
Journal of Water Resource and Protection, 2012, 4, 115-126 
http://dx.doi.org/10.4236/jwarp.2012.43014 Published Online March 2012 (http://www.SciRP.org/journal/jwarp) 

Particle Swarm Optimization for Identifying  
Rainfall-Runoff Relationships 

Chien-Ming Chou 
Department of Design for Sustainable Environment, Ming Dao University, Changhua, Chinese Taipei 

Email: jamin@mdu.edu.tw 
 

Received January 2, 2012; revised February 7, 2012; accepted March 4, 2012 

ABSTRACT 

Rainfall-runoff processes can be considered a single input-output system where the observed rainfall and runoff are 
inputs and outputs, respectively. Conventional models of these processes cannot simultaneously identify unknown 
structures of the system and estimate unknown parameters. This study applied a combinational optimization and Parti- 
cle Swarm Optimization (PSO) for simultaneous identification of system structure and parameters of the rainfall-runoff 
relationship. Subsystems in proposed model are modeled using combinations of classic models. Classic models are used 
to transform the system structure identification problem into a combinational optimization and can be selected from 
those typically used in the hydrological field. A PSO is then applied to select the optimized subsystem model with the 
best data fit. The parameters are estimated simultaneously. The proposed model is tested in a case study of daily rain- 
fall-runoff for the upstream Kee-Lung River. Comparison of the proposed method with simple linear model (SLM) 
shows that, in both calibration and validation, the PSO simulates the time of peak arrival more accurately compared to 
the SLM. Analytical results also confirm that the PSO accurately identifies the system structure and parameters of the 
rainfall-runoff relationship, which are a useful reference for water resource planning and application. 
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1. Introduction 

The rainfall-runoff process in a river basin can be con- 
ceptualized as a single input-output system. When mod- 
eling such a system, the goal is to use historic data for 
predicting further runoff by analyzing the input-output 
relationship based on observed input-output data, i.e., 
system identification. The “black-box” approach empha- 
sizes system functions rather than system characteristics 
or natural laws governing the system. The system re- 
sponse function analyzes the black-box relationships 
between inputs and outputs, i.e., the system characteris- 
tics or natural laws governing system operation. The 
system response function also varies according to system 
characteristics or according to natural laws. In black-box 
models, the task is describing or approximating the sys- 
tem response function. 

The identifications and applications of hydrological 
black-box models have been thoroughly investigated. 
Cheng et al. [1] presented an automatic calibration 
methodology, which consists of water balance parameter 
and runoff routing parameter calibration, for Xinanjiang 
model. Their results showed that the hybrid methodology 
of genetic algorithms (GAs) and the fuzzy optimal model 

(FOM) is not only capable of exploiting more the impor- 
tant characteristics of floods but also efficient and robust. 
Chau et al. [2] employed the GA-based artificial neural 
network (ANN-GA) and the adaptive-network-based 
fuzzy inference system (ANFIS) for flood forecasting in 
a channel reach of the Yangtze River in China. They 
found that the ANFIS model is optimal and the perform- 
ance of the ANN-GA model is also good. 

Lin et al. [3] considered the support vector machine 
(SVM) as a promising method for hydrological pre- 
diction. In their study, the SVM prediction model was 
tested using the long-term observations of discharges of 
monthly river flow discharges in the Manwan Hydro- 
power Scheme. Through the comparison of its perfor- 
mance with those of the autoregressive moving-average 
(ARMA) and ANN models, it is demonstrated that SVM 
is a very potential candidate for the prediction of long- 
term discharges. Cheng et al. [4] explored a novel chaos 
GA (CGA) based on the chaos optimization algorithm 
(COA) and GA to overcome premature local optimum and 
increase the convergence speed of GA. Their results 
showed that the long term average annual energy based 
CGA is the best and its convergent speed not only is 
faster than dynamic programming largely, but also over- 
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passes the standard GA. Thus, their proposed approach 
was feasible and effective in optimal operations of com- 
plex reservoir systems. 

Wang et al. [5] examined ARMA models, ANNs ap- 
proaches, adaptive neural-based fuzzy inference system 
(ANFIS) techniques, genetic programming (GP) models 
and SVM method using the long-term observations of 
monthly river discharges. They found that the best per- 
formance can be obtained by ANFIS, GP and SVM, in 
terms of different evaluation the training and validation 
phases. Wu et al. [6] proposed a crisp distributed support 
vectors regression (CDSVR) model for monthly stream- 
flow prediction in comparison with four other models: 
ARMA, K-nearest neighbors (KNN), ANNs, and crisp 
distributed ANNs (CDANNs). Their results showed that 
models fed by preprocessed data perform better than 
models fed by original data, and CDSVR outperform 
other models except for at a 6-month-ahead horizon for 
Danjiangkou. They also found that the performance of 
CDSVR deteriorated with the increase of the forecast 
horizon. 

