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ABSTRACT 

Successful blind image deconvolution algorithms require the exact estimation of the Point Spread Function size, PSF. In 
the absence of any priori information about the imagery system and the true image, this estimation is normally done by 
trial and error experimentation, until an acceptable restored image quality is obtained. This paper, presents an exact es-
timation of the PSF size, which yields the optimum restored image quality for both noisy and noiseless images. It is 
based on evaluating the detail energy of the wave packet decomposition of the blurred image. The minimum detail en-
ergies occur at the optimum PSF size. Having accurately estimated the PSF, the paper also proposes a fast double up-
dating algorithm for improving the quality of the restored image. This is achieved by the least squares minimization of a 
system of linear equations that minimizes some error functions derived from the blurred image. Moreover, a technique 
is also proposed to improve the sharpness of the deconvolved images, by constrained maximization of some of the de-
tail wavelet packet energies. Simulation results of several examples have verified that the proposed technique manages 
to yield a sharper image with higher PSNR than classical approaches. 
 
Keywords: Blind Image Deconvolution; Image Enhancement 

1. Introduction 

The goal of blind deconvolution is to recover two 
convolved signals f and h from their convolved (and 
normally noisy), version g. Neither f nor h is known. In 
image processing, f represents the true image, whereas h 
represents the Point Spread Function PSF, which is 
responsible for blurring f. Even if we have a priori 
information about the PSF, recovering the original image 
by inverse filtering is usually counterproductive, as it 
involves noise amplification, [1,2]. At this point it is 
worth mentioning that, not all blurring causes can be pre- 
cisely determined. In general, the PSF can be described 
by the 2D Gaussian as in atmospheric turbulence or by 
circular PSF as in defocusing effects [3]. However, Cen- 
tral limit theorem implies that receiving blurred version 
of the image is closer to blurring the original image by a 
Gaussian distribution PSF. Note that the Gaussian PSF is 
one of the most difficult cases to deal with in blind de- 
convolution, as it can be factored into two Gaussian PSF. 
In the noiseless case **g h f . Solution starts by 
choosing an initial guess of f, (normally taken to be the 
blurred image itself), then obtain h as the least squares 
solution of **g h f . Iteration is reversed and we 
seek to estimate f using the estimated h. However, as the 
size of h is much smaller than f, this approach is 
computationally prohibitive. Many efficient techniques 

have been proposed to solve this problem, [4-9]. In [4], 
an Iterative Blind Deconvolution technique IBD has been 
proposed by alternate updating the 2-D FFT of f and h, 
until the relation     , ,G F H ,1 2 1 2 1 2      , is 
almost satisfied. In its initial versions, it suffered from 
poor convergence, yet in latter versions [5], its robust- 
ness to noise and convergence properties are highly im- 
proved. An alternate double iteration algorithm that has 
good anti-noise capability has also been described in [6, 
7]. It is known as the Richards-Lucy algorithm, and is 
characterized with robustness to either Poisson or Gau- 
ssian noise, [8,9]. In [5-10], a thorough treatment of di- 
fferent blind deconvolution techniques can be found. All 
these techniques require an exact estimation of the blu- 
rring PSF size. In view of the absence of any priori 
information about the PSF size, the application of the 
IBD, Richards-Lucy or any other blind deconvolution 
algorithms will fail to yield good quality restored images. 
This paper, addresses this problem. It shows how the 
optimum blurring size, can be accurately estimated for 
both noisy and noiseless images. Then, using this esti- 
mated PSF size the performance of IBD, RL or any other 
blind deconvolution algorithm is further improved. This 
improvement is achieved by iterating between updating 
the restored image  ˆ ,f m n  and the PSF  ˆ ,h m n  that 
minimizes some arbitrary largest absolute error devia-  
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tions of the error  where     ˆ, ,e m n g m n g m n  ,
ˆ ˆĝ h f  . Further, the paper also describes a technique 

for improving the sharpness of the deconvolved image, 
through maximizing some of the wavelet packet detail 
energies, while minimizing the residual reconstruction 
error energy. Simulation results of several images blurred 
by Gaussian or circular PSF, have verified that the 
proposed techniques substantially improve the quality of 
the restored images. 

