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ABSTRACT 

The heat generation effects on magnetohydrodynamic(MHD) natural convection flow along a vertical wavy surface 
with variable thermal conductivity have been investigated. The governing boundary layer equations are first trans- 
formed into a non-dimensional form using suitable set of dimensionless variables. The resulting nonlinear system of 
partial differential equations are mapped into the domain of a vertical flat plate and then solved numerically employing 
the implicit finite difference method, known as Keller-box scheme. The numerical results of the surface shear stress in 
terms of skin friction coefficient and the rate of heat transfer in terms of local Nusselt number, the stream lines as well 
as the isotherms are shown graphically for a selection of parameters set consisting of thermal conductivity variation 
parameter, heat generation parameter Q, magnetic parameter M and Prandtl number Pr. Comparison of numerical re- 
sults of present work with other published data has been shown in table. 
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1. Introduction 

The effects of heat generation on magnetohydrodynamic 
(MHD) free convection boundary layer on various geo- 
metrical shapes such as vertical flat plate, cylinder, sphere, 
vertical wavy surface etc, have been studied by many 
investigators and it has been a very popular research topic 
for many years. The natural convection heat transfer 
from an isothermal vertical wavy surface was first stud- 
ied by Yao [1] and using an extended Prantdl’s transpo- 
sition theorem and a finite-difference scheme. He pro- 
posed a simple transformation to study the natural con- 
vection heat transfer from isothermal vertical wavy sur- 
faces, such as sinusoidal surface. Moulic and Yao [2] 
also investigated mixed convection heat transfer along a 
vertical wavy surface. Alam et al. [3] have also studied 
the problem of free convection from a wavy vertical sur- 
face in presence of a transverse magnetic field. Com- 
bined effects of thermal and mass diffusion on the natural 
convection flow of a viscous incompressible fluid along 
a vertical wavy surface have been investigated by Hos- 
sain and Rees [4]. Wang and Chen [5] investigated tran- 
sient force and free convection along a vertical wavy 
surface in micropolar fluid. Kabir et al. [6] have studied 

the problem of natural convection of fluid with tempera- 
ture dependent viscosity along a heated vertical wavy 
surface. Natural and mixed convection heat and mass 
transfer along a vertical wavy surface have been investi- 
gated by Jang et al. [7] and Jang and Yan [8]. Molla et al. 
[9] have studied natural convection flow along a vertical 
wavy surface with uniform surface temperature in pres- 
ence of heat generation/absorption. Tashtoush and 
Al-Odat [10] investigated magnetic field effect on heat 
and fluid flow over a wavy surface with a variable heat 
flux. Yao [11] studied natural convection along a vertical 
complex wavy surface. Very recently, Miraj et al. [12] 
studied conjugate effects of radiation and joule heating 
on magnetohydrodynamic free convection flow along a 
sphere with heat generation. Patel and Timol [13] studied 
magnetohydrodynamic orthogonal stagnation point flow 
of a power-law fluid toward a stretching surface. Parveen 
and Alim [14] investigated Joule heating effect on mag- 
netohydrodynamic natural convection flow along a ver- 
tical wavy surface with viscosity dependent on tempera- 
ture. The thermal conductivity of the fluid had been as- 
sumed to be constant in all the above studies. However, it 
is known that this physical property may be change signi- 
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ficantly with temperature. For a liquid, it has been found 
that the thermal conductivity varies with temperature in 
an approximately linear manner in the range from 0 to 
4000 F by Kays [15]. Hossain et al. [16] investigated the 
natural convection flow past a permeable wedge for the 
fluid having temperature dependent viscosity and thermal 
conductivity. The governing partial differential equations 
are reduced to locally non-similar partial differential 
forms by adopting some appropriate transformations. The 
transformed boundary layer equations are solved nu- 
merically using implicit finite difference scheme together 
with Keller box technique [17] and later by Cebeci and 
Bradshaw [18] along with Newton’s linearization ap- 
proximation. Numerical results have been obtained in 
terms of local skin friction, rate of heat transfer for a se-
lection of relevant physical parameters are shown graphi- 
cally. 

2. Formulation of the Problem 

It is assumed that the surface temperature of the vertical 
wavy surface Tw is uniform, where Tw > T. The bound-
ary layer analysis outlined below allows  x  being 
arbitrary, but our detailed numerical work assumed that 
the surface exhibits sinusoidal deformations. The wavy 
surface may be described by 

  π
sinw

n x
y x

L
    

 

             (1) 

where L is the characteristic length associated with the 
wavy surface. 

The geometry of the wavy surface and the two-dimen- 
sional coordinate system are shown in Figure 1. 