Hydrological models such as simple linear model 
(SLM) are suitable for hydrological system identification 
because they can simply and conventionally estimate 
total runoff from total rainfall. However, conventional 
models for performing the above system identification 
are limited because they cannot simultaneously identify 
the unknown structure of the system and estimate un- 
known parameters. Wang et al. [7] developed a new 
method of using Particle Swarm Optimization (PSO) 
algorithm for system identification. Its novel feature is 
the use of classic models to transform the system struc- 
ture identification problem into a combinational problem. 
A PSO algorithm is then used to identify system structure 
and parameters. This study applies the concept developed 
by Wang et al. [7] to model the rainfall-runoff relation- 
ship. 

Kennedy and Eberhart [8] originally developed the 
PSO algorithm for a simplified simulation of animal so- 
cial behaviors. The PSO, which is a population-based 
and self-adaptive search optimization technique, is now 
widely used to solve discrete and continuous optimiza- 
tion problems. Recently, PSO has been employed exten- 
sively in hydrological forecasting and water resources 
management. Chau [9] developed a PSO model for 
training perceptions in ANNs. Applications of PSO pre- 
dicting water levels show that the technique is an effect- 
tive alternative algorithm for training ANNs. 

Gill et al. [10] introduced PSO, a relatively new global 
optimization tool that has already proven effective and 
efficient in various fields. Although PSO initially had a 
single-objective function, the approach has been ex- 
tended to deal with multiple objectives in a form called 
multiobjective PSO (MOPSO). Tests of this approach for 

parameter estimation of a well-known 13-parameter con- 
ceptual rainfall-runoff model of Sacramento soil mois- 
ture show very encouraging modeling results. Chau [11] 
developed and applied a split-step PSO model to train 
multi-layer perceptions for forecasting real-time water 
levels. This paradigm combines the advantages of the 
global search capability of PSO algorithm in the first step 
with fast local convergence of Levenberg-Marquardt 
algorithm in the second step. Performance comparisons 
show that its speed and accuracy are better than those of 
the benchmarking backward propagation algorithm and 
the standard PSO algorithm. 

Luo and Yuan [12] used PSO to optimize an integrated 
water system by combining water usage processes and 
water treatment operations into a single network such 
that the total cost of fresh water and wastewater treat- 
ment is florally minimized. Zhang et al. [13] tested five 
global optimization algorithms (GAs, shuffled complex 
evolution, PSO, differential evolution, and artificial im- 
mune system) for automatic parameter calibration in a 
complex hydrologic model of four watersheds con- 
structed using Soil and Water Assessment Tool (SWAT). 
The results show that GA outperform the other four algo- 
rithms when more than 2000 models are analyzed while 
PSO obtains better parameter solutions when fewer than 
2000 models are run. The PSO algorithm is preferable 
when computation time is limited whereas GA is prefer- 
able when substantial computational resources are avail- 
able. When applying both GA and PSO for optimizing 
SWAT parameters, the population size should be small. 

In a SVM developed by Wang et al. [14] for forecast- 
ing annual reservoir inflow, PSO is used for parameter 
optimization. For the data set used in that study, the 
SVM model outperformed the ANN models in terms of 
forecasting performance. Gaur et al. [15] applied Ana- 
lytic Element Method (AEM) in a PSO-based simula- 
tion-optimization model of groundwater management 
problems. The AEM-PSO model proved efficient for 
optimizing the location and discharge of pumping wells. 
The penalty function approach was also effective when 
using PSO to solve groundwater hydraulic management 
problems. 

In conventional procedure for performing system iden- 
tification, after determining system structures, the opti- 
mization method can be then adopted to parameter esti- 
mation. However, it is difficult to identify system struc- 
tures. This work employs classic models to transform the 
system structure identification problem into a combina- 
tional optimization problem. The proposed method can 
simultaneously identify unknown structures of the sys- 
tem and estimate unknown parameters. Firstly, the sub- 
system models include a combination of classic models 
that can be selected from those models typically used in 
the hydrological field. The PSO is then used for simulta- 
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neous identification of the system structure and parame- 
ters. The rest of this paper is organized as follows. First, 
the concept of system identification and the SLM struc- 
tures are described. The PSO algorithm and its imple- 
mentation procedure are then defined. Next the efficacy 
of the proposed method is demonstrated in a case study 
of a small Taiwan watershed. Finally, analytical results 
are discussed, and conclusions are given. 

