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ABSTRACT 

The dispersion of intravasculary injected nanoparti-
cles can be efficiently described by introducing an 
effective diffusion coefficient Deff which quantifies the 
longitudinal mass transport in blood vessels. Here, 
the original work of Gill and Sankarasubramanian 
was modified and extended to include 1) the variati- 
on over time of Deff; 2) the permeability of the blood 
vessels and 3) non-Newtonian rheology of blood. A 
general solution was provided for Deff depending on 
space (), time (), plug radius (c) and a subset of 
permeability parameters. It was shown that in-
creasing the vessel plug radius (thus hematocrit) or 
permeability leads to a reduction in Deff, limiting 
the transport of nanoparticles across those vessels. It 
was also shown that the asymptotic time beyond 
which the solution attains the steady state behaviour 
is always independent of the plug radius and wall 
permeability. The analysis presented can more accu-
rately predict the transport of nanoparticles in blood 
vessels, compared to previously developed models. 
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Permeable Blood Vessels; Drug Delivery 

1. INTRODUCTION 

The study of solute dispersion in capillaries dates back 
to the celebrated works of Taylor and Aris [1,2], who 
first studied the effect of shear stress on the transport in 
laminar flows. They provided a solution for the classic 
advection/diffusion equation 
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in the long term steady state limit, in terms of a constant 
effective coefficient of diffusion as 
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which includes the molecular diffusion contribution ( 

Dm) and the convective contribution ( Pe). In the Eqs.1 
and 2 above, Pe (Pe = Re × u0 / Dm) is the Peclet number 
for a capillary with radius Re and centerline velocity u0, 
C is the local solute concentration; u is the fluid velocity 
vector; Dm is the Brownian or molecular diffusion coef-
ficient and  and 2 are the gradient and Laplacian op-
erators, respectively. The solution of Taylor and Aris 
is valid under the simplifying assumptions of 1) 
quasi-steady dispersion and 2) unidirectional flow. In 
particular, it is strictly valid beyond the asymptotic time 
tst = 1/2 × Re

2/Dm. Notice that sub-micrometric particles 
with a molecular diffusivity Dm typically ranging be-
tween 10-11 and 10-9 m2/s, in large vessels (Re  10-2 m) 
would have tst of the order of 105 -107 s, whereas in small 
capillaries (Re  10-6 m) tst would fall in the range 
10-3-10-1 s. 

Considerable efforts were expended in the attempt 
of relaxing the above assumptions. Gill [3] extended 
Taylor’s formulation to obtain the local concentration C 
by means of a series expansion about the mean concen-
tration, leading to the Generalized Dispersion Model 
(GDM), founding upon the rephrased convective- 
diffusive equation 
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where Ki(t) are suitable functions of time; m is the 
normalized concentration averaged over a cross section 
of the capillary as explained in the sequel,  and  are 
the longitudinal and time coordinates respectively. San- 
karasubramanian and Gill [4] further developed the GD- 
M including the effect of wall permeability to the solute 
(i.e. nanoparticles). In 1993, Sharp derived explicit expr- 
essions for the constant steady state coefficient Deff for a 
non-Newtonian fluid considering, in particular, a Cas-
son-like fluid [5]. Dash et al. [6] and Nagarani et al. [7] 
combined the model of Sharp and the GDM to obtain the 
unsteady dispersion in a Casson-like fluid, introducing 
solute adsorption to the walls. More recently, Decuzzi 
et al. [8] revisited the theory of Taylor and Aris incor-
porating the effects of wall permeability for the working 
fluid (plasma) and deriving a novel and more general 
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expression for Deff being 
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where P  is the Peclet number at the entrance of the 

capillary (
0

e

0~ z ), and f is a function of the permeability 
parameter , pressure parameters , and longitudinal 
coordinate z~  along the capillary, as described in the 
sequel. In 2008, Gentile et al. [9] expanded the solution 
in [8] to include a Casson-like model for the fluid. Noti- 
ceably, the models presented in [8] and [9] are valid in 
the limit of large times of dispersion or, equivalently, at 
the steady state. No explicit dependency on time was 
introduced and the solution was deduced in terms of the 
longitudinal space coordinate solely. 

In this work, the transport formulation proposed in [9] 
was further developed to account for the time dependency of 
the problem. The transport of nanoparticles was investigated 
and the effective diffusion coefficient Deff derived. Deff 
would in general depend upon the permeability of the capil-
lary and the rheology of blood as in [9], but this dependency 
was extended to all times, thus also comprising the initial 
regime of dispersion. The model presented herein comprises, 
in the limits, well established schemes of diffusion. 

2. MATERIALS AND METHODS 

A circular capillary with radius Re and length l was con-
sidered as in Figure 1. A Casson-like fluid was conside- 
red with capillary walls permeable to the fluid, imperme- 
able and not adsorbent to the solute (i.e. nanoparticles). 
In the following of the paper, the Generalized Dispersion 
Model was recalled and revised. 

