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ABSTRACT 
Gliomas, the most aggressive form of brain cancer, 
are known for their widespread invasion into the tis-
sue near the tumor lesion. Exponential models, which 
have been widely used in other types of cancers, can-
not be used for the simulation of tumor growth, due 
to the diffusive behavior of glioma. Diffusive models 
that have been proposed in the last two decades seem 
to better approximate the expansion of gliomas. This 
paper covers the history of glioma diffusive model-
ling, starting from the simplified initial model in 90s 
and describing how this have been enriched to take 
into account heterogenous brain tissue, anisotropic 
migration of glioma cells and adjustable proliferation 
rates. Especially, adjustable proliferation rates are 
very important for modelling therapy plans and per-
sonalising therapy to different patients. 
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1. INTRODUCTION 
Glioma is a type of cancer of central nervous system that 
starts in the brain or in the spine. It is called a glioma 
because it arises from glial cells. The most common site 
of gliomas is the brain. Gliomas constitute more than  
50% of all brain cancer cases. Despite extended research 
in this area, patients are rarely given more than 12 
months survival time [1]. 

The diagnosis of gliomas can be done by MRI, CT, 
angiogram or biopsy, with MRI being the most common 
method. After glioma is diagnosed, treatment is directly 
necessary. However, the most important problem with 
diagnosis and treatment is that gliomas are characterized 
by invasiveness. This means that there are cells diffused 
beyond the imaged tumor, which cannot be visualized by 
common imaging techniques. Thus, even if the clinician 
allows some safety margin during resection around the 
imaged tumor, cancer is expected to recur. 

These dispiriting results have forced researchers 
worldwide to work with understanding the glioma grow- 

th procedure and its special pathology. One of the rapid-
ly emerging fields in glioma study is tumour growth 
modeling; researchers have been working on finding 
mathematical models that efficiently describe the glioma 
growth procedure. 

1.1. Mathematical Modelling 
A mathematical model uses mathematical language to 
describe a system. In the case of glioma, a mathematical 
description of how glioma grows is under research. At 
first someone has to bear in mind the basic features that 
any typical mathematical model in biology must possess 
[2]. These are schematically described in Figure 1. 
Firstly, the model should be initiated within a realistic 
biological state. Additionally, the modeled biological 
processes should be understood and discretized as much 
as possibly, meaning that steps and real biological para-
meters should be isolated. Continuing, it is essential to 
allocate a mechanism that could simulate these steps and 
incorporates these parameters. Specifically, this me-
chanism could be described by an equation. Going fur-
ther, the next step is to study the model mathematically 
and come up with solutions that include realistic boun-
dary and initial conditions. Lastly, after having acquired 
the theoretical results it is of great importance to go back 
in biological process with predictions, comments and 
suggestions for experiments that will either ascertain or 
disprove the developed model. At this level, model suc-
cess is highly dependent on combining experimentation 
and theory together. Because, even if the experimental 
results indicate that the model is incorrect, this is the 
right way to reach a successful conclusion. In final con-
sideration, mathematics is very important in biology, 
however, they must be treated with seriousness. If ma-
thematics is used for solving any biological process, 
without thoroughly studying the biological background, 
it is very possible to come up with solutions that not 
only do not contribute to corroborated conclusions, but 
also do harm. As stated in [2], the theoretical literature 
abounds with many such articles. 

Recently, with the explosion of biological sequence 
data, many biological sequence databases have redun-
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dant sequences which can cause problems for data anal-
ysis. These redundant sequences cannot provide valuable 
information for analysis but detracts from the statistical 
significance of interesting hits. Moreover, processing 
these redundant sequences often requires more time and 
computational resources. Removing redundant sequen- 
ces is undoubtedly very helpful for performing statistical 
analysis and accelerating extensive database searching 
[1]. And it is also a way to obtain the real protein fami-
lies and their representatives from a large sequences da-
taset. Therefore, it is necessary to develop an appropriate 
algorithm to remove redundant sequences from a bio-
logical sequence database. 