2. System Identification 

2.1. The Description of System Identification 

A system can be identified from observed input and out- 
put data to obtain the equivalent system. The purpose of 
system identification is to understand variation in the 
system so that the identified results can be applied to 
solving practical problems. The system identification in 
this study is the method that selects the combination of 
the subsystem model that best fits the sample data from 
many subsystems and estimates their parameters. Classic 
models are used to transform the system structure identi- 
fication problem into a combinational optimization prob- 
lem. The system model consists of subsystem models 
that are the combination of classic models. Classic mod- 
els can be selected from models typically used in the 
hydrological field. The principles of selecting classic 
models are general, classic and includable [7]. 

Consider a static system with multiple inputs and sin- 
gle output. Suppose that y is the output of an observable 
system affected by m input, i.e., x1, x2,···, xm. The n 
groups of observed data can be described as follows [7]: 

 , ,ji mix x 

, 1, 2, ,jix i n 

     
0

d
t

Q t H I t

1 2, , ,i i iy x x            (1) 

where xji is the j-th input data of group i, yi is the output 
data of group i, i = 1, 2,···, n; j = 1, 2,···, m. 

Suppose that the observed data include various possi- 
ble subsystem models that are combinations of classic 
models. Classic models can be selected from the models 
that usually appear in the hydrological field. Now con- 
sider the case where single variable xj affects the output 
of system by the form of f(xj). The f(xj) is then defined as 
a classic model with a single variable [7]. Let N be the 
total number of classic models with a single variable. 
The output, which is affected by various input data, can 
be expressed as [7] 

 
1 1

N m

i k
k j

y f
 

           (2) 

2.2. The Simple Linear Model 

The simple and conventional method used to estimate the 
system response function from rainfall-runoff data is the 
SLM [16]. The SLM is compared with the proposed 

method in this study. 
Let I(t) and Q(t) represent total rainfall and total runoff 

of a watershed, respectively, and let H(t) represent the 
system response function. The rainfall-runoff process is 
assumed to be a linear, time-invariant, and single input- 
output system. The function of the SLM system can be 
represented by a linear convolution equation as follows 
[16]: 

   

     
1

1
L

i

Q k H i I k i
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           (3) 

where τ is an integral variable. 
Equation (3) can be applied in discrete form as follows 

[16]: 

  
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          (4) 

where L is the memory length of a watershed, I(k – i + 1) 
is the average rainfall at time k – i + 1, Q(k) is the total 
runoff at time k, H(i) is a system response function. 

Equation (5) reveals data error or incomplete assump- 
tions about linearity [16]: 

     (5) 

where e(k) is a random error term. 
Equation (5) can be expressed using matrix equations 

as follows [16]: 
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where n is the total length of hydrological data, and L is 
the memory length of a system response function. 

The system response function H can be identified by 
Least Squares (LS) method. The essential principle of LS 
is to minimize the sum of squares of the differences be- 
tween the observed and estimated values. The objective 
function is defined as follows [16]: 

H E E Q IH Q IH

Q Q H I Q H I IH

  (7) 

The system response function can be derived by mini- 
mizing the objective function, i.e., min   J H

1ˆ T T

 as 
shown below [16]. 

   H    I I I Q               (8) 

3. Particle Swarm Optimization 

The PSO, which was introduced by Kennedy and Eber- 
hart in 1995 and known as an optimizer, is an approach 
to optimize information flow without complex operators. 
The PSO adopts the current optimal solution as the 
mechanism for renewing the whole search process such 
that the PSO is capable of rapid convergence to a rea- 
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sonably good solution. 

3.1. Underlying Theory of PSO 

In PSO, several particles (M particles) are denoted as the 
potential solution flying in the problem search space to 
locate their optimum positions. Each particle is repre- 
sented by a vector in multidimensional space D. Assume 
the position vector and velocity vector of particle i are Xi 
= (xi1, xi2,···, xid) and Vi =(vi1, vi2,···, vid), respectively. 
Set pi = (pi1, pi2,···, pid), i.e., pbest, as the current optimal 
posi- tion searched by each particle, and set gbest as the 
current optimal position searched by all particles of the 
group. For each generation, the updated equations of 
particle velocity and position in dimension d  
are as follows [17]: 

 1 d D 

 
 
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i dx x v  

kv

k

                  (10) 

where w is the inertia weight coefficient, c1 and c2 are 
acceleration coefficients, rand1 and rand2 are random 
numbers in the interval [0,1], and i = 1, 2,···, M. The ia  
is the component of fly velocity vector of particle i in 
dimension d for generation k. The idx  is the component 
of position vector of particle i in dimension d for genera- 
tion k. The pid is the component of the current optimal 
position vector pbesti searched by particle i in dimension d. 
The pgd is the component of the current optimal position 
vector gbest searched by all particles of the group in di- 
mension d. 

