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ABSTRACT 

Genetic effect estimates for loci detected in quantita- 
tive trait locus (QTL) mapping experiments depend 
upon two factors. First, they are parameterizations of 
the genotypic values determined by the model of ge- 
netic effects. Second, they are consequently also af- 
fected by the regression method used to estimate the 
genotypic values from the observed marker genotypes 
and phenotypes. There are two common causes for 
marker-genotype data to be incomplete in those ex- 
periments—missing marker-genotypes and within in- 
terval mapping. Different regression methods tend to 
differ in how this missing information is represented 
and handled. In this communication we explain why 
the estimates of genetic effects of QTL obtained using 
standard regression methods are not coherent with 
the model of genetic effects and indeed show intrinsic 
inconsistencies when there is incomplete genotype 
information. We then describe the interval mapping 
by imputations (IMI) regression method and prove 
that it overcomes those problems. A numerical exam- 
ple is used to illustrate the use of IMI and the conse- 
quences of using current methods of choice. IMI en- 
ables researchers to obtain estimates of genetic effects 
that are coherent with the model of genetic effects 
used, despite incomplete genotype information. Fur- 
thermore, because IMI allows orthogonal estimation 
of genetic effects, it shows potential performance ad- 
vantages for being implemented in QTL mapping 
tools. 
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1. INTRODUCTION 

Quantitative trait locus (QTL) mapping experiments aim 
to detect loci that significantly contribute to the variance 

of a phenotype in a particular population [1]. In these 
experiments, models of genetic effects, also called geno- 
type-to-phenotype maps [2], enable researchers to evalu- 
ate the effects of allele substitutions in positions across 
the genome. In QTL mapping, these models are thus 
used in a reverse manner, starting from the phenotypes to 
obtain the genetic effects of genotypes in the evaluated 
loci. After the QTL are mapped their effects are usually 
provided using the particular model parameterization that 
was chosen for mapping them. We refer to these initial 
estimates as the raw estimates that come as a direct result 
of the QTL mapping experiment.   

The use of additional genetic models makes it possible 
to reparameterize the raw estimates so that they are ade- 
quate for addressing different topics of evolutionary in- 
terest (see e.g. [3-7]). We note, though, that this way of 
assigning a meaning to the genetic effects relies on 
whether the raw estimates actually match the model of 
genetic effects used to obtain them, or not. Therefore, 
besides choosing an appropriate model of genetic effects, 
it is also necessary to make sure that, in practice, the re- 
gression method used provides estimates matching that 
model. 

Missing genotype information has routinely been per- 
vasive in QTL analysis for two main reasons. First, mo- 
lecular methods for marker genotyping have been prone 
to wrong and failed detection, leading to a non-negligible 
percentage of missing marker genotypes in the datasets. 
Second, genotypes are missing and thus have to be in- 
ferred when inspecting loci within marker intervals, i.e. 
when performing interval mapping (IM) [8-10]. In this 
communication we elaborate on how missing genotype 
information—regardless of its cause—distorts the esti- 
mates of genetic effects obtained in QTL mapping ex- 
periments when a standard regression method is used. 
We then propose an alternative regression method that 
avoids this source of bias—i.e. it provides estimates of 
genetic effects that are coherent with the model of ge- 
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netic effects used, even with missing genotype informa- 
tion. We illustrate the advantages of this method using a 
numerical example and point out some convenient prop- 
erties for its potential use in QTL mapping applications.  

2. REGRESSION-BASED ESTIMATION 
OF GENETIC EFFECTS 

In a QTL mapping experiment, genetic effects of loci can 
be estimated from observed genotypes and phenotypes of 
individuals using the regression: 

 P XE ,               (1) 

where  is the vector of observed phenotypes, X 
is the regression design matrix, E is the vector of ge- 
netic effects and ε is the vector of residuals. For per- 
forming the regression, a choice for the regression design 
matrix needs to be done. This matrix can be decomposed 
into two matrices:  

 iPP

X ZS ,                (2) 

where the incidence matrix, Z, entails a genotype prob- 
ability vector for each phenotype observation. Z can be 
used to map genotype effects into individual estimates: 

 P ZG .              (3) 

Hence, the incidence matrix Z determines how the 
genotypic values are estimated from the data.  

