
Advances in Materials Physics and Chemistry, 2012, 2, 23-30 
http://dx.doi.org/10.4236/ampc.2012.21004 Published Online March 2012 (http://www.SciRP.org/journal/ampc) 

Analytical Estimation of Elastic Properties of  
Polypropylene Fiber Matrix Composite by  

Finite Element Analysis 

Bhaskar Pal1, Mohamed Riyazuddin Haseebuddin2 
1Mechanical Engineering Department, Dayananda Sagar Academy of Technology  

and Management, Bangalore, India 
2Mechanical Engineering Department, Dayananda Sagar College of Engineering, Bangalore, India 

Email: pbhaskar70@yahoo.com, thereckoner@rediffmail.com 
 

Received November 15, 2011; revised December 24, 2011; accepted January 3, 2012 

ABSTRACT 

A structural composite is a material system consisting of two or more phases on a macroscopic scale, whose mechanical 
performance and properties are designed to be superior to those of constituent materials acting independently. Fiber 
reinforced composites (FRP) are slowly emerging from the realm of advanced materials and are replacing conventional 
materials in a variety of applications. However, the mechanics of FRPs are complex owing to their anisotropic and het-
erogeneous characteristics. In this paper a representative volume model has been considered and a finite element model 
incorporating the necessary boundary conditions is developed using available FEA package ANSYS to predict the elas-
tic property of the composite. For verification, the numerical results of elastic properties are compared with the analyti-
cal solution and it is found that there is a good agreement between these results. 
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1. Introduction 

In recent years, there has been a rapid growth in the use 
of fiber-reinforced composites due to their ability to re-
place competitive materials on the basis of lower density 
and equivalent strength, low thermal conductivity, high 
corrosion and wear resistance and the possibility of com-
bining the toughness of thermoplastic polymers with the 
stiffness and strength of reinforcing fibres. This has re-
sulted in the need for variety of application like general, 
structural, automotive and aerospace industry. 

Unidirectional composites are those which have all fi-
bres aligned in a single direction. A unidirectional com-
posite with a hexagonal array of fibres can be trans-
versely isotropic because the properties are the same 
along any plane which is normal to the fibre direction [1]. 
The stiffness and strength of a unidirectional composite 
are anisotropic properties since they vary with orienta-
tions. The stiffness of unidirectional composites in the 
fibre direction is usually dominated by the fibre proper-
ties while the strength in the transverse direction is domi-
nated by the matrix properties. Since the strength of a 
unidirectional composite under transverse tension is much 
smaller than under longitudinal tension, transverse tensile 
loading is believed to be the critical loading of unidirec-

tional composite materials [2]. 
Composite elastic properties are determined by the 

physical and mechanical properties of the individual ma-
terials. Some analytical and numerical techniques have 
been used for prediction and characterization of compos-
ite behaviour. Analytical methods provide reasonable 
prediction for relatively simple configurations of the 
phases. Complicated geometries, loading conditions and 
material properties often do not yield analytical solutions, 
due to complexity and the number of equations. In this 
case, numerical methods are used for approximate solu-
tions, but they still make some simplifying assumptions 
about the inherent microstructures of heterogeneous mul-
tiphase materials, one such method is finite element 
analysis [3-5]. 

One of the basic requirements in the mechanics of 
composite materials is to determine the effective elastic 
properties. Experimental determination of the moduli of 
unidirectional composites is difficult, especially when it 
involves determining the longitudinal shear and trans-
verse shear moduli. Thus, numerical techniques like the 
finite element method are needed to calculate these shear 
moduli. Numerical methods to calculate composite mate-
rial properties usually involve analysis of a representative 
volume element (RVE) [6-8]. 
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A great number of micromechanical models have been 
proposed in the literature for predicting various me-
chanical properties of composite materials [9-11]. Sev-
eral other models have been proposed such as numerical 
homogenization [9], FEM. 

Among all the theoretical models, the ROM has got 
the simplest mathematical relations. To apply these mod-
els, the modulus of elasticity of the polymer, Em, and of 
the fiber, Ef, should be known and then the modulus of 
elasticity of the composite, E1,2, can be calculated for any 
volume fraction of the fiber in the composition. But those 
experienced in the field shall admit that this model, in 
most cases, do not predict the modulus of elasticity of the 
composites satisfactorily. The experimental observations 
and analysis also confirm that [5,12-14]. 

There are a few issues that need to be verified care-
fully when carrying out such analyses. Firstly, the correct 
RVE corresponding to the assumed fibre distribution 
must be isolated. Secondly, correct boundary conditions 
need to be applied to the chosen RVE to model different 
loading situations. Proper consideration must be given to 
the periodicity and symmetry of the model in arriving at 
the correct boundary condition. 