3.2. Algorithm Procedure 

The procedure for performing the PSO algorithm is as 
follows [18]. 

1) Randomly generate both the position and velocity 
of the particle in the initial swarm for D-dimensional 
space. 

2) Evaluate the fitness value of the particle, which is 
usually defined as 0    2

f y t y t    where y(t) and 
y0(t) are the estimated and observed output, respectively. 

3) Compare the fitness value of the particle with that 
of the previous optimal value, and modify the new velo- 
city of the particle according to the best positions of the 
particle (pbest) and swarm (gbest). 

4) Compare the fitness of the particle and swarm. If 
the best fitness of the particle is superior to that of the 
swarm, modify the memory of the best fitness (gbest) value 
for the swarm. At the same time, every particle should 
modify the velocity of the particle in the next generation. 

5) Determine the new velocities and positions of the 
particles for the next generation according to Equations 

(9) and (10). 
6) Stop the search when the termination condition is 

satisfied; otherwise, return to step 2). The algorithm usu-
ally stops when the generation reaches the maximum. 

4. Application and Analysis 

4.1. The Proposed Method 

Consider the three classic models for the relationship 
between rainfall input x and runoff output y, which is an 
example of a typical relationship in a hydrological system: 
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                    (11) 

                   (12) 

                   (13) 

where a, b and c are constant coefficients. The input used 
when testing the proposed PSO method is the daily rain- 
fall for the current day and the previous 7 days. The 
choice of the particular set of parameters is based on the 
memory length of a watershed. In addition, more pa- 
rameters are included because of carrying out the com- 
binational optimization. The daily runoff of current day 
is selected as output. To compare the proposed PSO with 
the SLM, the memory length of the watershed L is 8 
days. Assume these eight inputs affect the output of sys-
tem by the form f(xj). The n output can then be described 
as: 

  (14) 

Equation (14), which includes both linear and nonlin- 
ear terms, is similar to the Volterra model typically used 
to identify a nonlinear system. Linear models yield fairly 
good results, so the effect of nonlinearity in modeling is 
assumed to be relatively small. Hence, Lattermann [19] 
considered that adding only a second term to the linear 
hydrological model is adequate. This investigation adopts 
sufficient three terms to the modeling of the nonlinear 
rainfall-runoff process. The coefficients of Equation (14) 
cannot be conveniently estimated by LS since the input 
matrix is singular when solving Equation (8). Some of 
the diagonal elements of the upper triangular matrix U of 
the lower and upper (LU) factorization approach zero. In 
this study, the PSO is applied to estimate the coefficients 
of Equation (14). The analytic results are compared with 
the results obtained using SLM. 

4.2. Study Basin 

This work demonstrates the feasibility of applying the 
proposed PSO-based method for identifying rainfall- 
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   

 

The CE quantifies the goodness of fit between the esti- 
mated hydrograph and the observed hydrograph. A better 
fit is indicated by a CE that is closer to unity. 

runoff processes using the Wu-Tu watershed, which 
located in northern Taiwan. The watershed upstream area 
is 203 km2 (Figure 1). The mean annual precipitation in 
this watershed is 2500 mm. Due to the topography of this 
watershed, the runoff pathlines are short and steep, and 
rainfall is nonuniform in both time and space. Large 
floods develop quickly in the middle-to-downstream 
reaches of this watershed, leading to severe damage. The 
daily rainfall and runoff data for 1966-1994 were 
collected. The data for 1966-1980 were used to calibrate 
the proposed model, while data for 1981-1994 were used 
to verify the performance of the proposed method. Each 
year is regarded as a single event (i.e., duration is 365 
days) in calibration or validation. Daily rainfall data are 
average values obtained from the Jui-Fang, Huo-Shao- 
Liao and Wu-Tu weather station using the kriging me- 
thod. The daily runoff data are obtained from the Wu-Tu 
hydrological station. 

2) Error of Total Volume (EV) 

4.3. Comparison of Model Performances 

1) Coefficient of efficiency, CE, is defined as: 

2

2
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q i q
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where  denotes the discharge of the simulated hy- 
drograph for time period i (m3/s),  is the discharge 
of the observed hydrograph for time period i (m3/s), q

   

 

 
represents the average discharge of the observed hydro- 
graph for time period i (m3/s) and n is number of data. 
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where q̂ i
 q i

 

 denotes the discharge of the simulated hy- 
drograph for time period i (m3/s),  is the discharge 
of the observed hydrograph for time period i (m3/s). The 
EV specifies the mean error between the estimated hy- 
drograph and the observed hydrograph. When the value 
of EV is positive, the mean estimated discharge exceeds 
the observed discharge, and vice versa. A better fit is 
represented by a smaller absolute value of EV. 