2. The Fast Iterative Blind Deconvolution 
Algorithm 

2.1. Mathematical Preliminaries 

If the original image f of size M N  is blurred by an 
unknown transfer function h of size J K , then the 
blurred image g is computed as 

      
1 1

0 0

,, ,,
J K

k j

g h k j f m k nm n m nj w
 

 

      (1) 

w(m,n) is the associated zero—mean additive noise. For 
simplicity, let M = N, pJ K N  . Using circular con-
volution properties, overlap is avoided if each row vec-
tors of f, g and w is padded by zeros to make its length 
equals M0, where M0 = M + Np – 1=N0. So, if f, g and w 
represent  M0N0 × 1 column vectors formed by stacking 
the rows of the extended matrices, Equation (1) can be 
expressed as 

g Hf w                 (2) 

H is the block circulant M0N0 × M0N0 matrix, defined 
by 
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(3b) 
Equation (2), suggests that, f can be recovered as 

  
1t tf H H H g w


 



          (4) 

This equation indicates that even in case of prior 
knowledge of h and w, the inverse of  tH H  apart 
from requiring huge amount of computation for or- 
dinary sized images, can result in an unbounded per- 

turbation in the solution f. This problem is solved 
by taking the 2-D FFT of both h and f, as is ex- 
plained in the next section. 

2.2. The Constrained Lest Squares Error 
Algorithm 

The constrained least squared error algorithm [1,2], uses 
the 2-D FFT techniques, to obtain the restored image. It 
aims to obtaining a restored image ˆ , f m n that is the 
solution of the following constrained optimization prob- 
lem: Find the optimum  ˆ ,f m n ,  that mini- 
mize the objective function J, 

 ˆ ,h m n

Minimize 

     
2

1 2 1 2 1 2
ˆ, ,  π , πJ Q F for all          

Subject to 

     
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Using the Lagrange multiplier technique, this problem 
can be formulated as 

Minimize 

   

      
2

1 2 1 2

2
2
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G F
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

  
  (6) 

The solution to this constrained minimization problem, 
can be shown to be 

     
   

*
1 2 1 2

1 2 22
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Now, the function  1 2,Q  
F̂

 is chosen to boost the 
high frequency energies of  1 2,  

 ,

. As all natural 
images have pre-dominant low frequency content, mini- 
mizing J means that the true image f m n  is obtained, 
or at least nearly obtained. Q can be chosen in many dif- 
ferent ways. In [1], two formulas were given to  ,q m n  
to approximate Laplacian function. In this paper, a sim- 
pler of  1 2,Q    that satisfies the high frequency em- 
phasis requirements, is proposed. It is chosen as  

 
 1 2

1 2

1
,

ˆ ,
Q

F
 

 
 . Using this choice, leads to the 

following iterative restoration algorithm 

   

   
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This is precisely the update algorithm cited without 
proof in [4]. There, it is proposed to apply this update 
formula to estimate  1 2

ˆ ,H   . This results in the 
so-called Iterative Blind Deconvolution algorithm, IBD. 
It is an improved version of the original Iterative De-
convolution described [3], and overcome many of its 
shortcomings. This algorithm is implemented using the 
MatLab function deconvblind. 

Now, the success of the IBD algorithm, as well as 
many other iterative deconvolution algorithms in estima- 
ting the original images depends on the precise estima- 
tion of the PSF order. The next section shows how this 
order is precisely estimated, in view of no priori informa- 
tion about the PSF order. 

2.3. PSF Size Estimation 

All iterative blind deconvolution algorithms require 
an estimate of the PSF size. To our knowledge, this 
is done on trial and error basis until good quality re- 
stored image is obtained. An analytical method is 
now given to estimate the optimum PSF size.  