Hobohm and Sander’s algorithm is a widely used al-
gorithm in many redundant sequence removing pro-
grams. Hobohm and Sander’s algorithm was firstly in-
troduced by U. Hobohm et al. of EMBL laboratory in 
1992. In 1998, Lissa Holm and Chris Sander developed 
a program based on this algorithm to generate a non- 
redundant protein database NRDB90 [2]. After that, oth-
er researchers developed some programs for removing 
redundant sequences on the basis of Hobohm and Sand-
er’s algorithm, such as CD-HIT and PISCES. 

A lot of research is currently taking place in mathe-
matically modeling the glioma growth procedure. An 
efficient mathematical model for gliomas could help 
researchers and clinicians to get a better understanding 
of tumour growth pathology. They could also to predict 
the aggressiveness of a patient’s tumour and, thus, to 
better define the margins of a tumour, so as to use them 

 

 
Figure 1. Mathematical modeling for a general biological 
process. 

when applying resection or radiotherapy. Moreover, by 
importing therapy parameters into the model, the clini-
cian can predict which therapy scheme is expected to 
yield better results for the patient. 

1.2. General Cancer Modelling 
Studying tumour expansion and simulating this accord-
ing to mathematical models, has been an area of studies 
in cancer since late 90s’ [3-5]. Tumour growth has been 
studied by a series of models. The first models focused 
on tumour behavior in time. More specifically, the first 
proposed temporal models were based on either expo-
nential, logistic or Gompertz laws [6]. As expected, 
these models were followed by spatial growth models in 
later years. Thus, one such deterministic model has been 
used to simulate cancer growth as a wave phenomenon, 
taking into account mitosis and nutritient depletion [7]. 
Moreover, deterministic models taking into account im-
mune response [8] or mitotic rates changes [9] have been 
proposed. 

The research efforts for applying these models in in-
filtrative cancers, such as glioma, failed because cell 
motility hadn’t been included in the model. Thus, some 
stochastic and cellular automata have been introduced 
for glioma simulation, taking into account cell cycle, 
lack or abundance of nutritional elements in the sur-
rounding area of cells and therapeutic regimen [10]. 
However, the mostly used models for the glioma case 
are the diffusive models that simulate the spatiotemporal 
change of glioma cell density, using partial differential 
equations. The combination of biomechanics and diffu-
sive models is one of the latest advances in glioma mod-
eling, for combining diffusion glioma cells and dis-
placement of tissue caused by glioma growth [11]. 

2. THE DIFFUSION- REACTION MODEL 
Unlike solid tumors, for which simple exponential or 
geometric expansion represents expansion of tumor vo-
lume, the glioma growth rate cannot be determined as 
the classical doubling rate [12], because gliomas can 
migrate and proliferate. In order to simulate glioma ex-
pansion, scientists have proposed the application of the 
diffusion-reaction equation, which is currently mostly 
used. The first that proposed a diffusive model for gli-
oma growth was Murray in 1989 [13]. Murray derived 
the equation by exploiting the mass balance equation, by 
imagining cells as internal sources for producing the 
diffused cells. Murray proposed the diffusion-reaction 
formalism as: 

𝜕𝜕𝜕𝜕(𝐱𝐱, 𝑡𝑡)
𝜕𝜕𝑡𝑡

→ −𝑑𝑑𝑑𝑑𝑑𝑑 �𝐽𝐽(𝐱𝐱, 𝑡𝑡)� + 𝑆𝑆�𝜕𝜕(𝐱𝐱, 𝑡𝑡)� − 𝑇𝑇(𝜕𝜕(𝐱𝐱, 𝑡𝑡))���������������
𝑓𝑓�𝜕𝜕(𝐱𝐱,𝑡𝑡)�

 

(1) 
where 
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𝜕𝜕(𝐱𝐱, 𝑡𝑡) denotes the glioma cell concentration in posi-
tion 𝐱𝐱 at time 𝑡𝑡. 
𝐽𝐽(𝐱𝐱, 𝑡𝑡) is the diffusion flux of cell that follows Flick’s 

law (i.e. 𝐽𝐽 = −𝐷𝐷∇𝜕𝜕 where ∇ and div are the gradient 
and divergence operators respectively). 
𝑆𝑆(𝜕𝜕) denotes the source factor, representing the gli-

oma cell reproduction. 
𝑇𝑇(𝜕𝜕) denotes the treatment factor, representing the 

glioma cell loss due to treatment. This is zero, when no 
treatment is applied. 