The matrix S in (2) is called the genetic-effect design 
matrix and it is built to reparameterize the genotypic 
values into genetic effects [11]:  

G SE .                 (4) 

This expression entails a decomposition of the geno- 
typic values, G = (Gij), into additive (average allele sub- 
stitution) effects (αi) and dominance deviations (δij) from 
a reference point (µ), Gij = µ + αi + αj +δij, (for details see 
[3]). In other words, S is the model of genetic effects that 
determines how the genetic effects, E, are defined in 
terms of the genotypic values, G. Note that the regres- 
sion-based estimation of genetic effects (1) can be re- 
covered by combining expressions (2-4). 

The IM method [8] set a landmark in the estimation of 
genetic effects. Using interval mapping it became possi- 
ble to obtain both estimates of genetic effects within 
marker intervals and to more efficiently analyze data 
with missing marker genotypes. However, the original 
IM was based on a computationally demanding maxi- 
mum-likelihood estimation procedure. Therefore, linear- 
regression methods enabling faster estimation of genetic 
effects with missing data were developed [9,10]. These 
methods are still convenient, especially when addressing 
searches in massive datasets, e.g. microarray expression 
QTL (eQTL), QTL mapping of epistasis and permutation 
testing with many iterations. Hereafter we show that a 
common method of choice, the Haley-Knott regression 

(HKR) method, can be described in terms of the matrices 
Z and S introduced above (3, 4). 

HKR is based on the computation of genotype prob- 
abilities for all m possible genotypes of a locus, for the n 
individuals sampled [9,10]. The estimation of genetic 
effects is conducted through a regression of the phenol- 
type on these genotype probabilities. Each set of m 
genotype probabilities for each individual enter the re- 
gression as a row in the n × m Z-matrix (3). For instance, 
the HKR Z-matrix for a one-locus two-allele case is: 

1 1 1
11 12 22
2 2 2
11 12 22

HKR

11 12 22
n n n

p p p

p p p

p p p

 
 
 
  
 

  
Z 

 ,            (5) 

where  denotes the probability that individual k has 
genotype ij. 

k
ijp

The genetic model used in the original HKR is Fisher’s 
[12] population-independent parameterization, called the 
F∞ model [13]. Thus, the S-matrix of HKR is the matrix 
SF∞ [3,14]. However, it has frequently been suggested 
that estimates of genetic effects should instead be ob- 
tained using models that are orthogonal for the (specific 
samples of) populations under study [3,14-16]. That in- 
dividual effect estimates remain unaltered in reduced 
models is one of the convenient outcomes of orthogonal 
estimation of genetic effects. As an example, orthogonal 
estimates of genetic effects for an ideal F2 population can 
be obtained using Fisher’s [12] F2 model with genotype 
frequencies (pij) = (1/4, 1/2, 1/4). The genetic-effect de- 
sign matrix of this model is: 

2

1 1 1 2

1 0 1 2

1 1 1 2

  
 
  

FS 




.            (6) 

Similar expressions for more general cases than the 
particular F2 population have been provided, accounting 
for alleles with different frequencies [14] and for depar- 
tures from the Hardy-Weinberg proportions [3]. 