The conservation equations for the flow characterized 
with steady, laminar and two-dimensional boundary layer; 
under the usual Boussinesq approximation, the continuity, 
momentum and energy equations can be written as: 
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Figure 1. Physical model and coordinate system. 
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where  ,x y  are the dimensional coordinates along and 
normal to the tangent of the surface and  ,u v   are the 
velocity components parallel to  ,x y , 2  is the 
Laplacian operator, g is the acceleration due to gravity, 
p  is the dimensional pressure of the fluid,  is the den-

sity, 0 is the strength of magnetic field, 0 is the electri-
cal conduction, k is the thermal conductivity of the fluid 
in the boundary layer region depending on the fluid tem-
perature,  is the coefficient of thermal expansion,  is the 
kinematics viscosity,  is the dynamic viscosity and Cp is 
the specific heat due to constant pressure.  

The boundary conditions relevant to the above problem 
are  

 0, 0,

0, ,

w wu v T T at y y x

u T T p p as y



 

    

   
     (6) 

where Tw is the surface temperature, T is the ambient 
temperature of the fluid and p is the pressure of fluid 
outside the boundary layer. 

There are very few forms of thermal conductivity 
variation available in the literature. Among them we have 
considered that one which is appropriate for liquid intro-
duced by Hossain et al. [16] as follows: 

*1k k T T                 (7) 

where k is the thermal conductivity of the ambient fluid  

and * 1

ff

k

k T
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 is a constant evaluated at the film  

temperature of the flow  1 2f wT T T  . 
Using Prandtl’s transposition theorem to transform the 

irregular wavy surface into a flat surface as extended by 
Yao [1] and boundary-layer approximation, the following 
dimensionless variables were introduced for non-dimen- 
sionalizing the governing equations: 
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where  is the non-dimensional temperature function and 
(u, v) are the dimensionless velocity components parallel 
to (x, y). Introducing the above dimensionless dependent 
and independent variables into Equations (2)-(5), the fol-
lowing dimensionless form of the governing equations are 
obtained after ignoring terms of smaller orders of magni-
tude in Gr, the Grashof number defined in (8). 
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It can easily be seen that the convection induced by the 
wavy surface is described by Equations (9)-(12). Equation 
(11) indicates that the pressure gradient along the 
y-direction, which implies that lowest order pressure gra-
dient along x -direction can be determined from the invis-
cid flow solution. For the present problem this pressure 
gradient ( 0p x   ) is zero. The elimination of p y   
from Equations (10) and (11) leads to the following equa-
tion: 
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The corresponding boundary conditions for the present 
problem then turn into 
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Now we introduce the following transformations to re-
duce the governing equations to a convenient form: 
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where f(η) is the dimensionless stream function, η is the 
pseudo similarity variable and ψ is the stream function 
that satisfies the Equation (9) and is defined by  
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Using the above transformed values in Equations (12) 
and (13) and by simplified, we have the following equa-
tion:  
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The boundary conditions (14) now take the following 
form: 
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In the above equations prime denote the differentiation 
with respect to η. 

Solutions of the local non-similar partial differential 
Equations (17) and (18) together with the boundary con-
dition (19) are solved numerically by using implicit finite 
difference method with Keller-box scheme. 

In practical applications, the physical quantities of 
principle interest are the shearing stress w in terms of the 
skin friction coefficients Cf and the rate of heat transfer in 
terms of Nusselt number Nu which can be written as: 
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Using the transformations (15) into Equation (20), the 
local skin friction coefficient Cf and the rate of heat trans-
fer in terms of the local Nusselt number Nu takes the fol-
lowing form: 
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Finally, it should be mentioned that for the computa-
tional purpose the period of oscillations in the waviness 
of this surface has been considered to be . π

3. Results and Discussion 

The objective of the present work is to analyze the effect 
of temperature dependent thermal conductivity on mag-
netohydrodynamic(MHD) free convection flow along a 
vertical wavy surface with heat generation. Although 
there are three parameters of interest namely, amplitude 
of the wavy surface , thermal conductivity variation 
parameter , heat generation parameter Q, magnetic pa-
rameter M and Prandtl number Pr. Numerical values of 
local shearing stress and the rate of heat transfer are cal-
culated from Equations (22) and (23) in terms of the skin 
friction coefficient Cf and Nusselt number Nu respec-
tively for a wide range of the axial distance x starting 
from the leading edge for different values of the relevant 
parameters. The effects of thermal conductivity variation 
parameter , heat generation parameter Q, magnetic pa-
rameter M and Prandtl number Pr on streamlines, iso-
therms, skin friction coefficient and the rate of heat 
transfer have been presented graphically in Figures 2-8. 