In the present work, the procedure for predicting the 
elastic constants of the composite from the RVE is estab-
lished for a micromechanical three-dimensional finite 
element analysis. The finite element calculations are 
made at a specific volume fraction because the geometry 
of the regions of the finite-element mesh that represent 
the fibre and matrix differ from one volume fraction to 
the next and, therefore, each volume fraction study re-
quires a separate analysis. The finite element method is 
adopted for predicting various elastic properties of uni-
directional oriented FRP and the results of E1, E2, v12 and 
v23 are compared with the rule of mixtures and Halphin- 
Tsai criteria. 

2. Methodology 

2.1. Analytical Formulation 

2.1.1. Role of Mixture 
Rules of Mixtures are mathematical expressions which 
give some property of the composite in terms of the pro- 
perties, quantity and arrangement of its constituents. The 
notations will be established by use of the following rela-
tionships: 
 Longitudinal Young’s Modulus   
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2.1.2. Semi-Empirical Model (Halphin-Tsai) 
Halphin and Tsai developed their models as simple equa-
tions by curve fitting to results that are based on elasticity. 
The equations are semi-empirical in nature since involved 
parameters in the curve fitting carry physical meaning. 
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The term “ξ” is called the reinforcing factor and de-
pends on the following; 

Fiber geometry, Packing geometry, Loading condition 
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2.2. Compliance Matrix 

In composite material fibers may be oriented in an arbi-
trary manner. Depending on the arrangements of the fi-
bers, the material may behave differently in different 
directions. According to their behaviour, composites may 
be characterized as generally anisotropic, monoclinic, 
orthotropic, and transversely isotropic. In this paper, 
transversely isotropic characteristics have been consid-
ered for the fiber reinforced composite and fiber ar-
rangement as shown in the Figure 1. 
 

3 

2 

 1 

Figure 1. Arrangement of fiber direction for transversely 
sotropic composite. i   
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Here 1-2-3 orthogonal coordinate system is used where 

the directions are taken as follows: 
v

1
dV

V
ij ij                  (10) 

 The 1-axis is aligned with the fiber direction. 
3. Computational Details  The 2-axis is in the plane of the layer and perpen-

dicular to the fibers. 
In this present work, finite element method is used to 
approximate the different elastic property of the fiber 
reinforced composites by ANSYS 12.  

 The 3-axis is perpendicular to the plane of the layer 
and thus also perpendicular to the fibers.  

Stress strain relationship for compliance matrix for 
transversely isotropic matrix given below. Assumptions made for the present analysis were  

 The composite is 
♦ Macroscopically homogeneous;  2.3. Representative Volume Element (RVE) 
♦ Linearly elastic;  

Primary to use of numerical approximations of the effec-
tive properties of composite is the concept of representa-
tive volume element (RVE). Square or cubic RVEs are 
used for most numerical approximations because of the 
ease of numerically solving boundary values problems 
with these geometries. The difficulties involved in gen-
erating statistical information about particle distributions 
and concentrations leads to difficulties in the rigorous 
determination of RVE sizes. Hence, for most applications, 
RVE sizes have been rather arbitrary. In this paper a 
RVE model of 420 µm × 420 µm has considered which 
consists of different volume fraction of fiber density. In 
the model calculations, cuboid will be matrix and cylin-
der will be fiber. Figure 2 shows the typical RVE which 
consists of 10%, 17%, 27%, 40% and 50% of fiber con-
tent. 

♦ Macroscopically transversely isotropic;  
♦ Initially stress free (no thermal stress).  

 The fibers are: 
♦ Homogeneous;  
♦ Linearly elastic;  
♦ Isotropic;  
♦ Regularly spaced;  
♦ Perfectly aligned.  

 The matrix is: 
♦ Homogeneous;  
♦ Linearly elastic; 
♦ Isotropic. 

3.1. Modelling 

A regular three-dimensional arrangement of short fibre in 
a matrix was adequate to describe the overall behaviour 
of the composite, was modelled as a regular uniform ar-
rangement, as shown in Figure 1. This model assumed 
that the fibre was a perfect cylinder of length 250 µm, 
and diameter (d = 50 µm) in a cube (420 × 420 × 250 
µm3) of matrix. It is assumed that the geometry, material 
and loading of the unit cell are symmetrical with respect 
to x-y-z coordinate system as shown in Figure 2. There-
fore, 10% volume fraction i.e. 9 fibers has been inserted 
in a cubic matrix (420 × 420 × 250 µm3) uniformly as 
shown in Figure 2. 3D finite element meshing for the 
10% volume fraction of the fiber has been done, simi-
larly the finite element modelling and meshing were 
done by varying the fiber volume fraction from 10% to 
54% and as shown in Figure 3. 