When assessing whether the estimates of genetic ef- 
fects coming from (1) are orthogonal for a particular 
population, complete genotype information is often as- 
sumed. However, Álvarez-Castro and Carlborg [3] have 
shown that obtaining orthogonal estimates of genetic 
effects also relies on incidence matrices fulfilling the 
condition: 

T
ijZ Z nDiag p ,             (7) 

where the operator Diag generates a diagonal matrix 
from a vector and T gives the transpose matrix. This de- 
sirable condition is achieved with incidence matrices 
having one only non-zero value per row, which does not 
hold for ZHKR (5) with incomplete genotype information. 
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Indeed, ZHKR (5) does not in general, when combined 
with (3), lead to genotypic values that are means of the 
observations, as shown below using a counter-example. 
It is thus not surprising that such estimates of genotypic 
values distort the properties of the genetic effects in 
(1)—that are given by the genotypic values and the ge- 
netic-effects design matrix through (4)—whether those 
properties are related to orthogonality or not. In the fol- 
lowing section we propose an alternative way of per- 
forming regression (1) that can be used to overcome 
these problems. 

3. INTERVAL MAPPING BY  
IMPUTATIONS, IMI 

Here we describe how to build a regression method that 
fulfils condition (7) and leads to genotypic values that 
are weighted means of the data. We do this by following 
a strategy of multiple imputed genotype realizations of 
the individuals in the population [17,18]. We split the 
representation of each individual in ZHKR (5) into as 
many imputations as there are possible genotypes, m. In 
its turn, we then weight each imputation by the square 
roots of the m genotype frequencies of the n individuals 
of the sample. In mathematical terms, we multiply a di- 
agonal matrix containing the square roots of all genotype 
probabilities, WIMI, to a column of n identity matrices of 
dimension m, IIMI: 

1
11

1
12

1
22

2
11

2
12

IMI IMI IMI
2
22

11
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22

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

1 0 0
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0 0 1
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p
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p

 
 
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  
  
  
  
  
    
  

 
 



Z W I 
 .     (8) 

We have added horizontal lines to mark the separate 
blocks representing each of the individuals. 

Using the above matrix (8), we present the interval 
mapping by imputations (IMI) regression-based method 
for estimation of genetic effects as using the nm  m in- 
cidence matrix ZIMI (8) within Equation (1) under a 
weighted-regression framework. It is worth to mention 
here two particular features of this framework (for fur- 
ther details see e.g. [19]). First, the vector of phenotypic 
observations, P (1, 3), has to be weighted in accordance 

with ZIMI as PIMI = WIMIP
(m), where P(m) is the vector in 

which each element of P occurs m times. Second, the 
matrix WIMI (8) reveals that we are using the Haley-Knott 
genotype probabilities— , cf. (5)—as weights (note 
that the matrix of weights is implemented with the square 
roots of the weights instead of with the weights them- 
selves). When using IMI through (1), the S-matrix (2, 4) 
can be chosen to fit the population under study for XTX 
to be diagonal whenever ZTZ is. In particular, the S-ma- 
trix shall accommodate the frequencies at the diagonal of 
(ZTZ)/n [3]. 

k
ijp

4. DEMONSTRATION OF THE MAIN 
PROPERTIES OF IMI 

We have postulated IMI to fulfil two major properties. 
These are condition (7) and providing weighted means of 
observation through regression (3). First, taking into ac- 
count that matrix (8) has one only non-zero value per 
row, it is easy to see that it fulfils condition (7). 

Second, to check that ZIMI (8) provides genotypic val- 
ues that are means of the observed data points, weighted 
by their certainty, we consider it within the normal equa- 
tion of regression (3) as , leading to: IMI IMIZ G P

  1

IMI IMI IMI IMI
T T

G Z Z Z P .          (9) 

Now we compute separately the two terms at the right 
hand side of this equation. We first get 

    
  

11

IMI IMI IMI IMI IMI IMI

1 12
IMI IMI IMI IMI IMI IMI IMI .