The initial state of the model, 𝜕𝜕(𝑥𝑥, 0), is defined as 
the initial distribution of cancerous cells. 
𝑓𝑓(𝜕𝜕) ≡ 𝑆𝑆(𝜕𝜕) − 𝑇𝑇(𝜕𝜕) is the net proliferation rate. 
This equation was the basis of the later most impor-

tant works for glioma modeling. The general procedure 
for glioma modelling, as derived by Murray’s diffusive 
model, is presented in Figure 2. 

The solution of the diffusion-reaction equation requires 
the application of numerical schemes, since there is no 
direct formula of its solution. The solution has to be ap-
proximated iteratively till time point of interest is reached. 

2.1. Net Proliferation Rates for untreated gliomas 
In 1995, Tracqui studied the evolution of cell concen- 

 
Figure 2. Generalised mathematical modeling of glioma 
growth. 

tration, by using two characteristic of tumour growth: 
proliferation and invasion [3]. Tracqui proposed that the 
cells proliferate at exponential rate ρ, i.e.: 

𝑓𝑓(𝜕𝜕) = 𝜌𝜌                  (2) 
So, Tracqui changed Equation 1, to 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡
→ ∇ ∙ (𝐷𝐷∇𝜕𝜕) + 𝜌𝜌𝜕𝜕             (3) 

where ρ denotes the proliferation rate of cells. Other 
proposed models [14], instead of geometrical rate, used 
either Verhulst law 

𝑓𝑓(𝜕𝜕) = 𝜌𝜌𝜕𝜕 𝜕𝜕𝑚𝑚−𝜕𝜕
𝜕𝜕𝑚𝑚

               (4)

 
or Gompertz law 

𝑓𝑓(𝜕𝜕) = 𝜌𝜌𝜕𝜕 ln 𝜕𝜕𝑚𝑚
𝜕𝜕

               (5) 

where 𝒄𝒄𝒎𝒎 is the maximum value that concentration can 
reach. Eq.2 has been mainly used for simulating un-
treated gliomas. 

2.2. First Estimation of 𝑫𝑫 and 𝝆𝝆 
From the very beginning of diffusive models, one of the 
key issues was the estimation of parameters that are be-
ing used. The diffusion coefficient 𝑫𝑫 and the prolifera-
tion rate 𝝆𝝆 are the basic parameters for the diffusive 
models. The first estimation of them is places in 1995 
[1], when Silbergeld studied biological data and intro-
duced two groups of glioma cells: the common ones and 
the resistant-to-first-chemotherapy ones. Parameter D 
was firstly defined either at 𝑫𝑫 = 𝟏𝟏𝟏𝟏−𝟐𝟐𝒄𝒄𝒎𝒎𝟐𝟐/𝒅𝒅𝒅𝒅𝒅𝒅, with 
the percentage of cells resistant to chemotherapy being 
at 8%, or at 𝑫𝑫 = 𝟏𝟏𝟏𝟏−𝟑𝟑𝒄𝒄𝒎𝒎𝟐𝟐/𝒅𝒅𝒅𝒅𝒅𝒅 without resistant cells, 
while ρ was defined at 𝝆𝝆 = 𝟏𝟏𝟏𝟏−𝟐𝟐/𝒅𝒅𝒅𝒅𝒅𝒅. 

2.3. Resection Modeling 
Getting this further, one of the next steps was to the 
model cancer evolution after ectomy [3,15]. This was 
firstly simulated in 1993 by setting the concentration of 
the ectomized area equal to zero and, then, allowing the 
surrounding malignant cells proliferate and diffuse until 
the sphere reaches 6cm diameter. An example of ectomy, 
reproduced from [3], is given in Figure 3. 

