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ABSTRACT 

In this paper we show how the transformations associated with the reduction to the Smith form of some classes of mul-
tivariate polynomial matrices are computed. Using a Maple implementation of a constructive version of the Quil-
len-Suslin Theorem, we present two algorithms for the reduction to a particular Smith form often associated with the 
simplification of linear systems of multidimensional equations. 
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1. Introduction 

Matrices whose elements are polynomials in more than 
one indeterminate have been studied by many authors. 
Such matrices arise in the mathematical treatment of the 
so-called multidimensional systems which can be con- 
sidered as extensions of the ordinary differential or dif- 
ference systems. These include delay-differential systems 
and partial differential systems. In particular the Smith 
normal form of a matrix plays an important role in many 
areas of mathematics such as the polynomial approach in 
control theory see for example Rosenbrock [1] and 
Kailath [2]. The problem of reducing an univariate poly-
nomial matrix to its Smith form is well understood and 
the relevant algorithm is already implemented in most 
computer algebra systems. For the multivariate case, 
however the problem is still open. Despite that some 
necessary and/or sufficient conditions for the reduction 
of a matrix to its Smith form have been given in the lit-
erature, no algorithm has been given to show how the 
transformations involved in the reduction are actually 
computed. These transformations are important if the 
solutions of the reduced system are to be expressed in 
terms of the original variables. So far the computations 
associated with these conditions have been difficult if not 
impossible to carry out. Recently however, some pro- 
gress has been made in symbolic computation in par- 
ticular a QuillenSuslin Maple package [3] has been de-
veloped. This package which is a maple implementa- tion 
of the Quillen-Suslin theorem provides an algorithm 
which computes a basis of a free module over a polyno- 
mial ring. In terms of matrices, this algorithm completes 
a unimodular rectangular matrix to an invertible matrix 

over the given polynomial ring with rational or integer 
coefficients (for more details see http://wwwb.math. 
rwth-aachen.de/QuillenSuslin/). In this paper, we show 
how this package can be used to compute the Smith form 
and the associated transformation for some classes of 
multivariate polynomial matrices. The classes of matrices 
considered can be regarded as those associated with lin-
ear determined systems of multidimensional equations 
which can be reduced to a single equation, thereby sim-
plifying the analysis of such systems. The transformation 
used to obtain the Smith form is that of unimodular 
equivalence which will be defined later. First we need to 
introduce some definitions and a theorem which play a 
key role in this paper. 

Definition 1 Let  be a ring. The general linear 
group 

D
 pGL D  is defined by  

   = : =p p p p =p pGL D M D N D MN NM I     

An element  pM GL D  is called a unimodular 
matrix. In the case where  1= , , nx x

, , n

D K , a polynomial 
ring in the indeterminates 1x x  and coefficients in 

, the matrix K M  is unimodular if and only if the de- 
terminant of M  is invertible in , i.e., is a non-zero 
element of . 

D
K

In the case when a matrix is rectangular we introduce 
the following concept of primeness. 

Definition 2 A matrix  with  is said 
to be zero-left-prime 

q pR D  >p q
 ZLP  if it admits a right-inverse 

over D.
m

  such
Si ilarly zero-righ

i.e., if there exists p qR D  t = qRR I .  tha
t-primeness  ZRP

here 
 can be de- 

fin
slin eorem. 

ed by transposition for matrices w <p q . 
We now state the famous Quillen-Su Th
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Th

e a pri- 
nc

               (1) 

2. Equivalence to the Smith Form 

is theorem is at the centre of the proofs of the results 
presented in this paper and its Maple implementation is 
used in the computation of the transformations. 

Theorem 1 (Quillen-Suslin [4,5]) Let K  b
ipal ideal domain and  1, ,D K x   and let 

q pR D   be a matrix whic ht-inverse 
i.e., qRR I . Then there exists a unimodular 

L ch that  

 0RN I

nx
 righ admits a

p qR D  , 
matrix  p D  suN G

q  

The Smith form S  of a p q  matrix T  with ele- 

tio

 

where 

ments in a ring D  is usually the result of an equi- 
valence transforma n, i.e. a transformation of the form 

S MTN                   (2)

 pM GL D  and  qM GL D . The resulting 
e diagonal mSmith f  by th atrix formed by 

the invariant polynomials. The non-zero invariant poly-
nomials 1, , r

orm S is given

   are defined by 1i i i     with 

0 1  , ank of T  and ir  is the r   is the gcd 

I always possible to reduce a 
m

of the 
in rs of T . 