TT

T T T



 


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Z Z W I W I

I W W I I W I 
 

Then, using that: 

 2 1 1 1
IMI 11 12 22 11 12 22

k k kDiag p p p p p p W ,(10) 

we obtain 

 
1

1

IMI IMI 11 12 22

n n n
T k k

k k k

Diag p p pk


    
 
  Z Z , 

hence: 

  1

IMI IMI 11 12 221 1 1
n n n

T k k

k k k

Diag p p p
  k   

 
  Z Z .(11) 

Next we expand the second term as IMI IMI  = 
. From this, using (10) 

again, we obtain: 

TZ P
   2

IMI IMI IMI IMI IMI
mT T TI W W P I W P m

k k


11

IMI IMI 12

22

n
k k

k

n
T

k

n
k k

k

p P

p P

p P

 
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 
 

 
 
 
 
 







Z P .            (12) 

Finally, from (9, 11, 12) we get the genotypic values 
as the vector   
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11 11 12 12 22 22

Tn n n n n n
k k k k k k k k k

k k k k k k

G p P p p P p p P p
   
 
      , 

 
whose scalars are the means of the observed phenotypes 
of each genotype, weighted by the certainty of the as- 
signments between the phenotypes and the genotypes, 
QED. 

5. NUMERICAL EXAMPLE 

Here, we illustrate the use and the advantages of IMI 
through a very simple example. First, we show how 
missing genotype information distorts the estimates of 
genetic effects when using the Z-matrix in expression (5) 
and then we show that these problems fade away when 
using IMI. The genotype data in this example is a small 
sample population of seven individuals genotyped for 
one locus with two alleles, A1 and A2. There is income- 
plete information for individuals 1, 2 and 3—individual 1 
could be either A1A1 or A1A2 with probabilities 3/4 and 
1/4, individual 2 could either be A1A2 or A2A2, with prob- 
abilities 3/4 and 1/4, and individual 3 could be A1A2 or 
A2A2, with equal probabilities. The genotype is known 
for individuals 4 to 7, which have genotypes A1A1, A1A2, 
A1A2 and A2A2, respectively. Thus, the HKR Z-matrix (5) 
for this case is: 

 OPEN ACCESS 

HKR

3 1
0

4 4
3 1

0
4 4
1 1

0
2 2

1 0 0

0 1 0

0 1 0

0 0 1

 
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 
 
 
 
 
 
 
 
 
 
 
 

Z 




.           (13) 

Note that the first three rows contain multiple non- 
zero elements, reflecting the missing genotype informa- 
tion of individuals 1 to 3. The column averages of matrix 
(13) are 1/4, 1/2 and 1/4—this population does therefore 
have the properties of an ideal F2 population, whose ge- 
netic-effect design matrix, which should give orthogonal 
estimates of the genetic effects, is given in expression (6). 
The HKR X-matrix, XHKR, can then be computed using 
expressions (2, 6, 13). If our case was not an ideal F2 
population, a different matrix than (6) would be used to 
account for its genotype frequencies [3]. 

The phenotype data is given in the following vector of 
phenotype observations: 

5,8,8, 4,6,6,9
TP .          (14) 

We now have all required components to use expres- 

sion (1) for performing a regression-based estimation of 
genetic effects. We have actually used three different 
variants of matrix (6). The first one is the complete ma- 
trix (6), corresponding to the full model including both 
additive and dominant effects as deviations from the 
population mean, Gij = µ + αi + αj + δij. Secondly, we 
have considered a purely-additive reduced model as- 
suming no dominance interaction, Gij = µ + αi + αj, by 
setting the last column of matrix (6) to zeros. Lastly, we 
have considered a purely-dominance reduced model where 
the additive effects are assumed to be zero, Gij = µ + δij, 
by setting the second column of (6) to zeros. These two 
reduced models represent two complementary compo-
nents of the full model given by (6). 

By implementing these models to perform HKR using 
the data above we have obtained two main noteworthy 
results (left-hand side of Table 1). First, the genotype 
value estimated using HKR for the genotype “22”, G22 = 
9.30, lies outside the range of the phenotype observations 
in vector P (14) (see Figure 1). This result does not de- 
pend upon which genetic-effect design matrix—i.e. the 
S-matrices of the full or of the reduced models—we are 
implementing in regression (1). Its cause is instead that 
the incidence matrix—i.e. the Z-matrix in (2)—connects 
the observations (14) and the genotype values in a non- 
optimal way. 