2.4. Low Grade Gliomas 
Up to 1996, diffusive models studied high-grade gliomas 
due to their remarkably fast invasion. However, studying 
low-grade gliomas was important as well. Hence, in 
1996, Woodward [16] suggested that speed of growth in 
low-grade tumours should be 10% of the respective one 
in high-grade gliomas, yielding satisfactory results. 

After some years, in 2003, Mandonnet [17] proposed 
that low-grade gliomas grew slowly, but linearly. This is 
mathematically derivable by Eq.3, because the expand-
ing velocity of a population, which follows only the dif-
fusion and growth laws of (3), can be calculated as 
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2�𝜌𝜌𝐷𝐷. Mandonnet et al. used clinical data reproduced 
from 27 patients to estimate that the average tumour 
velocity was 2 mm per year. 

2.5. Brain Heterogeneity 
Up to 2000, researchers didn’t take brain anatomy into 
account. However, taking into account brain matter is of 
foremost importance, since it was observed that migra-
tion in white brain tissue is faster than in grey tissue [4]. 
Thus, modeling of gliomas should take brain hetero-
geneity into account. Indeed, in 2000, Swanson inno-
vated by introducing the problem and incorporating 
white and gray matter differentiation in the diffusion 
coefficient 𝐷𝐷 of Eq.3. More specifically, the equation 
continued to hold, but for variable 𝐷𝐷, i.e.: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡
→ ∇ ∙ (𝐷𝐷(𝐱𝐱)∇𝜕𝜕) + 𝜌𝜌𝜕𝜕            (6) 

Diffusion coefficient 𝐷𝐷 varies according to position, 
with D(x) = 𝐷𝐷𝑔𝑔  or 𝐷𝐷𝑤𝑤 , i.e. being constant for 𝐱𝐱 in grey 
and white brain tissue respectively. Moreover, in order 
Swanson to apply the model, an brain atlas was required 
providing all the information about white and grey matter 
areas. Indeed, BrainWeb database [18] was available for 
extracting this information. An example of Swanson’s 
simulation, reproduced from [4], is given in Figure 4. 

2.6. Anisotropic Cell Migration 
In 2005, Jbabdi et al. [19] introduced brain tissue aniso-
tropy in diffusive modeling. As observed, glioma cell 
migration is facilitated along the directions of white 
matter fibers [20-21]. This observation can be supported 
by the diffusion tensor Magnetic Resonance imaging 
(DT MRI) that gives a very good 3D reconstruction of 
white matter fibers. Jbabdi defined Eq.7, as 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡
→ ∇ ∙ (𝑫𝑫(𝐱𝐱)∇𝜕𝜕) + 𝜌𝜌𝜕𝜕            (7) 

where 𝑫𝑫 is the diffusion tensor that describes cell dif-
fusion rate at point 𝐱𝐱, i.e. a 3 × 3 symmetric positive 
definite matrix that reflects local anisotropy. 

2.7. Biomechanical Deformation 
In 2005, Clatz et al. from INRIA [11] developed a model 
that simulates Jbadbi’s model, but taking also into ac-
count the biomechanical deformations that occurs in 
brain due to tumour expansion. This model uses a pre-
dictor of the mass effect induced by both the tumor pro-
liferation and infiltration. Figure 5 shows an example of 
a simulation with Clatz’s model, with the deformation of 
tissues presented. The image is reproduced from [11]. 

 
Figure 3. (Reproduced from [3])-tracqui’s simulation of a tumour resection. The parameter values of the model are 𝝆𝝆 = 
0.012 /day, 𝑫𝑫 = 10-7 cm2/s. 