t is a fact that it is not 
i i  m o

atrix to its Smith form by an equivalence of the type (2). 
In order to show that any matrix can be brought by an 
equivalence transformation to its Smith form, it is usually 
required that D  is a principal ideal or a Euclidean 
domain. In the c e when as 1, , nD z z �  , the matrices 
may be treated as havi one of the 
indeterminates with coefficients that are rational forms in 
the other indeterminates e.g.  

ng elements in 

1 1, , n nz z z . This 
approach which involves a reno as the 
disadvantage of yielding Smith forms which are not 
unique, see the work of Frost and Storey [6] and Morf et 
al. [7]. Conditions under which a matrix with elements in 


rmalization step h

1, , nz z  is equivalent to its Smith form have been 
mber of authors. For the ring given by a nu  1 2,z z , 

Lee and Zak [8] proposed a necessary and sufficient 
condition in terms of the existence of solutions to certain 
polynomial equations. Frost and Boudellioua [9] gave a 
necessary and sufficient condition for a class of multi- 
variate polynomial matrices in terms of the existence of a 
polynomial vector. Lin et al. [10] proposed a sufficient 
condition for a class of matrices whose determinant is 
linear in one of the indeterminates. 

Theorem 2 (Boudellioua and Quadrat [11]) Let 

 1, , nz z �  , a matrix D p pT D   is equivalent to 

the Smith form:  

1 0

0
pI

S
T

 
  


 


            (3) 

if and only if there exists a ZRP vector such 

that the matrix  T U  is ZLP. 
This is a particular type of Smith form where all the 

in

pU D  

variant polynomials are equal to 1 except the last one 
which is given by the determinant of the matrix. This 
form is important for simplification considerations, i.e. a 
system whose matrix is equivalent to the Smith form (3) 
is equivalent to a single equation in one unknown. Thus 
making it easier to analyse such a system either analytic- 
cally or numerically. In order to express the conclusions 
and solutions made about the reduced system in terms of 
the original system, one has to compute the transforma- 
tions (2) connecting the original system matrix to the 
Smith form. Suppose that such a vector is obtained then 
the transformations M  and N  that reduce T  to the 
Smith form (3) can b btained via the followin  Maple 
algorithm. 

e o

 1 

 whe

 elements of 

 g

2.1. Algorithm

re the required Maple libraries 

 is defined by 

e the matrices and 
using 

orithm to compute the square 

 Declare the path
such as QuillenSuslin are stored and load the pack- 
ages LinearAlgebra and QuillenSuslin. 

 Declare the ring over which the matrix
declaring the indeterminates and the field of coeffi- 
cients. 

 Enter th T  U . 
 Test the zero-primeness of the matrix  T U  

the function IsUnimod. 
 Use the function QSAlg

unimodular matrix 0M  such that  0 0T T
pU M I . 

 Interchange the first and last colu  Tmn of 0M  and 
transpose to obtain the matrix 1M . 

 Extract the matrices , 1 4iK i    and 2, 1L jj    
from 1M  and T  res

 Compute the matrix 1 1 1T K L K
pectively. 

2 2L  wh  , ere  

1 2
1

3 4

K K
M

K K 
 

 and

unction QSAl

 
 1 

 Use the f gorithm to obtain the square 

 

2

L
T

L

 
  
 

. 

unimodular matrix N  such that  1 0pT N I  . 
 Extract the submatrix R  formed ow

1

 from the first r
and the first 1p   columns of the matrix 3 1 4 2K L K L . 

 Construct the matrix 1 2K K
M



1 3 2 4

=
RK K RK K


     

. 

 Check that the m 
of a sufficient 

co

 Smith for =S MTN . 
Another interesting result in the form 
ndition for the reduction of class of linear multidimen- 

sional systems was given by Lin et al. [10]. This is the 
class of systems where the determinant of the system 
matrix is linear in one of the indeterminates. Such sys- 
tems are also equivalent to a single equation. The result 
is given for the case when the determinant is linear in 1z  
but it is equally valid for any indeterminate , = 1, ,iz i 

Theorem 3 (Lin et al. [10]) Let 
n. 

 1 n=D  ,z  , z
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and p pT D  , then if 1 2= ,T z f z  - 
uivalen Smith form: 

 T, nz ,  is eq
 t to the 

1 0
.

0
pI

S
T

 
  
 

           (4) 

ng we give an algorithm to find the 
un

 2 

 where the required Mapl raries 

trix is defined 

ements of the matrix 
linear i  one of 

   

 

e lib

n

In the followi

2.2. Algorithm

 el

imodular matrices M and N that reduce the matrix T to 
the Smith form S.  