Second, using expression (3) we can demonstrate that 
these inconsistencies in the genotypic values are distort- 
ing the estimates of genetic effects. Indeed, although we 
have chosen a model of genetic effects (6) in accordance 
with our genotype data for providing orthogonal esti- 
mates of genetic effects, Table 1 shows that in practice 
the resulting estimates are not orthogonal. For instance, 
the estimate of the additive effect of the purely-additive 
model is different from the estimate of the additive effect 
in the full model when using the ZHKR matrix (13). This 
distortion of the genetic effects becomes stronger for the 
purely-dominance model, where the dominance estimate 
is of opposite sign to the estimate obtained using the full 
model. More to the point, the variances associated with 
the estimates behave in the same way—the explained 
variance ( 2

expl ) of the full model is not the sum of the 
explained variances of the two complementary reduced 
models ( 2

expl ), which would be the case if the esti- 
mates were orthogonal. 

This lack of orthogonality of the estimates can also be 
tested beforehand, by computing the matrix-product of 
the X-matrix and its transpose, which is diagonal if and 
only if the X-matrix leads to an orthogonal estimation of 
e etic effects (for details see [3]). That product is:  g n 
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Figrue 1. Comparative graphical interpretation of HKR and IMI. Regression of the phenotypes on the number 
of “2” alleles for the individual observations of our numerical example (see (8) and related text) using expres-
sion (3) with the incidence matrices of HKR (7) and IMI (12). The circles represent phenotype observations of 
individuals 1 to 7. The observations of individuals with missing information split into several circles whose 
sizes reflect their genotype probabilities. Note that HKR leads to estimates that can lay outside the interval of 
observations, [4,9]. These inconsistencies do not apply to the IMI estimates, which are the weighted means of 
the observations. 

 
Table 1. Analyses of the numerical example with HKR and IMI. 

 Regression approach (Z-matrix) 

 HKR IMI 

 G11 G12 G22 G11 G12 G22 

 4.19 6.40 9.30 4.43 6.64 8.57 

 Model of genetic effects (S-matrix) 

 Full F2 model 
Reduced  
additive 

F2 models  
dominance 

Full F2 model
Reduced  
additive 

F2 models  
dominance 

µ 6.57 6.57 6.57 6.57 6.57 6.57 

α 2.55 2.52 - 2.07 2.07 - 

δ −0.34 - 0.22 0.14 - 0.14 

2

expl  2.6305 2.6118 0.0079 2.1505 2.1454 0.0051 

2

expl   2.6197   2.1505  

Estimates of the genotypic values, Gij, and the vector of genetic effects, E = (µ, α, δ)T, for the numerical example (see text) using 
HKR (left hand side of the table) and IMI (right hand side of the table) with three variants of the F2 model of genetic effects (the full 
model, the purely-additive reduced model and the purely-dominance reduced model). The explained variances of the regressions, 

2

expl , are also provided together with the sum of the explained variances of the two complementary reduced models. 

 

HKR HKR

7 0 0

0 2.875 0.25

0 0.25 1.125

T

 
   
  

X X ,       (15) 

which is not diagonal. This fact is in agreement with the 
observations of Álvarez-Castro and Carlborg [3], who 
have shown that obtaining orthogonal estimates of ge- 
netic effects relies on incidence matrices fulfilling the 
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condition (7), as mentioned above. 
Hereafter, we show that IMI provides genotypic val- 

ues as weighted means of the observations and orthogo- 
nal estimates of genetic effects when using a genetic- 
effect design matrix that is orthogonal for the population 
under study. The incidence matrix of IMI (8) for this 
example is: 