2.1. The Governing Equations 

Following [4], the dispersion of a solute in a cylindrical 
capillary was described by the normalized advection-dif- 
fusion equation 
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Figure 1. Longitudinal transport of molecules or nanoparticles 
in a blood capillary with a blunted velocity profile. 

with the non dimensional terms being 
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where C is the local concentration of the solute and C0 a 
reference concentration, u0 is the initial center line velo- 
city at the inlet and u the velocity distribution within the 
capillary with radius Re, Dm is the molecular diffusivity 
of the solute, r and z are the radial and longitudinal co-
ordinates as from the frame of reference in Figure 1, and 
t stays for the dimensional time. In Eq.6 P  (= Re × 

u0/Dm) is the characteristic Peclet number defined as 
above. It was assumed that the particles are sufficiently 
small to have the same velocity of the dislodging fluid so 
that the diffusion/advection problem and the fluid-dy-
namic problem may be treated separately. The solution 
of Eq.5 for can be derived exactly as 
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where the functions fi were related to the i-th derivative 
of m as shown in the sequel. The mean concentration 
m was defined as 
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From Eqs.5 and 7, it follows that m has to satisfy the 
relation 

i
m

i

i
i

m K











0

                (9) 

where the dispersion coefficients Ki were defined prop-
erly as function of time as to give 
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with the understanding that f0 = 1 and f1 = 0. Here i2 
denotes the delta of Kronecker. The dispersion problem 
was thus reduced to estimating fi and Ki for each i. The 
auxiliary functions fi must satisfy the differential equa-
tions 
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Relations Eq.10 and Eq.11 are coupled, and their so-

lution becomes untractable of i > 2. Nevertheless it was 

shown [10] that all terms involving a coefficient higher 

than i = 2 in Eq.10 can be neglected, in that K2 is more 

than two orders of magnitude greater than K3. Eq.9 thus 
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reduces to the simplified relation 
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where K1 and K2 represent the convective and diffusive 

rmeable 

The ution in the capillary was given for a 

term, respectively. Notice that Ki and fi depend upon the 
velocity field in the capillary . 

2.2. The Velocity Distribution in Pe
Capillaries 

velocity distrib
Casson-like fluid by [9] 
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where c is the ratio between the plug radius rc and the 
radius of the capillary Re (c = rc/Re) and dd is the 
pressure gradient along . From Eq.13 the non dimen-
sional flow rate was derived through integration over the 
cross section to give 
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and the mean fluid velocity could be written as 
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In the limit of a Newtonian fluid (c→0), Eq.16 yields 
th

aries, 
e expected value 0.5  . 
In permeable capill the fluid flows laterally across 

the walls inducing a continuos reduction in mean fluid ve-
locity along the capillary. Following [8,9], the normalized 
mean fluid velocity   was expressed as a function of the 
hydraulic conductivity Lp, the interstitial fluid pressure i, 
the inlet and the outlet vascular pressures p0 and p1, giving 
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where  is a non dimensional pressure parameter 

0 / 1
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(c) is the permeability parameter given by 

 
   

4 1
.

l η 
     (19) 

Notice that differently from [8], the perme
rameter  is not fixed and varies with c. Substituting 
ba

rticles is introduced 
e t = 0 

c p
e e c c

ξ L
R R A ξ A ξ

  

ability pa-

ck the Eqs.17 and 13 to Eqs.10 and 11, the coeffi-
cients Ki were appropriately derived. 

2.3. The Initial and Boundary Conditions 

It was assumed that a bolus of nanopa
instantaneously and uniformly at the initial tim
into the capillary, that is 
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In addition, the walls are impermeable to the solute 
and no absorption occurs to lead to 
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The above relations should be also rephrased in terms 
of fi to solve Eq.11, giving [4,6,7] 
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2.4. Solution for K1 and f1 

Imposing n = 1 in Eq.11, it was derived 
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and multiplying by  and integrating w
from 0 to 1, invoking the first of Eq.24, it 

From Eq.26, it was deduced that 
K1 equals the mean velocity  
al

ith respect to  
followed that 
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the convective term 
that is not constant 

ong the capillary. Also notice that assuming a frame of 
reference moving with ,  K1 would be zero as in [6]. f1 
was found as a solution of the partial differential Eq.25 
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that can be decomposed as the sum the steady state solu-
tion f1s() and the transient term f1t(). 
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which holds in the core of the capillary (<  ), where 
the velocity is blunted, and in the
where the velocity varies with . At the interface, =  , 

c

 cell free layer (> c), 

c

continuity imposed that f1s (= c
-) = f1s (= c

+) which, 
together with the boundary conditions Eq.24, allowed 
the deconvolution of f1s as 