 Declare the path
such as QuillenSuslin are stored and load the pack- 
ages LinearAlgebra and QuillenSuslin. 

 Declare the ring D  over which the ma
by declaring the indeterminates and the field of coef- 
ficients. 

 Enter the T . 
 Check that the determinant of T  is 

the indeterminates, say iz . 
 Compute = if z T . 
 Substitute =z f  in Ti  to obtain T . 
 Compute a ZRP vector  1, ,p

i iw z    1,z  such  
that = 0Tw  using the f

 Compute a matrix  pN GL D  with last co
unction SyzygyModule. 

lumn 
given by w  using th mpleteMatrix. 

 Compute the matrix  p

e function Co
M GL D  given by 

1 1=M SN T ,   where 1 0

0
pI

T
 

S   
 

. 

 Check that the Smith form 
 
in”, l bname: 

ple 1 
ov

=S MTN . 
Example 1 (Frost and Boudellioua [9])
libname:=“C:/Involutive”, “C:/QuillenSusl i

xam
with (LinearAlgebra): with (QuillenSuslin): 
Consider again the 3 3  matrix T  in E
er the polynomial ring  = , z . 
var := [s, z]; 

D s

 var : ,s z  

T := Matrix([[2*s*z^2 + z^3 + z^2 + 1,s*z^  + s, 
2*

2 1



p := RowDimension(T); 

Now consider the column vec r satisfying the con- 
di

], [s]]); 

2 – s*z

2

2

z

sz





s*z + z^2], [2*s*z + z^2 + z, s*z – s, 2*s + z], 
[2*s^2*z + s*z^2 + s*z + z, s^2*z – s^2 – 1, 2*s^2 + s*z 
+ 1]]); det_T := Determinant(T); 

2 3 2 22 1     2

2

2 2 2 2

2

: 2

2 1

sz z z sz sz s sz

T sz z z sz s s z

s z sz sz z s z s s


 

     
       

 

det_ :T s z   

: 3  p

to U  
tion in Theorem 3, 

U := Matrix([[z], [1

: 1

z

U

s

 
   
 
 

 

UT := Transpose(U); 

 = 1z s  UT

IsUnimod(UT, var, true); 

TU := Matrix([T,U]); 

1

1

true  

2 3 2 2 2

2

2 2 2 2 2

2 1 2

2 2

2 1 2

:TU

sz z z sz s z s sz z z

sz z z s z s s z

s z s z sz z s z s s sz s



      
 

    
        

 

Let us check if the the matrix  is unimodular 

Applying the QSAlgorithm ocedure to the row 
w

orithm(UT, var, true); 

 T U
IsUnimod (TU, var, true); 

true  

pr UT , 
e then obtain 
MT := QSAlg

0 1 0

: 1

0 0 1

MT z 
 

s   
 
 

 

UTMT := simplify(Matrix(UT). MT); 

Now we can check that is the first row of the 
in

 : 1 0 0UTMT   

UT  
verse of MT : 
MT_inv := CompleteMatrix(UT, var, true); 

1

_ : 1 0 0

0 0 1

MT inv    
 
 

 

z s 

i.e., the matrix _MT inv  
 over D

is a completion of  to an 

olu Operation (Matrix(MT), [1, 
p]

The matrix 

UT
invertible matrix . 

M1 := Transpose(C mn
)); 

0 1

1: 1 0

0 1 0

s

M z

 
   
 
 

 

1 2
1

3 4

K K
M

K K

 
  
 

 and , 

where 
= DeleteColumn(DeleteRow(M1, p), p); K2 := 

D

 1 2
T

T L L

K1 :
eleteColumn(DeleteRow(M1, p), 1···p – 1); K3 := 
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DeleteColumn(DeleteRow(M1, 1···p – 1), p); K4 := 
DeleteColumn(DeleteRow(M1, 1···p – 1), 1···p – 1); 

0
1:

1

s
K

z

 
   

 

1
2 :

0
K

 
  
 

 

 3: 0 1K   

 4 : 0K   

L1 := DeleteRow(T, p); L2  = DeleteRow(T, 1···p – 
1)

:
; 

2 3 2 2 2

2

2 1 2
1:

2 2

sz z z sz sz s sz z
L

sz z z sz s s z

      
  

    
 

 2 2 2 2 22 : 2 1 2 1L s z sz sz z s z s s sz         

T1 := simplify(K1.L1 + K2.L2); 



N := QSAlgorithm(T1, var, true); 

1 1z 
1:

1 0
T

s
  
 

 

0 1

: 0 0 1

1 1

s

N

z sz

   
   

 

 