IMI

3
0 0

2
1

0 0
2

0 0 0

0 0 0

3
0 0

2
1

0 0
2

0 0 0

2
0 0

2

2
0 0

2
1 0 0

0 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 1
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 
 
 
 
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 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 


 
 
 
 
  
 

Z


            (16) 

Because this matrix has one only non-zero value per 
row, it fulfils (7) and it therefore enables us to perform 
orthogonal estimates of genetic effects. We can double- 
check this by computing XIMI, through (2, 6, 16), analo- 
gously to how we obtained XHKR (15) above: 

IMI IMI

7 0 0

0 3.5 0

0 0 1.75

T

 
   
 
 

X X . 

This is a diagonal matrix, which implies that the esti- 
mates obtained when implementing XIMI in regression (1) 
are orthogonal. Indeed, all the estimates obtained using 
IMI for the data of the numerical example above (right 

hand side of Table 1) remain unaltered when reducing 
the full model to both the purely-additive and the purely-  
dominance models. Note also that the explained variances 
of these two complementary reduced models sum up to 
the explained variance of the full model. The inconsis- 
tencies we noted above regarding the genotypic values 
obtained using ZHKR (13) have also vanished when using 
ZIMI (16) instead. In particular, each genotypic value as- 
sociated to IMI is the weighted (by the genotype prob- 
abilities) mean of the phenotypes of all individuals pos- 
sibly having that genotype (see Figure 1), as proved 
analytically above (9-12). This is in accordance with the 
case of no missing information. Altogether, we have veri- 
fied that IMI enables us to obtain estimates of genetic 
effects that are coherent with whichever model of genetic 
effects we would like to implement—in our example, the 
F2 model (6) orthogonally fitting the data—despite miss- 
ing genotype information.  

6. DISCUSSION 

The IMI method uses an imputation-regression approach 
for computing estimates of genetic effects of e.g. loci 
detected in a QTL mapping experiment. We have shown 
that a key difference between IMI and HKR is that the 
latter implements the genotype probabilities into an in- 
cidence matrix (5) with multiple non-zero values per row. 
IMI uses the Haley-Knott genotype probabilities [9,20] 
in a different way, better handling uncertainty and con- 
sequently leading to estimates of genetic effects that are 
coherent with the model (i.e. the S-matrix) implemented 
to obtain them. 

Throughout this communication we have presented 
and elaborated on the IMI regression method and com- 
pared some properties of this method with the HKR, 
which is a standard, landmark method used for estima- 
tion of genetic effects in QTL mapping experiments. 
Other regression methods have been developed to obtain 
estimates of genetic effects. For instance, the estimating 
equation (EE) method [21] has been developed to reduce 
a bias found to occur in the residual variances provided 
by HKR [22], with the drawback of higher computational 
requirements. Similar to HKR, the EE method (or any 
other method to the best of our knowledge) does not pro- 
vide estimates of genetic effects that are coherent with 
the genetic model used, in particular with respect to pro- 
viding orthogonal estimates when using orthogonal 
models of genetic effects. It is noteworthy that IMI pro- 
vides estimates that are coherent with the choice of both 
the model of genetic effects and also with the weights 
assigned to the uncertain observed genotypes. In our 
demonstration, we have assumed these weights to simply 
be the genotype probabilities. Other weighting choices 
are also possible. Whatever the chosen weights, our 

Copyright © 2012 SciRes.                                                                       OPEN ACCESS 



C. Nettelblad et al. / Open Journal of Genetics 2 (2012) 31-38 37

demonstration would still hold—the estimated genotypic 
values are always the means of the observed genotypic 
values, weighted in the way given by the scalars in vec- 
tor WIMI. 