3) The error of peak discharge, EQp (%), is defined as: 

ˆ
% 100%P P

P
p

q q
EQ

q


 

ˆ

          (17) 

where Pq

PPP TTET  ˆ

 denotes the peak discharge of the simulated 
hydrograph (m3/s) and qp is the peak discharge of the 
observed hydrograph (m3/s). When the EQp is positive, 
the estimated peak discharge exceeds the observed peak 
discharge. When EQp is negative, the estimated peak 
discharge is smaller than the observed peak discharge. A 
better fit is indicated by a smaller absolute value of EQp. 

4) The error of the time for peak to arrive, ETp, is de- 
fined as: 

                (18) 
 

 

Figure 1. The map of Wu-Tu watershed showing the study area near Taipei, Taiwan.    
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ˆ

Pwhere T

 ˆ iH

îb ˆic

 denotes the time for the simulated hydro-
graph peak to arrive (days) and Tp represents the time 
required for the observed hydrograph peak to arrive 
(days). When ETp is negative, the estimated peak dis-
charge precedes the observed peak discharge. When ETp 
is positive, the estimated peak discharge follows the ob-
served peak discharge. A better fit is represented by a 
smaller absolute value of ETp. 

5. Results and Discussion 

The results obtained using SLM are denoted as the SLM. 
The results obtained using PSO in Equation (14) are de- 
noted as the PSO. For the proposed PSO method, the 
total number of particle swarms, the maximum number 
of generations, inertia weight coefficient w, and accelera- 
tion coefficients c1 and c2 are 36, 100, 0.5, 2.0 and 2.0, 
respectively. 

Table 1 shows the calibration results for the SLM and 
the PSO. Figures 2-5 display four representative cali- 
bration results. Calibration results show that the average 
absolute value of EV is slightly worse in the PSO 
(6.281%) than in the SLM (5.221%). Based on the aver- 
age value of the CE criterion, the PSO (0.838) outper- 
forms the SLM (0.827). The CE of the PSO also outper- 
forms that of the SLM for each year. Based on the EQP 
criterion, the average of the absolute value of the PSO 
(20.701%) is slightly better than that of the SLM 
(21.788%). Based on the ETP criterion, the average ab- 
solute value of the PSO (3.800 days) is better than that of 
SLM (4.667 days). Especially in the case of year 1974 
(Figure 3), the ETP of SLM is –13 days; however, the 
ETP of PSO is 0 days. The PSO obtains a more accurate 
simulation of the peak values compared to the SLM. 

Table 2 presents the average value of the estimated 
coefficients of response function, i.e., , and the 
average value of the estimated coefficients of Equation 
(14), i.e., ,  and , obtained from the 15 cali- 
brated years. The average value of the estimated coeffi- 
cients can be used for performance evaluations of the 
SLM and PSO. The average of the estimated coefficients 
provides not only validation data for the proposed ap- 
proach, but also average system characteristics. 

ˆia

Table 3 shows the validation results when using SLM 
and PSO. Figures 6-9 display four representative vali- 
dation results. Validation results demonstrate that the 
average absolute value of EV of the PSO (16.764%) is 
slightly worse than that of the SLM (15.599%). Based on 
the CE criterion, the PSO performs comparably to the 
SLM. Based on the EQP criterion, the average of the ab- 
solute value of the PSO (24.038%) is slightly worse than 
that of the SLM (23.735%). Based on the ETP criterion, 
the average of the absolute value of the PSO (15.500 
days) is better than that of SLM (24.786 days). Espe-  

Table 1. Calibration results using SLM and PSO. 