The effects of thermal conductivity variation parameter 
 and heat generation parameter Q on the development of 
streamlines which are displayed in Figures 2(a)-(d) for 
the amplitude of the wavy surface  = 0.2, magnetic pa-
rameter M = 0.4 and Prandtl number Pr = 0.72. When Q = 
0.0 and  = 0.0, the thermal conductivity is independent of 
temperature with Q = 0.0 as shown in Figure 2(a) and 
found that maximum value of stream function ψmax is 9.98. 
Figure 2(b) displays the results that an increasing values 
of , the boundary layer thickness increases. In this case 
the maximum value of stream function ψmax is 10.12. For 
increasing values of heat generation parameter Q the 
boundary layer becomes thinner and the maximum value 
of stream function ψmax is 24.22 that is shown in Figure 
2(c).The combined effects of  and Q are shown in Figure 
2(d). Here the maximum value ψmax is 24.36. From these 
figures it is observed that the value of stream function ψ 
becomes higher for larger values of thermal conductivity 
variation parameter  and heat generation parameter Q as 
well. The variation of isotherms with thermal conductivity 
variation parameter  and the heat generation parameter Q 
for the amplitude of the wavy surface  = 0.2, magnetic 
parameter M = 0.4 and Prandtl number Pr = 0.72 are 
shown in Figures 3(a)-(d). We can say after observing 
the isotherms of these figures that temperature enhances 
within the boundary layer due to the higher values of  
and heat generation parameter Q. 

The variation of the local skin friction coefficient Cf 

and local rate of heat transfer Nu for different values of 
Prandtl number Pr with  = 0.0,  = 0.4, M = 0.4 and Q = 

0.4 are shown in Figures 4(a) and (b). It is observed from 
these figures that for increasing values of the Prandtl 
number Pr the skin friction coefficient Cf  decreases up 
to the certain position of x and from that position of x skin 
friction coefficient Cf  cross the sides and then increases.  

 

 
 

 
 

 
 

 

Figure 2. Streamlines for (a) Q = 0.0,  = 0.0; (b) Q = 0.0,  = 
2.0; (c) Q = 1. 0,  = 0.0 and (d) Q = 1.0,  = 2.0 while Pr = 0.72, 
M = 0.4 and  = 0.2. 
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Figure 3. Isotherms for (a) Q = 0.0,  = 0.0; (b) Q = 0.0,  = 2.0; 
(c) Q = 1.0,  = 0.0 and (d) Q = 1.0,  = 2.0 while Pr = 0.72, M = 
0.4 and  = 0.2. 
 
The rate of heat transfer Nu decreases for increasing val-
ues of the Prandtl number Pr. The effects of  on skin 
friction coefficient Cf and the rate of heat transfer Nu 

while Q = 0.4,  = 0.4, M = 1.0 and Pr = 0.72 are shown 
in Figures 5(a) and (b). In Figure 5(a) it is shown that, as 
the parameter  increases the skin friction coefficient Cf 

increases up to the certain position of x and from that po-  

 
 

 

Figure 4. Variation of (a) skin friction coefficient Cf and (b) 
rate of heat transfer Nu against x for different values of 
Prandtl number Pr with Q = 0.4, M = 1.0,  = 0.0 and  = 0.4. 
 
sition of x skin friction coefficient Cf change with the in-
creases of . It is observed from this figure the skin fric-
tion coefficient Cf  cross the sides and then the skin fric-
tion coefficient Cf  decreases. It has been seen from Fig-
ure 5(b) that as  increases, the rate of heat transfer Nu 
increases up to the certain position of x and from that po-
sition of x rate of heat transfer Nux decreases. Since higher 
rate of heat transfer having higher gradient and drops of 
quicker than lower rate of heat transfer so, they tends to 
meet at a point and changed its behaviour with the in-
creasing . 

Figures 6(a) and (b) display the results on the skin 
friction coefficient Cf and the rate of heat transfer Nu for 
different values of heat generation parameter Q while  = 
2.0,  = 0.2, M = 0.5 and Pr = 0.72. It is observed from 
these figures that the skin friction coefficient Cf  increases 
s but the rate of heat transfer Nu decreases. Figures 7(a) 
and (b), show that increase in the value of amplitude of 
wavy surface α leads to decrease of the value of the skin   
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Figure 5. Variation of (a) skin friction coefficient Cf and (b) rate of heat transfer Nu against x for different values of thermal 
conductivity parameter  with Q = 0.4,  = 0.4, M = 1.0 and Pr = 0.72. 

 

    

Figure 6. Variation of (a) skin friction coefficient Cf and (b) rate of heat transfer Nu against x for different values of heat 
generation parameter Q with  = 2.0,  = 0.2, M = 0.5 and Pr = 0.72. 
 