         
  

c

c

c

ccc
sf



C

B






















cosh1

coshcosh
,1

for 

for 

)(

)(
 

(2 ) 

where B and C are solely functions of : 

9

,
194040

)ln(2310

194040

)14566421(1155147

194040

143015092216008085

);(

4

2422/16

42/1

cc

ccccc

ccc  


cB














 

(30) 

 

).ln(
841320

336

)32(
))32(107(

)8815445(
1617

4

362
48

1
);(

46

4
2

2

2/12/72

42

r

C c





















     (31) 

The transient term f1t depends upon f1s and was readily 
derived as [6] 
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where J0 and J1 are the Bessel function of first type and 
order zero and one, respectively, and the 
were found as the roots of the equation J  ( ) = 0. 

 0 to 1, K2 was obtained as 
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notice that, differently from the original formu
Gill and Sankarasubramanian [4,10], the auxil

lation by 
iary func-

tions K2 would in general depend also on the longitudi-
nal coordinate  and, in particular, the problem would be 
determined if the velocity field in the capillary is known. 
In the limit of large time K2 is found as 
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thus recovering the results derived in [9]. Incidentally 
notice that Eq.34 represents the most general form

ient for estimating the transp- 
ive diffusion 
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in that it comprises an extensive subset of solutions, de-
pending on the rheological parameters c,  and . In 
particular, as  (or, equivalently, ) goes to zero (im-
permeable capillary) Eq.34 coincides with the relation 
given in [5], whereas as the rheological parameter c 
goes to zero the result given by [8] is recovered. The 
classical solution of Taylor and Aris [1,2] is found when 
both () and c are null. 

3. RESULTS AND DISCUSSION 

The most important coeffic
ort of nanoparticles is the normalized effect
coefficient 
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y of the parti-
long the capil-

lary. Differently from all the schemes proposed so far,
the K2 presented in Eq.35 changes with  due to the 
variation of the mean fluid velocity along the permeable 
vessel. In Figure 2 the relation 192(K2 – Pe

-2) was plot-
ted as a function of  and  in the case of large perme-
ability of the walls (= 8, = –2) and for a Newtonian 
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a

fluid (c = 0). Generally K2 increases with time and attains 
the steady state value after the early stage of dispersion 
which corresponds to = 0.5. A central position of the ves-
sel was observed where K2 – Pe

-2 = 0, implying that in such 
area dispersion is solely driven by pure molecular diffusion. 
The decrease of K2 with  strongly depends upon the per-
meability of the capillary () and the plug radius of the 
fluid (c). In Figure 3 the 3D plot of the relation 192(K2 – 
Pe

-2) as a function of time  and position along the capillary 
 was displayed showing the effects of  and c varying 
between 0 and 4 and 0 and 0.4 respectively, and for a con-
stant = –2. In Figure 4, the contourplots corresponding 
o Figure 3 were reported. As time increases, the solution 

for K2 tends to a constant asymptotic value. Noticeably, the 
time beyond which dispersion turns to be time independent 
is always less than 0.5, regardless  and c Therefore, the 
permeability parameter and the plug radius have a negligi-
ble effect upon the process of diffusion along with time but 
do effect on the steady state behavior of the system. In par-
ticular, when both  and c are larger than zero the reduc-
tion in dispersion (Deff or K2) is dramatic, and in large por-
tions of the capillary the transport of the nanoparticles is 

mostly diffusion limited. This is easily explained observing 
that longitudinal transport is enhanced by radial velocity 
gradients (shear diffusion), thereby either an increase of the 
core region of the capillary with a flat velocity profile (thus 
c) or a reduction in the velocity amplitude due to an aug-
mented permeability (thus ), generates a decrease in K2, 
s thoroughly discussed in [8,9]. 

 

 
Figure 2. The dimensionless effective diffusion K2 as 
a function of the normalized position () and time () 
for a fixed plug radius c = 0 and for a permeable cap-
illary (= 8, = –2). 

 

 

Figure 3. 3D plots of the dimensionless effective diffusion coefficients K2 as a
function of the normalized position () and time (), for  and   varying be

 
-c

tween 0 and 4, and 0 and 0.4 respectively, and for a constant = –2. 
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Figure 4. Contour plots of the dimensionless effective diffusion coefficients K2 as a function of the 
normalized position () and time (), for  and c varying between 0 and 4, and 0 and 0.4 respectively, 

 
Given K2, th efficient Deff was 

educed as 

and for a constant = –2. 

e effective diffusion co
d

 
 
  ,222 m

cmc

eff D
A

K
DA 



or, equivalently 

122

0

2

ce AuR
D

         (36) 

 
 
 

.
1

2

2

22

2
0

c

c

cm

effD


A

A
K

A

P

D

e







            (37) 

Eq.37 shows that any enhancemen
fusion over the Brownian diffusion (D ) is proportional 
to

t values of 
P

from 0 to 0.4, at large times the classical solutions of Taylor 
and Aris [1,2] (  = 0), and Sharp [4] (  = 0.2, 0.4) are 

t in effective dif-
m

 the product P
0

e  × K2 and would strongly depend on 
the local hydrodynamics and capillary size.  