EV (%) CE 
Year 

SLM PSO SLM PSO 

1966 –8.43 –9.14 0.842 0.849 

1967 –7.01 –6.16 0.858 0.867 

1968 –13.56 –10.93 0.892 0.896 

1969 –13.92 –15.61 0.919 0.929 

1970 –1.85 –2.92 0.881 0.885 

1971 –4.47 –8.14 0.855 0.867 

1972 –5.39 –8.37 0.823 0.835 

1973 –6.45 –9.10 0.853 0.881 

1974 –4.46 –7.79 0.793 0.840 

1975 –1.06 –3.90 0.788 0.793 

1976 0.57 –3.90 0.755 0.764 

1977 –1.06 –2.32 0.897 0.900 

1978 –1.54 –4.81 0.768 0.774 

1979 3.16 0.33 0.678 0.687 

1980 5.39 0.79 0.796 0.808 

Average 5.221 6.281 0.827 0.838 

EQP (%) ETP (day) 
Year 

SLM PSO SLM PSO 

1966 –16.81 –18.93 1 1 

1967 19.72 –18.49 0 0 

1968 –22.77 –22.03 1 1 

1969 –20.60 –16.22 0 0 

1970 –0.54 –1.15 0 0 

1971 –20.63 –22.10 0 0 

1972 –18.24 –15.92 0 0 

1973 –22.79 –22.30 –18 –18 

1974 –39.5 –31.24 –13 0 

1975 –31.6 –31.05 0 0 

1976 7.70 7.06 –37 –37 

1977 –15.18 –14.80 0 0 

1978 –36.13 –35.57 0 0 

1979 –40.13 –39.76 0 0 

1980 –14.48 13.89 0 0 

Average 21.788 20.701 4.667 3.800 

Note: The columns for EV, EQP and ETP all contain negative values, and 
these columns present the averages of he absolute values. t  
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Figure 2. Calibration results using SLM and PSO (1969). 
 

0 50 100 150 200 250 300
Time  (days)

350 400

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

D
is

ch
ar

ge
  (

cm
s)

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

R
ai

nf
al

l  
(m

m
)

Calibration
1974

Observe

SLM

PSO

 

Figure 3. Calibration results using SLM and PSO (1974). 
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Figure 4. Calibration results using SLM and PSO (1977). 
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Figure 5. Calibration results using SLM and PSO (1980).  

Copyright © 2012 SciRes.                                                                               JWARP 



C.-M. CHOU 

Copyright © 2012 SciRes.                                                                               JWARP 

123

i i
ˆ

ic

 
Table 2. The average estimated coefficients, obtained from 
the 15 calibrated events. 

cially in the case of year 1981 (Figure 6), the ETP of 
SLM is –130 days; however, the ETP of PSO is 0 days. 
The PSO can simulate the time of peak arrival more ac- 
curately compared to the SLM. 

i Ĥ  â  îb   

1 0.059619 0.057535 0.005992 –0.001940 

2 0.233782 0.232144 –0.000360 –0.000630 

3 0.046193 0.045697 0.005371 –0.002490 

4 0.030542 0.030349 0.001085 0.001375 

5 0.011485 0.012033 –0.000960 –0.002530 

6 0.010943 0.009812 0.002254 0.000576 

7 0.012044 0.010661 0.007537 0.000463 

8 0.007258 0.003676 –0.001550 0.001933 

The above results can be summarized as follows. In 
the case of calibration results, the PSO outperforms the 
SLM in all criteria except EV. In terms of CE criterion in 
particular, the PSO outperforms the SLM in each year. 
These calibration results imply that the proposed PSO is 
suitable for identifying the rainfall-runoff relationship. In 
the case of validation results, the CE of the PSO is the 
same as that of the SLM. The PSO is slightly worse than 
the SLM based on the EV and EQP criteria. However, the 
PSO clearly outperforms the SLM based on the ETP cri- 
terion. In both the calibration and validation results, the 
PSO can simulate the time of peak arrival more accu- 
rately compared to the SLM. This finding apparently 
shows that the PSO, which includes both linear and 
nonlinear terms, simulates the time of peak arrival more 
accurately compared to the SLM, which includes only 
linear terms. 

 
Table 3. Validation results using SLM and PSO. 