To analyze this problem, let the estimated PSF 
and image, be 

     
     

ˆ , , ,

ˆ , ,

h m n h m n h m n ,

,f m n f m n f m n





 

 
 

where  , f m n  and  are the original image 
and the true PSF filter. Note that in all blind decon- 
volution algorithms,  controls 

 ,h m n

 ,h m



n  ,f m n


. 
So, the blurred received image  ,g m n , is given 
by 

     
        
     

ˆ ˆ, , ** ,

, , ** ,

, ** , ,

g m n h m n f m n

h m n h m n f m n f m n

h m n f m n e m n





  

 

,   (9) 

Clearly, due to the uncertainty of    , , ,h m n e m n  
can be considered as additive noise. It mainly af- 
fects the high frequency energy bands of the image. 
As the perturbation  gets smaller, their 
energy contribution to e(m,n) becomes smaller. This 
suggests to decompose e(m,n) using n-level wavelet 
packet decomposition and compute the detail energy 
in the last (high) wavelet packet WPn. 

 ,h m n 

If the blurred image is contaminated with zero 
mean AWGN, then the blurred noisy image has to be 
de-noised prior to PSF order estimation. The thres- 
hold level is computed as, [11] 

2 logeT  N               (10) 

2  is the variance of the WPn. It is determined through 
estimating its pdf distribution as described in [12]. N is 
its length when converted to a column vector. The fol- 

lowing example, illustrates PSF estimation in both the 
noiseless and noisy cases, for Gaussian and circular de- 
focusing blurring filters 

Ex. 1:  
The proposed PSF order estimation method is verified 

by the following simulations. The test images used, are 
blurred using 8 × 8 Gaussian filter with 2 10  , and 
circular averaging filter (pillbox), with radius r = 3. For 
an arbitrary PSF order, the program estimates the de-
blurred image, using the Matlab function deconvblind, or 
deconvlucy. The parameters of these algorithms are: 
Number of cycles = 40, Threshold 0.005  , The error 
signal e(m,n) is decomposed using 2-level “sym4” wave- 
let decomposition. Figure 1 shows the behavior of the 
detail energy of the HH sub-band with different PSF or- 
der, for these blurred images. This precise PSF estima- 
tion subsequently leads to a significant improvement 
restored image quality, as will be shown in the following 
section. 

In the noisy case, the blurred image is contaminated 
with zero mean AWGN of . The blurred noisy 
image variances are [0.0557 0.0421 0.0265], respectively. 
In order to de-noise this noisy image, it is decomposed 
with 2-level “sym4” wavelet decomposition. The prob- 
ability distribution function pdf, of the last HH wavelet 
packet is computed using the Bspline pdf estimation 
technique proposed in [12], using 3-level cubic Bspline 
wavelet with 128 histogram bins. Figure 2, compares the 
pdf of the HH sub-band with Gaussian random variable 
distribution having the same mean and variance. It also 
shows detail energy performance for both Gaussian and 
circular blurring PSF. Again, this figure shows that apart 
from accurately estimating the pdf, it yields the optimum 
PSF size for further deblurring. 

2 0.01 

2.4. The Proposed Fast Iterative Blind 
Deconvolution Algorithm 

The proposed Fast Iterative Blind Deconvolution algo- 
rithm FIBD, is initialized by estimating the PSF order, as 
described above using rough estimations of the original 
image provided by available algorithms, (like decon- 
vblind, deconvlucy,···). Having estimated the blurring 
PSF order, the algorithm iterates between updating the 
restored image  ˆ ,f m n  and the PSF . The up- 
date is based on minimizing some arbitrary Mx largest 
absolute error deviations of 

ˆ ,h m n

**h fe g 
 

. The algo- 
rithm works in the spatial domain and is summarized as 
follows: 

1) For the  estimate, evaluate thk **k kg h f
 

. 
Evaluate H from  as in Equations (3a) and 3(b). 
Evaluate the error 

ĥ
ˆΔg g g  . Arrange Δg  in a 

vector form. 
2) Sort ˆΔg g g   in ascending order using the  
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(c) 

Figure 1. The detail energy of the HH sub-band for (a) Cameraman; (b) Lena; (c) Mandrill. 
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      (c) 

Figure 2. The pdf of the HH sub-band & detail energy performance for both Gaussian and circular blurring PSF. 
(a) Cameraman; (b) Lena; (c) Mandrill. 
 
Matlab command   , Δx xmV I sort g . Subsequen- 
tly, Sort ( )kH as 

   ,k
s xm xmH H I I . 

 2 , , **
m n

e m n e g h f   
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 or more simply as  

the least squares solution of Equation (4), when h 
and f are interchanged. 