2.4. Homoginization 

In classical lamination theory the composite lamina is 
modelled as a homogeneous orthotropic medium with 
certain effective moduli that describe the “average” ma-
terial properties of the composite. To describe this mac-
roscopically homogeneous medium, macro-stress and 
macro-strain are derived by averaging the stress and 
strain tensor over the volume of the RVE. The average 
stress and strain quantities defined in Equations (9) and 
(10) thus ensure equivalence in strain energy between the 
equivalent homogeneous material and the original het-
erogeneous material. These average quantities will be 
used in the subsequent analysis to determine composite 
moduli 

3.2. Element Type 

v

1
dV

V
ij  ij                (9) 

The element SOLID 45 of ANSYS V12.0 used for the  
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10% 17% 27% 40% 54% 

Figure 2. Unit cell of square array fibre packing geometry for RVE model. 
 

     

10% 17% 27% 40% 54% 

Figure 3. Finite element mesh for 10% volume fraction. 
 
present analysis which is based on a general 3D state of 
stress and is suited for modeling 3D solid structure under 
3D loading. The element has 8 noded brick element with 
three degrees of freedom per node (UX, UY and UZ). 

3.3. Boundary Condition 

In this work the boundary condition with normal strain 
applied in x direction are as follows [11]: 

       u LF 0, v BF 0, w BKF 0 and u RF    

 x

x x

y

z

u 0, y,z 0

5.0E 05

0

onstant

0

constant

 

where LF, BF, BKF and RF stand for left face, bottom 
face, back face and right face of the RVE model. All 
other faces are free of any displacement. 

In this paper, axial loading is modelled by a displace-
ment acting on the plane yz at x. For such loading condi-
tions, the boundaries of the RVE also correspond to lines 
of symmetry. Thus, normal displacements of the bounda-
ries of the quadrant are restricted to those that cause the 
boundary to displace only parallel to the original bound-
ary. 

The displacement constraints applied to the finite ele-
ment model to determine E1 are as follows and as shown 
in Figure 4. 
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3.4. Material Property 

The different material properties of both matrix and fiber 
has shown in the Table 1. 

Material properties are used to determine the several 

elastic properties of the composite that is Longitudinal 
young’s modulus (E1) and Transverse young’s modulus 
(E2) by varying the volume fraction of the fiber. 

3.5. Sample Analysis 

Figure 5 shows the analysis of 40% of volume fraction 
of fiber reinforced composite in which the von misses 
stresses for the matrix fiber and composite has been in-
dicated. The stresses are obtained by applying the dis-
placement loading in longitudinal direction. 

4. Results and Discussion 

4.1. Longitudinal Young’s Modulus (E1) 

Figure 6 shows comparison of finite element data, rule 
of mixtures and Halphin-Tasi results for composite mo- 
dulli E1 at different volume fractions. The finite-element 
solution gives identical results to the rule of mixtures and 
semi empirical analytical formulation. The linear de-
pendence of E1 on fibre volume fraction is demonstrated 
and, as expected, the modulus increases while increasing 
the fibre volume fraction. 

4.2. Transverse Young’s Modulus (E2) 

Figure 7 shows comparison of finite element data, rule 
of mixtures and Halphin-Tasi results for composite mo- 
dulli E2 at different volume fractions. Finite element re-
sults are as expected; on the assumption that the compos-
ite is macroscopically transversely isotropic the values 
obtained for the whole unit cells investigated are per-
fectly coincident. The Rule of mixtures model, the Hal-
pin-Tsai equation and data from the finite-element cal-
culations are compared. The term “ξ” is called the rein-
forcing factor in Halpin Tsai equation and depends on the 
fiber geometry, packing geometry, loading condition. As 
he fibers are circular and packing density is increasing t 
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Figure 4. Boundary condition for longitudinal modulus of composite in x direction. 
 

Table 1. Shows the material properties of composites. 

Material Properties Polypropylene co ethylene (PPE) Polypropylene (PP) 

Longitudinal Modulus E1 1.05 Gpa 4.5 Gpa 

Transverse Modulus E2 1.05 Gpa 4.5 Gpa 

Poisson’s Ratio 0.33 0.2 

 
 ANSYS 12.0.1 

ELEMENT SOLUTION 
STEP = 1 
SUB = 1 
TIME = 1 
SEQV      (NOAVG) 
DMX = 0.597E-04 
SMN = 204.969 
SMNB = –168.386 
SMX = 909.209 
SMXB = 1283 

204.969 
283.217 
361.466 
439.715 
517.964 
596.213 
674.462 
752.711 
830.96 
909.209 

 

 ANSYS 12.0.1 
ELEMENT SOLUTION
STEP = 1 
SUB = 1 
TIME = 1 
SEQV      (NOAVG)
DMX = 0.587E-04 
SMN = 904.134 
SMNB = 898.861 
SMX = 909.209 
SMXB = 914.222 