    

Figure 7. Variation of (a) skin friction coefficient Cf and (b) rate of heat transfer Nu against x for different values of  with  = 
1.0, Q = 0.5, M = 0.4 and Pr = 0.72. 
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Figure 8. Variation of (a) skin friction coefficient Cf and (b) rate of heat transfer Nu against x for different values of magnetic 
parameter M with  = 2.0,  = 0.2, Q = 1.0 and Pr = 0.72. 
 
friction coefficient and the rate of heat transfer in terms of 
the local Nusselt number Nu while  = 1.0, Q = 0.5, M = 
0.4 and Pr = 0.72. The variation of the local skin friction 
coefficient Cf and local rate of heat transfer Nu for differ-
ent values of M at different positions are illustrated in 
Figures 8(a)-(b) with  = 2.0,  = 0.2, Q = 1.0 and Pr = 
0.72. From these figures it can be observed that an in-
crease in the magnetic parameter M leads to decrease the 
local skin friction coefficient Cf and local rate of heat 
transfer Nu at different position of x. The skin friction 
coefficient and the rate of heat transfer coefficient de-
crease as M increases. The magnetic field acts against the 
flow and reduces the skin friction and the rate of heat 
transfer. 

4. Comparison with Previous Work and 
Code Validation 

A comparison of the present numerical results of the 
values of skin friction coefficient, f (x,0), and the heat 
transfer coefficient, –'(x,0) with Hossain et al. [18] have 
been shown in Table 1. Here, the parameters Q and  are 
ignored to make the numerical data comparable with [19] 
for different values of Prandtl number Pr. It is evident 
from Table 1 that the present results agreed well with the 
results of Hossain et al. [19]. 

5. Conclusions 

The effects of thermal conductivity variation parameter , 
amplitude of the wavy surface , magnetic parameter M, 
heat generation parameter Q and Prandtl number Pr on 
momentum and heat transfer have been studied in detail. 
From the present investigation the following conclusions 
may be drawn: 
 The skin friction coefficient decreases that is the fric-

tional force at the wall reduces for higher values of the 
Prandtl number Pr, over the whole boundary layer but  

Table 1. Comparison of the values of skin friction coefficient, 
f''(x,0), and the heat transfer coefficient, –'(x,0) with 
Hossain et al. [19] and present work for the variation of 
Prandtl number Pr while Q = 0.0 and  = 0.0 with  = 0.2. 

f (x,0) –(x,0) 

Pr Hossain 
et al. [19]

Present work 
Hossain  

et al. [19] 
Present work

1.0 0.908 0.9080 0.401 0.4011 

10.0 0.591 0.5927 0.825 0.8262 

25.0 0.485 0.4872 1.066 1.0685 

50.0 0.485 0.4174 1.066 1.2878 

100.0 0.352 0.3542 1.542 1.5484 

 
the rate of heat transfer enhances for the same reason.  

 The skin friction coefficient increases that is the fric-
tional force at the wall enhances and the rate of heat 
transfer reduces for higher values of the heat genera-
tion parameter Q. 

 The skin friction coefficient and rate of heat transfer 
decrease for increasing values of amplitude of the 
wavy surface  and magnetic parameter M. 

 As the thermal conductivity variation parameter  
increases the local rate of heat transfer Nu, the local 
skin friction coefficient Cf  rise up near the leading 
edge and change their manner for higher values of  in 
the downstream. 
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Nomenclature 

Cf local skin friction coefficient 
Cp specific heat at constant pressure [J·kg–1·K–1] 
f  dimensionless stream function 
g  acceleration due to gravity [ms–2] 

Gr Grash of number 
L characteristic length associated with the wavy surface 

[m] 
M magnetic parameter 
n  unit normal to the surface 
Nu  local Nusselt number 
P pressure of the fluid [Nm–2] 
Pr  Prandtl number 
Q heat generation parameter 
Q0 heat generation constant 

wq  heat flux at the surface [Wm–2] 
T temperature of the fluid in the boundary layer [K] 
Tw temperature at the surface [K] 
T temperature of the ambient fluid [K]  
u, v dimensionless velocity components along the (x, y) 

axes [ms–1] 
x, y axis in the direction along and normal to the tangent 
of the surface 

Greek Symbols 

 amplitude of the surface waves 
β volumetric coefficient of thermal expansion [K–1] 
 thermal conductivity variation parameter  
η dimensionless similarity variable 
 dimensionless temperature function 
k thermal conductivity [Wm–1·K–1]  
k thermal conductivity of the ambient fluid [Wm–1·K–1] 
 viscosity of the fluid [kgm–1·s–1] 
μ viscosity of the ambient fluid 
ν kinematic viscosity [m2·s–1] 
 density of the fluid [kg·m–3] 
σ0 electrical conductivity 
σ(x) surface profile function 
w shearing stress 
 stream function [m2·s–1] 
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