EV (%) CE 
Year 

SLM PSO SLM PSO 

1981 4.60 3.24 0.785 0.786 

1982 –21.88 –23.63 0.705 0.709 

1983 4.51 3.18 0.762 0.761 

1984 0.54 –0.85 0.826 0.825 

1985 –4.45 –5.92 0.826 0.828 

1986 –7.20 –8.77 0.852 0.852 

1987 –2.21 –3.70 0.922 0.918 

1988 –18.68 –20.36 0.843 0.844 

1989 –6.90 –8.32 0.796 0.794 

1990 –9.86 –11.50 0.599 0.589 

1991 –47.50 –49.64 0.544 0.548 

1992 –35.70 –37.66 0.677 0.682 

1993 –35.96 –37.95 0.677 0.677 

1994 –18.40 –19.97 0.626 0.624 

Average 15.599 16.764 0.746 0.746 

EQP (%) ETP (day) 
Year 

SLM PSO SLM PSO 

1981 –34.94 –35.19 –130 0 

1982 –24.84 –25.38 0 0 

1983 –43.05 –43.82 0 0 

1984 –33.12 –33.75 0 0 

1985 –34.54 –35.05 0 0 

1986 –17.49 –18.24 –27 –27 

1987 –10.01 –10.70 0 0 

1988 14.59 14.84 0 0 

1989 40.06 38.95 –45 –45 

1990 –38.11 –38.65 –111 –111 

1991 7.86 7.26 1 1 

1992 –0.50 –1.40 24 24 

1993 6.27 5.78 –8 –8 

1994 –26.91 –27.52 1 1 

Average 23.735 24.038 24.786 15.500 

6. Conclusions 

In this work, performance in identifying rainfall-runoff 
relationships was compared between PSO and conven- 
tional SLM. The calibration results for PSO are better 
than those of the SLM in all criteria except EV. Specifi- 
cally, based on the CE criterion, the PSO outperforms the 
SLM in each year. The validation results for PSO are 
slightly worse than those for the SLM based on the EV 
and EQP criteria. The CE of the PSO is the same as that 
of the SLM. The PSO clearly outperforms the SLM 
based on the ETP criterion. The above results show that 
the proposed PSO is more suitable for modeling rain- 
fall-runoff relationships compared to SLM. 

The estimated time of peak arrival is an essential cal- 
culation. Both the calibration and validation results con- 
firm that the PSO can simulate the time of peak arrival 
more accurately compared to the SLM. The main reason 
is that the PSO includes both linear and nonlinear terms 
whereas the SLM uses only linear terms. 

This study applied PSO for identifying rainfall-runoff 
relationships. The PSO, which is a global random opti- 
mization algorithm, can simultaneously identify system 
structure and parameters. The daily rainfall-runoff data 
for the upstream Kee-Lung River are chosen to verify the 
appropriateness of the proposed model. Analytical results 
demonstrate that PSO effectively identifies the system 
structure and parameters of the rainfall-runoff relation- 
ship, which is an essential consideration in water re- 
source planning and application. 

The inertia weight coefficient and acceleration coeffi- 
ients, which are used to adjust the velocities and posi- 

Note: The columns for EV, EQP and ETP all contain negative values, and 
these columns present the averages of the absolute values. c  
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Figure 6. Validation results using SLM and PSO (1981). 
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Figure 7. Validation results using SLM and PSO (1987). 
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Figure 8. Validation results using SLM and PSO (1988). 
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Figure 9. Validation results using SLM and PSO (1992). 
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tions of all the particles within each generation, play im- 
portant roles in PSO. In this study, inertia weight coeffi- 
cient w, and acceleration coefficients c1 and c2 are typi- 
cally set to 0.5, 2.0 and 2.0, respectively. Much attention 
should be focused on how to determine their values. In 
practice, different improved method may be tried in the 
future regarding the main search procedure of the origin- 
nal PSO which is robust. 

7. Acknowledgements 

The author would like to thank the National Science 
Council, Taiwan for financially supporting this research 
under Contract No. NSC 100-2221-E-451-010. 

REFERENCES 
[1] C. T. Cheng, C. P. Ou and K. W. Chau, “Combining a 

Fuzzy Optimal Model with a Genetic Algorithm to Solve 
Multiobjective Rainfall-Runoff Model Calibration,” Jour- 
nal of Hydrology, Vol. 268, No. 1-4, 2002, pp. 72-86.  
doi:10.1016/S0022-1694(02)00122-1 

[2] K. W. Chau, C. L. Wu and Y. S. Li, “Comparison of 
Several Flood Forecasting Models in Yangtze River,” 
Journal of Hydrologic Engineering, Vol. 10, No. 6, 2005, 
pp. 485-491.  
doi:10.1061/(ASCE)1084-0699(2005)10:6(485) 

[3] J. Y. Lin, C. T. Cheng and K. W. Chau, “Using Support 
Vector Machines for Long-Term Discharge Prediction,” 
Hydrological Sciences Journal, Vol. 51, No. 4, 2006, pp. 
599-612. doi:10.1623/hysj.51.4.599 

[4] C. T. Cheng, W. C. Wang, D. M. Xu and K. W. Chau, 
“Optimizing Hydropower Reservoir Operation Using 
Hybrid Genetic Algorithm and Chaos,” Water Resources 
Management, Vol. 22, No. 7, 2008, pp. 895-909.  
doi:10.1007/s11269-007-9200-1 

[5] W. C. Wang, K. W. Chau, C. T. Cheng and L. Qiu, “A 
Comparison of Performance of Several Artificial Intelli-
gence Methods for Forecasting Monthly Discharge Time 
Series,” Journal of Hydrology, Vol. 374, No. 3-4, 2009, 
pp. 294-306. doi:10.1016/j.jhydrol.2009.06.019 

[6] C. L. Wu, K. W. Chau and Y. S. Li, “Predicting Monthly 
Streamflow Using Data-Driven Models Coupled with 
Data-Preprocessing Techniques,” Water Resources Re-
search, 45, W08432, 2009, 23 Pages.  
doi:10.1029/2007WR006737 

[7] F. Wang, K. Xing and X. Xu, “A System Identification 
Method Using Particle Swarm Optimization,” Journal of 
Xi’an Jiaotong University, Vol. 43, No. 2, 2009, pp. 116- 
120 (in Chinese). 