 

 
(a)                         (b)                          (c)                           (d) 

Figure 4. (Reproduced from [4])- Simulation of tumour invasion of a high-grade glioma in the superior cerebral hemisphere 
using Swanson’s model: (a) (b) at diagnosis; (c) (d) at death; (a) (c) as seen by Swanson’s standard threshold of detection; (b) 
(d) as calculated out to 1.25% of the threshold (boundary) cell concentration defining the sensitive threshold of detection. 
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Figure 5. (Reproduced from [11])-Simulation of displacement of the tissues induced by the tumor mass effect, us-
ing Clatz’s model. 

 
3. Parameter estimation in modern models 
According to [22], Figure 6 can be used as a guiding 
index for defining parameters 𝐷𝐷 and 𝜌𝜌 according to 
glioma grade, velocities of growth and 𝐷𝐷/𝜌𝜌. Indeed, 
this log to log graph includes all parameter values found 
up to Jan. 2007 for both low-and high-grade gliomas. 
Low-grade gliomas are sited in bottom left rectangle 
(LGG), for 2 mm/yr average velocities. Respectively, 
high grade gliomas (HCG) are positioned in the large 
rectangle, defined by 𝐷𝐷/𝜌𝜌 of 2 to 20 cm2 and average 
velocities from 10mm/yr to 200mm/yr. On the left part 
gliomas with detectable mass, which can be cured with 
surgery, are placed. 
 

 
 

Figure 6. (Reproduced from [22])-Log-log graph of 𝑫𝑫 and 𝝆𝝆, 
for high-and low-grade gliomas. 

 

Continuing, for the case of heterogenous brain matter 
for high-grade gliomas, it is suggested in [4] that a typi-
cal value for 𝜌𝜌 is 𝜌𝜌=0.0012 /day. This value for low- 
grade gliomas can be defined at 𝜌𝜌 = 0.00012 /day. Then 
by assuming that 𝐷𝐷𝑤𝑤 = 5𝐷𝐷𝑔𝑔 , 𝐷𝐷𝑤𝑤 = 10−2 mm2/day and 
𝐷𝐷𝑔𝑔 = 2 ∙ 10−3 mm2/day can be used [19]. 

It is noteworthy to present the following table, repro-
duced from [23], where there is a list of the proposed val-
ues of each parameter that the latest glioma models use. 

4. CHEMOTHERAPY MODELING 
Chemotherapy modeling is a quite blurred part of glioma 
models, which is mostly studied currently by researchers. 
Parameters that have to be taken into consideration 
 
Table 1. (Reproduced from [23])-The parameters of the diffu-
sive model as proposed in the last 2 decades. 

Parameter (namely) Parameter 
Symbol Value Reference 

Growth Rate 𝜌𝜌 0.012 (1/day) [24] 

Diffusion Coefficient 
(Gray matter) 𝐷𝐷𝐺𝐺  0.0013 (cm2/day) [3] 

Diffusion Coefficient 
(White matter) 𝐷𝐷𝑊𝑊  5 𝐷𝐷𝐺𝐺  (cm2/day) [4] 

Initial number of 
tumor cells 𝑁𝑁0 105 cells [16,25] 

CT threshold density - 400 (cells/mm2) [4] 
CT threshold radius - 1.5 cm [24] 

Cell death rate 
(chemotherapy) 𝑘𝑘 0.0196 (1/day) [26] 

Number of 
fractions/ day 𝑛𝑛 

1-conventional (CR) 
2-hyperfractionated 

(HF) 
[27,28] 

Time interval (step) 𝛥𝛥𝑇𝑇 1 day (CR) 
6 hours (HFR) [29,30] 
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should be extracted by histopathological and biostatis-
tical data of specific patients [31]. Swanson has intro-
duced a generalised net proliferation rate of chemothe-
rapy as: 

𝑓𝑓(𝜕𝜕) = 𝜌𝜌𝜕𝜕 − 𝐺𝐺(𝑡𝑡)𝜕𝜕           (8) 
where 𝐺𝐺(𝑡𝑡) is the temporal profile of the chemotherapy 
treatments, assuming a loss proportional to the strength 
or amount of therapy at a given time. Swanson sets 
𝐺𝐺(𝑡𝑡) = 𝑘𝑘 when the chemotherapy is being administered 
and 𝐺𝐺(𝑡𝑡) = 0 otherwise. 𝑘𝑘  is actually a measure of 
effectiveness of chemotherapy. Thus, in order therapy to 
be effective and size of tumor to decrease, 𝑘𝑘 should be 
larger than 𝜌𝜌, so that the net proliferation rate 𝑓𝑓(𝜕𝜕) is 
negative. This means the number of the dying cells is 
larger than the new born cells. 