The dimensionless effective diffusion Deff/Dm as a func-
tion of the rheological parameter  , for differenc

e and for a fixed = 0 was shown in Figure 5. As ex-
pected, confirming the results derived in [9], larger Pe and 
smaller c lead to larger Deff/Dm ratios. Figure 6 illustrated 
the ratio Deff/Dm over time, for an impermeable channel 
(= 0) and for different values of c. Figure 7 reported the 
same diagram of Figure 6 for a permeable channel (= 2, 
= –2). In all cases, a steady state value was attained for  
larger than 0.5. Notice that for = 0 and for c moving 

c c

recovered (Figure 6).When the permeable solution was 
instead considered (Figure 7), the steady state values reca-
pitulated the results given by Decuzzi et al. [8] (c = 0) and 
Gentile et al. [9] (c = 0.2, 0.4). 

 

 

Figure 5. The dimensionless effective diffusion (Deff/Dm) as a 

function of the rheological parameter c, for different values of 

Pe and for a fixed = 0. 
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Figure 6. The ratio (Deff/Dm) over time, for a permeable cha- 
nnel (= 0) and for different values of c. 

 

 

Figure 7. The ratio (Deff/Dm) over time, for a permeable chan-
nel (= 2; = –2) and for different values of c. 

 
Table 1. Average dimensions and velocities of blood vessels 
(Decuzzi, 2006 [8]). Pe is calculated for Dm = 6 × 10-13 m2/s. 

Vessel ]mm[L  ]mm[eR  ]s/mm[U  Pe 

Aorta 50 25 400 1.6 × 1010 

Artery 2-1.5  4 100 6.67 × 108 

Arteriole 2-1.5  0.1-0.02  5 1.67 - 8.33 × 105

Capillary 0.5 0.001-0.005 1-0.1  41667 -833  

Venules 1 0.05 -0.02  0.5 1.66 - 4.16 × 104

Vein 14 -1  5-2  50 1.6 - 4.1 × 108

Vena 
Cava 

50 -40  30 100 5 × 109 

 
Recalling that the width of the plug radius c scales 

ith Re as c ~ 1-3 × Re
-0.8 [9] and considering the data of 
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Figure 8. The minimum value that Deff/Dm would assume 
in a vessel at the steady state as a function of Re and of the 
plug radius c; for an impermeable vessel (= 0). 

 

 
 

Figure 9. The minimum value that Deff/Dm would as-
sume in a vessel at the steady state as a function of Re 
and of the plug radius c; for a permeable vessel (= 5, 
= –2). 
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that the effect of the radius of the vessel (or equivalently 
of Pe0, see Table 1) dominates over that of the plug ra-
dius, meaning that in large capillaries, where c is large, 
yet the longitudinal diffusion increases up to 106 times 
with respect to small vessels. And this effect is dramati-
cally amplified considering leaky or fenestrated capillaries. 
It was argumented in [8,9] that in a capillary network 
passively transported molecules or nanoparticles would 
follow the path with the largest effective diffusion. 
Therefore, nanoparticles and molecules would in a larger 
percentage stay in the macrocirculation (high Deff) rather 
than in the microcirculation (small Deff) or highly per-
meable vessels (even smaller Deff), as for instance in the 
angiogenic tumor vasculature. This would constitute a 
barrier to the rational systemic administration of therape- 
utic and contrast agents. The correct design of nanopar-
ticles could constitute an effective way to overcome this 
barrier. It was demonstrated, either experimentally [11-13] 
and theoretically [14], that particles having differen
si r-
tie -
w n 

ould leave 
th
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4. CONCLUSIONS 

The Generalized Dispersion Model firstly introduced by 
Gill and Sankarasubramanian was revised to account for 
blood rheology and vessel permeability. The non dimen-
sional coefficient of diffusion was derived as a function 
of time, of the plug radius c and of a subset of permeab- 
ility parameters,  and . It was observed that an enha- 
ncement in permeability or a blunted velocity profile 
(high hematocrit) dramatically reduces vascular trans- 
port. It was seen that an augmented permeability at 
the vessels walls does not influence the time in corre-
spondence of which the dispersion process attains the 

steady state. Evidence was given that freely adminis-
trated drugs or nanoparticles very harshly w

 

e macrocirculation in favour of leaky capillaries of 
tumor districts. Strategies for the avoidance of this 
physiological barrier were proposed. 
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