3) For a prescribed number Mx, pick the Mx lar- 
gest deviations of xM . Denote by  

 Δ Δ 1: .
xM xm x g g I end M end    

Ex. 2:  
The blurred images of Ex. (1), are deconvolved 

through minimizing the largest Mx peak deviations 
of the absolute error of e(m,n). Tables 1(a) and (b) 
compare the PSNR improvements of the proposed 
FIBD technique, over the standard deconvlucy (RL) 
and deconvblind (IBD) algorithms for both 8 × 8 
Gaussian and Circular PSF with r = 3 filters. 
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4) Only update 
xMf  responsible for the Mx lar- 

gest deviations of Mx. The update increments toge- 
ther with the updated Δ

xMg , are given by 

12 ( )

22

Δ Δ
x

k
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H
g f
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x

kk k
x Mf f zeros M N M f   
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  

These tables indicate that the proposed FIBD algo- 
rithm yields a significant PSNR improvement, over the 
standard RL and IBD algorithms. This is due to the fact 
that the algorithm modifies pixels responsible for the 
severest image degradation, unlike other methods using 
2-D FFT that considers all parts of the image to have 
equal importance. Figures 3-5, show the rate of conver- 
gence as well as the deconvolved images, for the Gaus- 
sian blurring filter, whereas Figure 6 illustrated the blur- 
ring and deconvolved images in the circular blurring case. 
To end this section, it is worth pointing out that, if the 
PSF size is chosen different from the value estimated in 
the previous section, severe degradation of the quality of  

This concludes the image restoration cycle.  
Updating ( )kh


 proceeds similarly through minimi- 

zing the energy of g g   using the updated image 
  1ˆ ,k f m n . This update can easily be achieved 

either through minimizing the objective function 
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Table 1. (a) Gaussian PSF. 

FIBD 
 RL IBD 

Mx = 64 128 256 512 1024 

Cameraman 23.5290 23.6468 25.0114 25.1386 25.3356 25.5039 25.6131 

Lena 24.8168 25.1177 25.6029 25.7005 25.8791 25.8991 26.1026 

Mandril 22.0956 22.3211 23.1868 23.3061 23.3616 23.5978 23.5822 

 
Table 1. (b) Circular PSF (defocusing). 

FIBD 
 RL IBD 

Mx = 64 128 256 512 1024 

Cameraman 25.7076 25.6617 26.3235 26.4553 26.6151 26.6542 26.6373 

Lena 27.2209 27.2219 27.5423 27.7395 27.8868 28.0509 28.0413 

Mandril 24.0190 23.7927 24.3658 24.4249 24.5135 24.6128 24.6197 
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Figure 3. The rate of convergence as well as the deconvolved Cameraman images for Gaussian case. 
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Figure 4. The rate of convergence as well as the deconvolved Lena images for Gaussian case. 
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Figure 5. The rate of convergence as well as the deconvolved Mandril images for Gaussian case. 
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Figure 6. The blurring and deconvolved images. 
 
the deconvolved image occurs. 

3. Improving Sharpness of the Restoration 
Quality 

As blurring affects the energies of the high frequency 
bands of the image, it is clear that deblurring should 
boost these high frequency energies. To explain this idea, 
consider the Matlab Cameraman image that is blurred 
using a Gaussian PSF of size 8 × 8 and . Table 
2 compares the percentage sub-band energies of 1-level 
“Sym4” wavelet decomposition, of the original Camera- 
man image, with those obtained for blurred, RL, IBD and 
the proposed FIBD deconvolved images. The FIBD im- 
age is obtained using Mx = 64. This table indicates that 
natural images have a significant amount of energy con- 
centration in its LL sub-band. Moreover, blurring reduces 
the LH, HL and HH sub-bands. It also suggests that, the 
deblurred image quality can be improved through boost- 
ing the energies of the wavelet packets LH, HL, HH. This 
goal can be achieved by processing these sub-bands by a 
2D mask H0 that optimizes their energies while mini- 
mizing the residual energy of er

2 10 

J . In order to reduce the 
effects of noise amplifications that predominates the HH 
sub-band, only the coefficients of the LH and HL are 
modified. The steps of the optimization algorithm can be 
summarized as follows: 

1) Apply the FIBD algorithm to determine the opti- 
mum deconvolved image   ˆ ,k f m n , for the received 
blurred image g(m, n). 

