional programming problem with interval coefficients in the objective function. It is proved that we can convert an 
IVLFP to an optimization problem with interval valued objective function which its bounds are linear fractional func-
tions. Also there is a discussion for the solutions of this kind of optimization problem. 
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1. Introduction 

While modeling practical problems in real world, it is 
observed that some parameters of the problem may not 
be known certainly. Specially for an optimization prob- 
lem it is possible that the parameters of the model be 
inexact. For example in a linear programming problem 
we may have inexact right hand side values or the coeffi- 
cients in objective function may be fuzzy (e.g. [1]). 

There are several approaches to model uncertainty in 
optimization problems such as stochastic optimization 
and fuzzy optimization. Here we consider an optimiza- 
tion problem with interval valued objective function. 
Stancu, Minasian and Tigan ([2,3]), investigated this 
kind of optimization problem. Hsien-Chung Wu ([4,5]) 
proved and derived the Karush-Kuhn-Tucker (KKT) op- 
timality conditions for an optimization problem with in- 
terval valued objective function. 

A fractional programming problem is the optimizing 
one or several ratios of functions (e.g. [6]). Such these 
models arise naturally in decision making when several 
rates need to be optimized simultaneously such as pro- 
duction planning, financial and corporate planning, health 
care and hospital planning. Several methods were sug- 
gested for solving this problem such as the variable 
transformation method [7] and the updated objective 
function method [8]. Several new methods are proposed 
( e.g. [9-11]). The first monograph [12] in fractional pro- 
gramming published by the first author in 1978 exten- 
sively covers applications, theoretical results and algo- 
rithms for single-ratio fractional programs (see [13,14]). 

Here first we introduce a linear fractional program- 
ming problem with interval valued parameters. Then we 

try to convert it to an optimization problem with interval 
valued objective function. 

In Section 2 we state some required preliminaries from 
interval arithmetic. In Section 3 the interval valued linear 
fractional programming problem is introduced. In Sec-
tion 4 we solved numerical examples. Finally Section 5 
contains some conclusions. 

2. Preliminaries 

We denote by I  the set of all closed and bounded in- 
tervals in  . Suppose ,A B I , then we write  

= ,L UA a a    and also  . We have the fol- 
lowing operations on 

= ,B b
L Ub 

I  (note that throughout this paper 
our intervals considered to be bounded and closed): 

(i)        
 = ,

= ,L L U U

A B a b a A b B

a b a b I

   

  ;   
 

(ii)        = = ,U LA a a A a a I        ; 

(iii)        = = , ;  <U LkA ka a A ka ka if k    0.  

where  is a real number and so we have k

 = = ,L U U L .A B A B a b a b      
L U

 

Definition 2.1. If = ,A a a   and = ,L UB b b    
are bounded, real intervals, we define the multiplication 
of A  and  as follows: B

  = min , max AB S S   , 

where  = , , ,L L U U U L L US a b a b a b a b . For example if A  
and  are positive intervals (i.e. B 0 L Ua a   and 
0 L Ub b  ) then we have: 
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= ,L L U UAB a b a b                 (1) 

and if 0 L Ua a   and < 0 <L U  then we have: b b

= U ,L U UAB a b a b                   (2) 

There are several approaches to
si

 define interval divi-
on. Following Ratz (see [15]) we define the quotient of 

two intervals as follows: 
Definition 2.2. Let = ,L UA a a   and = ,L UB b b      

be two real intervals, then we define: 

,  such that,  0,
a

A B z a A b B     b z
b
 

 
 

We observe that the quotient of two intervals is a set 
which may not itself be an interval. For example, 
       1 1 = < 0 1x x x x x x  . Given definition 2.2, 

 by the following 
Theorem: 

Theorem 2.1. ([15]) Let = ,

The Ratz formula [15] is given

L UA a a   and   
= ,L Ub b   be two nonem d real iB pty bounde ntervals. 

Then if 0 ,L Ub b    we have: 

1L Ua a
1

= , ,
L U

A B
b b
       

            (3) 

Theorem 2.2. (see [16]) If A  and  are nonempty, 
bo

B
unded, real intervals, then so are , A B A B  , and 

AB . In addition, if B  does not co  then ntain zero,
A B  is also a nonempty bounded, real interval as well. 

finition 2.3. A function : n
, 

De f I   is called an 
interval valued function (because ( )f x  for each nx  
is a closed interval in  ). Similar to interval notation, 
we denote the interval va ed function lu f  with  
     = ,L Uf x f x f x    where for every ,nx  

   L Uf x f x，  are real valued functions and  

   .L Uf x f x
Proposition 2

 
.1. Let f  

n
be an interval valued func- 

tion defined on n . The  f  is continuous at nc  
if and only if Lf  and Uf   continuous at c. 

Now, here we introduc weakly differentiability. 
are

e 
Definition 2.4. Let X  be an open set in  . An in-

terval valued function :f X I  with  
    = ,L U f x f x f x   at  

0

is called weak differentiable 
x  if the real valued functions Lf  and Uf  are dif-

entiable (usual differentiability) at 0fer  x . 
Definition 2.5. We define a linear functionfractional  
 F x  as follows: 

  =
cx

F x
dx







                (4) 

where    1 2 1 2= , , , , = , , , , 
t n n

n nx x x x c c c c    
1 2, , , n

nd d   and , =d d    are real scalars. 
rk 2.1. Note th y reaRema at ever l number a  


can 

,a a I . 