An example of chemotherapy application on real clin-
ical MRI data, using (8) can be reproduced by [32]. In 
this example, k was intentionally set to the high value of 
𝐺𝐺(𝑡𝑡) = 0.024, so as the cancer to have shrinking effect. 
The data (18 MRI slices) has been acquired by Univer-
sität des Saarlandes Klinikum (Germany) within the 
scope of the Contracancrum project [33]. The modeling 
results are given in Figure 7. The 3-dimensional repre-
sentation of the initial and after-chemotherapy states are 
presented, accompanied by a sampled series of 4 MRI 
slices. 

4.1. Mathematical Frameworks 
The increasing interest of researchers on diffusive mod-

els was remitted by the total absence on specific guide-
lines on how to design them mathematically. In 2009, 
Roniotis et al. [34] published a mathematical framework 
on designing diffusive models by using Finite Differ-
ences, for the needs of the ContraCancrum Project [33]. 
The framework includes heterogeneous tissue, aniso-
tropic migration of cells along white fibers and is 3D. 
Moreover, chemotherapy formalism of Eq.8 can also be 
incorporated in the model. 

Different schemes of finite differences have been de-
veloped, namely forward Euler, backward Euler, Crank 
Nikolson and θ-methods. Moreover, the same model has 
been also developed with finite elements. The accuracy 
of the different schemes has been tested on simplified 
cases which suggested that the backward Euler scheme 
(Finite Differences) yields the best results. An example 
of applying this framework on real clinical data is dis-
played in Figure 8, reproduced from [34]. 

5. CHALLENGES FOR FUTURE MODELS 

Simulations of applying therapy can be performed by 
adjusting the proliferation term according to glioma 
cell proliferation rates in the diffusion equation. More- 
over, consecutive chemotherapy sessions have been 
simulated by works. However, the main issue govern-
ing these applications is the estimation of the most 
efficient model parameters. This requires study of 
pharmacokinetics and study of real chemotherapy ses-
sions on patients. 

 

    

    

 
 

(a) (b) 

Figure 7. (Reproduced from [32])-MRI and 3D representation of glioma in. (a) initial state; (b) after chemotherapy 
simulation. 4 slices out of 18 slices are presented. 
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Figure 8. (Reproduced from [34])-results of modeling (left column) initial data, (central column) simulated data after 112 
days, by using the backward euler scheme and (right column) real data on 112th day. 

 
An ideal model will have the ability to suggest paths 

of invasion, unseen by the doctor and help the clinician 
predict how the tumor is going to behave after different 
cures. Personalized parameter estimation for treatment 
term, proliferation rate and initial state are very impor-
tant for the model and are being studied by most re-
searchers working on diffusive models globally. 

Another important issue regarding modern diffusive 
models is the estimation of parameters of anisotropic 
diffusion. This is already incorporated in the models, but 
the methods used for extracting diffusion tensors have 
not been validated. This is mostly due to the use of DT- 
MRI, that is a modern technique and is hard to accom-
pany all medical data. An estimation of tensors based on 
atlas could be studied. 

6. CONCLUSIONS 
Mathematical diffusive modeling for simulating glioma 
growth and invasion is a currently developing scientific 
field. An efficient 3-dimensional model of glioma 
growth will constitute a powerful tool for clinicians, 
since they could predict how glioma is going to develop 
in time. The most important part of this is the differen-
tiation of the predicted outcome according to the differ-
ent model input parameters. These parameters are 
changing with different therapy treatments. Thus the 
clinician can make an easier decision on which therapy 
scheme yields the best predictions. 
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