The main reason to be aware of the meaning of the 
raw estimates of genetic effects as they come from a 
QTL mapping experiment is not that we will necessarily 
be interested in drawing specific conclusions directly 
from them. Models of genetic effects exist that are asso- 
ciated to different meanings of evolutionary interest, 
from effects of allele substitutions in particular genetic 
backgrounds to average effects of substitutions at the 
population level where polymorphism exist at multiple 
loci (see e.g. [23]). Conveniently, it is feasible to trans- 
late the genetic effects obtained using one model to those 
of another model when the original underlying parame- 
terization (S-matrix) is known [3,24]. It is therefore not 
necessary to implement a QTL mapping tool with the 
particular S-matrix that will provide the set of estimates 
that is needed to address a particular problem (in fact, 
several S-matrices and sets of estimates will be involved 
when the same data is to be used for multiple purposes). 
What is needed instead is an estimation method that 
guarantees that the initial set of estimates of effects ob- 
tained in a QTL mapping experiment fits in a coherent 
manner to a parameterization (whichever one), from 
which it is then possible to obtain the genetic effect es- 
timates needed for addressing any particular question. 
We have shown that IMI guarantees such coherent esti- 
mates and is therefore the most appropriate method to 
use for obtaining estimates of detected QTL. These esti- 
mates should then be reported instead of the raw esti- 
mates coming from whatever regression method was 
used to map the QTL. By reporting IMI estimates of 
QTL together with information on the model of genetic 
effects used to obtain them, researchers of original com- 
munications would provide valuable information to other 
scientists that wish to e.g. compare results from different 
studies.  

Moreover, IMI is a convenient method to be imple- 
mented in a QTL mapping tool. Models of genetic ef- 
fects exist that are orthogonal for populations other than 
the F2 that we used in our example [3,14,16]. Since IMI 
can be used to provide orthogonal estimates of genetic 
effects, it may highly facilitate model selection strate- 
gies—i.e. finding the statistically optimal genetic archi- 
tecture fitting the data. The IM [8] and the HKR [9] are 
known to bias upwards the odds of QTL at low-informa- 
tion-content regions (e.g. generating concave arches of 
the LOD-score functions inside marker intervals). This 
can be addressed with IMI, which provides a better ma- 
nagement of uncertainty leading to the computation of 
more appropriate residual variances. In that respect, it 
makes sense to further refine the vector of weights of 

IMI so that it accounts for the particular information 
content at each individual position tested. Once a choice 
for these weights is made, a model of genetic effects fit- 
ting the frequencies (pij) such that ZTZ = nDiag(pij) shall 
be used [3]. A major motivation for tuning the imple- 
mentation of IMI for QTL mapping is that orthogonal 
estimation of parameters is computationally very effi- 
cient as compared to traditional linear regression meth- 
ods (Harling, Nettelblad and Holmgren, in preparation). 
However, a detailed implementation of IMI for mapping 
QTL is out of the scope of this communication. 

Lastly, we are aware that in the light of the latest and 
ongoing progress in experimental techniques—in par- 
ticular the advent of increasingly dense marker maps 
based on single-nucleotide polymorphisms (SNPs)—it 
could be perceived that the concept of IM is becoming 
obsolete. We concur that this could be the case for some 
types of pedigrees, for which highly informative local 
marker windows (or single markers) can enable conclu- 
sive allele-origin determination. However, if the founder 
individuals share a relatively recent common ancestor 
(e.g. due to artificial breeding or population bottlenecks), 
SNP maps intended for the species at large might fail to 
accurately identify polymorphic regions. As an example, 
a stretch of 10 s of cM in length can lack the needed data 
to make a conclusive discrimination of alleles since it is 
possible that the genetic polymorphisms underlying the 
phenotypic variation are more recent than the SNPs used 
for mapping. It is well-known for instance that short 
tandem repeats frequently display a mutation rate that is 
multiple orders of magnitude higher than that of SNPs 
[25], and several quantitative traits have been linked di- 
rectly to repeat-count variability. These are examples in 
which an interval mapping approach—where the allele 
origin is assessed based on a model of recombination and 
the closest linked markers with discriminating power— 
keeps on performing better than simpler window-based 
trait association methods.  
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