904.134 
904.698 
905.262 
905.826 
906.39 
906.953 
907.517 
908.081 
908.645 
909.209

 

 ANSYS 12.0.1 
ELENENT SOLUTION 
STEP = 1 
SUB = 1 
TINE = 1 
SEQV      (NOAVG) 
DNX = 0.597E-04 
SMN = 204.969 
SMNB = 194.669 
SMX = 212.096 
SMXB = 221.558 

204.969 
205.76 
206.552 
207.344 
208.136 
208.928 
209.72 
210.512 
211.304 
212.096 

 

Figure 5. Stress distribution of matrix, fiber and composite during computing of E1. 
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Figure 6. Comparison of finite element data, rule of mixtures and Halphin-Tasi results for composite modulli E1 for different 
volume fration of fiber. 
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Figure 7. Comparison of finite element data, rule of mixtures and Halphin-Tasi results for composite modulli E2 for different 
volume fration of fiber. 
 
accordingly the “ξ = 2” is adapted to consider those 
changes in the composites. In this Halpin-Tsai equation 
shows a good agreement between finite element values. 
But in Rule of mixture there is no such parameter which 
can be considered for those changes. Due to this reason 
The Rule of mixture is not showing the good agreement 
with finite element data. 

4.3. Poisson’s Ratio 

The major Poisson’s ratio 12  for the composite is de-
fined as minus the ratio of strain in the y-direction di-
vided by the strain in the x-direction when only the stress 

x  is applied. The Rule of Mixtures expression for the 
composite Poisson’s ratio is similar in form to the ex-
pression for E1. It evident from the Figure 8 that ana-
lytical and numerical results are in perfect agreement 
although data from the Rules of Mixtures are slightly 
higher than the finite-element results. 

The Poisson’s ratio 23  describes the contraction in 
the z-direction on 23  applying loads in the y-direction. 
No analytical formulas have been applied to compare 
with numerical results of Poisson’s ratio. It is worthwhile 
to show finite element results of both with different fibre 
volume fractions. As expected from the Figure 9, 23  
appears to be higher than 12  and the comparison be-
tween the two Poisson’s ratios shows that Poisson’s ra-
tios 12  are less sensitive to the fibre volume fraction. 
In particular, the values of 12  are quite close to the 
Poisson’s ratio of polypropylene (PP) especially at higher 
fibre volume fraction. On the contrary, 23  is strongly 
dependent from the fibre volume fraction and, its values 

approaches the Poisson’s ratio of the Polypropylene co 
ethylene at lower values of the fibre volume fraction. 

5. Conclusions 

1) The 3D unit cell of the unidirectional fiber rein-
forced composite has been identified (RVE) as a basic 
building block for estimating overall mechanical com-
posite properties. 

2) Various micromechanical methods to determine the 
elastic behaviour of composite materials have been dis-
cussed.  

3) Finite element analysis has provided an implicit 
means of modelling polymer composites. 

4) Numerical homogenization tools have been devel-
oped for the evaluation of the effective material proper-
ties of the short fiber composites.  

5) The appropriate constraints on the RVE under vari-
ous loadings have been determined from symmetry 
boundary conditions, obtaining a nearly complete set of 
elastic constants for a three-dimensional unidirectional 
composite.  

6) The results of elastic moduli E1, E2, E2, ν12, ν23, 
compared with the results of analytical solution and it is 
found that the results from FE simulation are in good 
agreement with the analytical results employed in this 
exercise namely the Halpin-Tsai semi-empirical expres-
sion and to some extent the Rules of Mixtures. 

7) As this mechanical property of fiber-filled compos-
ites are affected by a number of parameters such as fiber 
type, matrix type, fiber orientation, fiber geometry, vol-
ume fraction of the fibers and the degree of interfacial   
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Figure 8. Comparison of finite element data and rule of mixtures results for composite poisson’s ratio 12 . 
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Figure 9. Comparison of finite element results for composite poisson’s ratio 12  and 23 . 

 
adhesion between the fiber and the polymer matrix, the 
ROM has not been adopted by this property expect the 
volume fraction. So the results are also not so accurate. 

8) The Halpin-Tsai (HT) model is also a theoretical 
model. This model, besides the modulus of elasticity of 
the polymer, Em, and of the fiber, Ef, includes a geomet- 
rical parameter (aspect ratio) of the fiber as well. The 
model has a complicated mathematical structure with 
fiber geometry, packing geometry, loading condition. This 
factors help to showing the good agreement with finite 
element data. 

9) It is observed that the change in volume fraction of 
fiber has a significant effect on elastic properties. 
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