[8] J. Kennedy and R. C. Eberhart, “Particle Swarm Optimi- 
zation,” Proceedings of IEEE International Conference 
on Neural Networks, Perth, Vol. 4, 1995, pp. 1942-1948.  
doi:10.1109/ICNN.1995.488968 

[9] K. W. Chau, “Particle Swarm Optimization Training Al-
gorithm for ANNs in Stage Prediction of Shing Mun 
River,” Journal of Hydrology, Vol. 329, No. 3-4, 2006, 
pp. 363-367. doi:10.1016/j.jhydrol.2006.02.025 

[10] M. K. Gill, Y. H. Kaheil, A. Khalil, M. McKee and L. 
Bastidas, “Multiobjective Particle Swarm Optimization 
for Parameter Estimation in Hydrology,” Water Re- 
sources Research, Vol. 42, W07417, 2006, 14 Pages.  
doi:10.1029/2005WR004528 

[11] K. W. Chau, “A Split-Step Particle Swarm Optimization 
Algorithm in River Stage Forecasting,” Journal of Hydro- 
logy, Vol. 346, No. 3-4, 2007, pp. 131-135. 

[12] Y. Luo and X. G. Yuan, “Global Optimization for the 
Synthesis of Integrated Water Systems with Particle 
Swarm Optimization Algorithm,” Chinese Journal of Che- 
mical Engineering, Vol. 16, No. 1, 2008, pp. 11-15.  
doi:10.1016/S1004-9541(08)60027-0 

[13] X. S. Zhang, R. Srinivasan, K. G. Zhao and M. V. Liew, 
“Evaluation of Global Optimization Algorithms for Para- 
meter Calibration of a Computationally Intensive Hydro-
logic Model,” Hydrological Processes, Vol. 23, No. 3, 
2008, pp. 430-441. doi:10.1002/hyp.7152 

[14] W. C. Wang, X. T. Nie and L. Qiu, “Support Vector 
Machine with Particle Swarm Optimization for Reservoir 
Annual Inflow Forecasting,” Proceedings of International 
Conference on Artificial Intelligence and Computation 
Intelligence (AICI), Sanya, 2010, pp. 184-188.  
doi:10.1109/AICI.2010.45 

[15] S. Gaur, B. R. Chahar and D. Graillot, “Analytic Ele- 
ments Method and Particle Swarm Optimization Based 
Simulation—Optimization Model for Groundwater Man-
agement,” Journal of Hydrology, Vol. 402, No. 3-4, 2011, 
pp. 217-227. doi:10.1016/j.jhydrol.2011.03.016 

[16] Y. X. Wei and L. X. Wang, “Engineering Hydrology,” 
Water Conservancy and Electricity Press, Beijing, 2005 
(in Chinese). 

[17] Y. C. Liang, C. G. Wu, X. H. Shi and H. C. Ge, “Swarm 
Intelligent Optimization Algorithm—Theory and Appli- 
cation,” Science Press, Beijing, 2009 (in Chinese). 

[18] H. C. Kuo, J. R. Chang and C. H. Liu, “Particle Swarm 
Optimization for Global Optimization Problems,” Journal 
of Marine Science and Technology, Vol. 14, No. 3, 2006, 
pp. 170-181. 

[19] A. Lattermann, “System-Theoretical Modelling in Sur- 
face Water Hydrology,” Springer-Verlag, Germany, 1991. 
doi:10.1007/978-3-642-83819-4 

 

http://dx.doi.org/10.1016/S0022-1694(02)00122-1
http://dx.doi.org/10.1061/(ASCE)1084-0699(2005)10:6(485)
http://dx.doi.org/10.1623/hysj.51.4.599
http://dx.doi.org/10.1007/s11269-007-9200-1
http://dx.doi.org/10.1016/j.jhydrol.2009.06.019
http://dx.doi.org/10.1029/2007WR006737
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1016/j.jhydrol.2006.02.025
http://dx.doi.org/10.1029/2005WR004528
http://dx.doi.org/10.1016/S1004-9541(08)60027-0
http://dx.doi.org/10.1002/hyp.7152
http://dx.doi.org/10.1109/AICI.2010.45
http://dx.doi.org/10.1016/j.jhydrol.2011.03.016
http://dx.doi.org/10.1007/978-3-642-83819-4