Definition 2.6. To interpret the meaning of iza-
tion of interval valued functi  in

 optim
ons, we troduce a partial 

ordering   over I. Let = ,L UA a a   , = ,L UB b b    
be two closed, bounded, real intervals  ,A B I , then we 
say that A B , if and onl y if L La b  and U Ua b . 
Also we write A B , if and only if A B  and A B . 
In the othe s, we say r word A B only if

<

 if and : 
L L

U U

a b
  or 

a b <

L L

U U

a b 
 or .

a b
 

<

L L

U U

a b 
  

a b

3. Interval-Valued Linear Fractional 
Programming (IVLFP) 

ramming 
pro
Consider the following linear fractional prog

blem:  

minimize =

subject to:

                  =

                  0.

cx
z

dx

Ax b

x









              (5) 

First consider the linear fractional programming pro- 
blem (5). Suppose that  

   1 2= , , , , = , , ,n nc c c c d d d d   1 2

where ,, , = 1, 2,j jc d I j n  , we denote L
jc  and L

jd  
the lower bounds of the intervals jc  and jd  respec- 
tively (i.e.  1 2= , , ,L L L L

nc c c c  and also  
 1 2= , , ,L L L L

nd d d d  where L
jc  and L

jd  are real sca- 
lars for = 1j n , similar

 
, 2, ,

fine Uc  and Ud . A
n ) and ly we can de- x

lso = ,L U    = ,L U ,      . 
So we ca

 

n rewrite (5) as follows: 

 
 

minimize =f x

subject to:

                  =

                  0.

p x

q x

Ax b

x 

            (6) 

where  p x  and  q x  are interval-valued linear func- 
tions as       = ,L U L L U Up x c x c x = ,p xp x          

and       = ,L U L L U Uq q x x d x d x= ,qx          . So  

for exam   =L L Lp x c x   and ple we have: 
  = Ux d xUq U . Finally from (6) we have:  

 
,

=
L L U U

L L U U

c x c x
f x

 
minimize

,

subject to:

                  =

                  0.

d x d x

Ax b

x

 


   



   (7) 

To introduce an interval-valued linear fractional pro-

  

be considered as an interval 
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gramming problem, we can consider another kind of 
possible linear fractional programming problems as fol-
lows: 

     IVLFP(1)      minimize = ,

                   subject to:

                                  =

L U

                                  0.

f x f x f x

Ax b

  

x 

where 

  (8) 

Lf  and Uf  are linear fractional functions (as 
in definition 2.5 o we may have interval-valued lin-
ear fractional programming in the form (7): 

). Als

 
,

IVLFP(2)   minimize =
,

                   subject to:

                        =

                                  0.

Ax b

x

          

L L U U

L L U

c x c x
f x

d x d x

 
U 

  
   

(9) 

LFP(2) (see 
Equation (9)) under some assumptions can be converted 
to an IVLFP in the form IVLFP(1) (see Equation (8)). 

Proof. The objective function in (9) is a quotient of 
two interval valued functions 





Theorem 3.1. Any IVLFP in the form IV

(  p x  and  q x )
at 

. 
convert (9) to the form (8), we se th

To 
 suppo  q x  0

for each feasible point x , so we have:  should 

   0 < ,q x q x              (10) 

or 
L U

L U

    < 0q x q x               (11) 

for each feasible point x . Using rem 2. cause 
the denominator doesn’t contain zero we can re  
objective function in (9 as: 

 theo 1, be
write the

) 

  1 1
= , ,L L U U

U U L L
c x c x

d x d x
 f x

 
         

(12) 

Now we can consider two possible states: 
Case (1). When    0 < L Ux q x , we have two 

possibilities: 
(i) When  

q

 0 L Up x p x  , using Definition 2.1, 
we have: 

  = ,
L L U U

U U L L

c x c x
f x

d x d x

 
 

  
   

         (13) 

(ii) When    < 0 <L Up x p x , by Definition 2.1, we 
have: 

  = ,
L L U U

L L L

c x c
x

d x d x


L

x
f


 

 
   

Case (2). When 


         (14) 

    < 0L Uq x q x , w
sibilities: 

e have two pos- 

(i) When   0 L Up x p x  ,  by Definition 2.1, we 
have: 

  = ,
U U L L

U U L L

c x c x
f x

d x d x

 
 

  
   

         (15) 

(ii) When   < 0 < p x  , by L Up x Definition 2.1, we 
have: 

  = ,
U U L Lx 
U U U U

c x c
f x

d x d x


 

 
   

         (16) 

(Note that the subcase 
be derived from above ca in this state, 

   L Up x p x
ses, because 

< 0  easily can 

    < 0L Up x p x   implies that   0L Up x p x    ). 
Now according to theo  
cases, the objective function in (7) can be rewritten as 
follows:  

rem 2.2, and considering above

     minimize = ,

               

L U

subject to:

   =

                  0.

f x f x f x  

Ax b

x 

     (17) 

where the objective function is an interval valued func-
tion and  Lf x  and  Uf x  

e corresp
are linear fractional func-

tions (acc o th onding case (13) - (16)), 
and this completes the proof. 