2) Obtain the 1-level “Sym4” wavelet packet decompo- 
sition of f̂ . 

3) For an arbitrary 2-D matrix H0, normalize it to be a 
unity variance matrix, (in order to avoid collapsing to 

zero in subsequent minimization steps). Filter the packets 
LH and HL coefficients with H0. Then, reconstruct the 
image from its modified wavelet packet using the syn-
thesis bank to get y(m, n). Evaluate the residual error  

      
1 11 1

0 0

ˆ, , , ,
N N

er
r l

J m n g m n h r l y m r n l
 

 

      (12) 

4) Using any unconstrained minimization algori- 
thm, find the elements of H0 that optimizes the detail 
packet energies while minimizing the error energy. 

Tables 3(a) and (b) compare the PSNR improvements 
achieved with the classical IBD, FIBD as well as the 
Wave packet Optimized FIBD, using Mx = 64, 128, re-
spectively when applying these steps to the above blurred 
images. In order to speed up computations, the 2-D mask 
H0, is taken to be 4 × 4. 

Edge improvements are checked by evaluating the 
norm of the difference between the exact edge of the 
original image, and the restored image edge. Table 4 
compares the edge improvement of the optimized FIBD 
with the RL and IBD restorations for Gaussian blurring 
PSF. This table indicates that, coupled with the PSNR 
improvement, except for the Mandril image, the pro- 
posed FIBD and its optimized wavelet version are shar- 
per than RL and IBD counterparts. Thus, one can con- 
clude that FIBD and its optimized wavelet version pro- 
vide a superior deblurring image restoration technique. 
Figures 6(a)-(c), compare the RL, IBD, FIBD and the 
optimized FIBD for the 3 Matlab images, with the FIBD 
technique for Mx = 64. 

4. Conclusion 

This paper, describes how, in blind deconvolution when  
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Table 2. % Sub-band energy concentration. 

WP Original Blurred RL IBD FEIBD 

LL 99.2777 99.9890 99.7106 99.5414 99.6324 

LH 0.2204 0.0049 0.1230 0.1883 0.1403 

HL 0.4264 0.0061 0.1652 0.2680 0.2250 

HH 0.0755 0.0000 0.0012 0.0023 0.0023 

 
Table 3. (a) Wavelet packet PSNR improvement for Gaussian blurred images. 

FEIBD Opt. FEIBD 
Blurring Type IBD 

64 128 64 128 

Cameraman 23.6468 25.0114 25.1386 25.3257 25.3742 

Lena 25.1177 25.6029 25.7005 25.4704 25.5538 

Mandril 22,3211 23.1868 23.3061 23.3489 23.3914 

 
 

Table 3. (b) Wavelet packet PSNR improvement for circular blurred images. 

FEIBD Opt. FEIBD 
Blurring Type IBD 

64 128 64 128 

Cameraman 25.6617 26.3235 26.4553 26.3346 26.4336 

Lena 27.2219 27.5423 27.7395 27.0878 27.1839 

Mandril 23.7927 24.3658 24.4249 24.3802 24.4237 

 
Table 4. Edge error energy: Gaussian blurring. 

WP Decomposition 
Blurring Type RL IBD 

64 128 

Cameraman 53.6004 53.6656 51.9808 52.0000 

Lena 52.4309 50.4480 49.3457 49.3254 

Mandril 48.2804 48.4562 49.6588 49.7896 

 
there is no priori information about both the true image 
and/or the blurring PSF, the size of the blurring PSF, can 
be accurately estimated for both noiseless and noisy 
blurred images. The paper also describes how using this 
estimated PSF size; the IBD or RL deconvolved images 
can be significantly improved. The proposed algorithms 
characterized by its fast convergence as a result of solv- 
ing expressing pixels modifications as the solution of a 
set of linear equations. A novel method was also de- 
scribed to increase the sharpness of the deconvolved im- 
ages. It remains to extend this work to the noisy case. 
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