R := simplify(SubMatrix((K3.L1 + K4.L2). N, 1..1, 
1

M := Matrix([[K1, K2], [–R.K1 + K3, –R.K2 + K4]]); 

S := simplify(M.T.N); 

..p – 1)); 

 : 2R s z z   

  2

: 1 0

2 1 2

M z

z s z s z s z

   
       

 

0 1s 

1 0 0

: 0 1 0

0 0

S

s z

  
  

 

 

Example 2 (Frost and Boudellioua [9]) 
illenSuslin”, 

lib
inearAlgebra): with (QuillenSuslin): 

s are per- 
fo

libname := “C: /Involutive”, “C: /Qu
name: 
with (L
In the QuillenSuslin package all computation
rmed over a commutative polynomial ring with rational 

coefficients if the last parameter param is set to true and 
with integer coefficients, if the parameter is set to false. 

param := true: 
 and of the polynomial ring  z  

 = ,s z  mus  be declared by setting: 
]; 

D
var := [s,z

t

The variables s

var : [ , ]s z  

Now consider the 3 3  matrix over the poly- 

x( *z^2 + z^3 + z^2 + 1, s*z^2-s*z + s, 

2 1



 ( , )T s z  
no

2*

: 2T s

s z

mial ring D . 
T := Matri [[2*s
s*z + z^2],\ [2*s^2*z + s*z^2 + s*z + z, s^2*z – s^2 – 

1, 2*s^2 + s*z + 1]]); det_T := Determinant(T); 
2 3 2 22 1 2sz z z sz sz s s z       2

2

2 2 2 2 2

2

2 1

z

z z z sz s s z

s z s z z s z s s sz

 
     
        

 

det_ :T s z   

Clearly th
dit

f := s-det_

e determinant of satisfies the con- 

(T); 

T;  

( , )T s  z
ion in Theorem 3. 
p := RowDimension

: 3  p

:f z   

Evaluating ( , )T s z  at =s z , i.e. computing  
   z , 

(s T); 
,z z P 

= f,
T

P := subs

:

3 2z z   3 2 2

2 2

3 2 3 2 2

1

1 1

z z z z

P z z z z z

z z z z z z

   
 

      
 



     

 

To find a
Pw
syzygy 

va

Testing th
Pw

 unimodular column vector  satisfying 

(M yModule(Transpose(P), 

at the vector  is unimodular and that 

 w
de= 0  we need to find the row vector fining the 

module of P  over D . 
w := Transpose atrix(Syzyg
r))); 

2

: 1

1

z

w

z

 
   
  

 

w
0 . 

IsUnimod 

Now com

(w,var,param);   
 

pute a matrix 
true

  3L z�  N G with last co- 

n eration (Transpose(CompleteMatrix 

]); 

lum

(T

n given by w  
N := Colum Op
ranspose(w),\ 
var,false)),[1,p

2

0 1

: 0 0 1

1 0 1

z

N

z

 
   
  

 

PN := simplify(P.N); 
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

Computing the matrix 

2 3z  2

2

2 3 2

1 0

: 0

1 0

z z

PN z z z

z z z z

  
 

    
    

 

M := Transpose (QSAlgorithm(Transpose(B), var, 
true)); 

2

3 2 3 2 3 2

2 3

2

2( 1) 1

: 1 2

2 1

z z z z z z z z

M z z z

z z z

        
 

   
  

 
  3N GL z �  such that 

2
 

TN := simplify(T.N); 

I

0
M

 
B

 
   . 

2 2 3 2

2

2 2 3 2 2

2

2 2 2 2 2 2

1

: 2 2

2 1 2

sz z sz z z   


z z sz sz s z

TN s z sz z z z sz s z

s sz s z sz sz z sz s z s sz

     
        
          

 




 
S := Matrix([[IdentityMatrix(p – 1), ZeroMatrix(p – 

,1)], \[ZeroMatrix(1, p – 1), det_T]]), 1

1 0 0

: 0 1 0S

0 0 s z
 
  

 
   

M := simplify(S.MatrixInverse(N). MatrixInverse(T)); 
“N” = N; 

22

:
2 2 3 2 2

2 2

2 2

2 1

1 2 1 2

2 1 2

M

z z



  s z s z z z z s z s z

z s s z z z s z

z s sz z s z

       
 

       
     

 


IsUnimod(M,var,true); 



2

0 1

0 0 1

1 0 1

z

N

z

 
   
  

 

true  

SS := simplify(M.T.N); 

1 0

: 0SS

0

1 0

0 0 s z

 

 
  

  

3. Conclusion 

have shown that the recent imple-
e of a constructive version of t
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