Now following Wu [5], we interpret the m
minimization in (17): 

Definition 3.1. (see [5]) Let 

ording t

eaning of 

*x  be a feasible solution 
of problem (17). We say that *x  is a nondominated 
solution of lem (17), if there exist no feasible solu-
tion x such that 

prob
   *f x f x . In this case we say that 

 *f x  is the nondominated objective value of f . 
Now consider the following optimization problem (cor- 

responding to problem (17)): 

     minimize =

subject to:

            

                  0.

U

      =

Lg x f x f x

x





     (18) 
Ax b

To solve problem (17), we use the following theorem 
from [5]. 

*x  Theorem 3.2. If is an optimal solution of problem 
(18), then *x  is a nondominated solution of problem 
(17). 

Proof. See [5]. 

4.

on contains three numerical examples which 
ar

n 
mple 4.1. Consider the following optimization 

 Numerical Examples 

This secti
e solved by the new proposed approach. Example 4.3 

introduces a application of IVLFP. 
Exa
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problem: 

   
 

17
minimize =

3 4

x
f x

x x

 


2 1 2

1 2

1 2

,7 3

12,3 4 36

3
                  2

2
                  , 0.

x x x

x x

x x

x x


  

 



 (19) 

We see that here 




and 


So because  we have 

1 2 1 2

1 2

subject to:

                  7x x 

1 2                  4 9 3x x 

     
 1 2 1 2

= ,

= 7 ,7 3

L Up x p x p x

x x x x


  

 

     

1 2 1 2

= ,

4 12,3 4 36

L Uq x q x q x

x x

  
   

. 
= 3x x

1 2, 0x x     0 < L Uq x q x  
e shou  apply case 

llowing optimization 
and also so w
(1)(i). Fin e fo

lem: 

 L Up x p
lly we will ha

 0 < ,x  
a ve th

ld

prob

  1 2 1 2

1 2 1 2

1 2

1 2

subject to:

            

                  4 9 3x x 
(20) 

1 2

1 2

7 7 3
minimize = ,

3 4 36 3 4 12

      7

3
                  2

2
                  , 0.

x x x x
f x

x x x x

x x

x x

x x

  
     

 

 



Now to obtain a nondominated solution for (20), we 
use theorem 3.2. and solve the following optimiz
problem: 



ation 

  1 2 1 2

1 2 1 2

1 2

subject to:

                  7x x      (21) 

1 2

1 2

1 2

minimize

7 7 3
=

3 4 36 3 4 12

                  4 9 3

3
                  2

2
                  , 0.

x x x x
g x

x x x x

x x

x x

x x

  


   

 

 



The optimal solution is  with opti-
mal value 

* *
1 2= 0, = 0.75x x

   * = 0.0192,g x
e 4.2. Now cons

0.0962 . 
ider the following

 
   1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

minimize

3 5 7
1,2 3,7 , , 4

2 2 2
=

1 3 7 1
,1 ,1 ,2 ,1

2 4 8 2

subject to:

                  2 6

            2 3 8

                   13

x x x
f x

x x x

x x x

x x x

x x x

           
               

Exampl  optimiza-
tion problem: 

          

      

  
   
  


   (22) 

1 2 3        , , 0.x x x 

By Theorem 3.1, we can convert (22) to the following 
problem: 

 
1 2 3 1 2 3

1 2 3
1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

minimize

3 7 5
3 2 7

2 2 2= ,
1 3 7 12 1
2 4 8 2

subject to:

                  2 6

             2 3 8

                    13

                  , ,

x x x x x x
f x

x x x x x x

x x x

x x x

x x x

x x x

4
       
      
 

  
   
  

0.

 (23) 

Now we can apply Theorem 3.2, and solve the opti-
mization problem: 

 
1 2 3 1 2 3

1 2 3
1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

minimize

3 7 5
3 2 7 4

2 2 2
1 3 7 12 1
2 4 8 2

subject to:

                  2 6

             2 3 8

                    13

                  , , 0.

x x x x x x
g x

x x x x x x

x x x

x x x

x x x

x x x

     
 

     

  
   
  



 (24) 

Finally a nondominated solution for (22) is 

   * * * *
1 2 3= , , = 1.6667,0,11.3333x x x  with x

 * = 4.0454g x , which is the optimal solution of (24). 
Consider the following applied problem 

from [17]: 
A company manufactures two kinds of products 

Example 4.3. 

1A , 

2A  
unit res
one

with a uncertain profit of  dollar r 
pectively. .However st for  

 unit of the above products is 

 [3,5] , 
the uncertain 

giv

[1,4]
co

en by 

pe
each

 1 2 , 2   , 
,6][1,2]  dollar. It is assumed th st of 

dollars is added to the cost function due to expected du-
ration through the process of production and also a fixed 

at a fixed co [4  
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