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ABSTRACT 

Constitutive equations for melts and concentrated solutions of linear polymers are derived as consequences of dynamics 
of a separate macromolecule. The model is investigated for viscometric flows. It was shown that the model gives a good 
description of non-linear effects of simple shear polymer flows: viscosity anomalies, first and second normal stresses, 
non-steady shear stresses. 
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1. Introduction 

Describing viscoelastic behavior of the polymer system, 
one should distinguish the case of highly concentrated (c 
> 10%) solutions and melts of long polymers—strongly 
entangled systems ( 10 eM M ), where M  is the length 
(in any units) of a macromolecule and eM  is the length 
of a part of macromolecule between the adjacent entan-
glements [1-3], and the case of melts of shorter polymers 
and half-dilute polymer solutions (c ~ 1% - 10%)— 
weakly entangled systems ( 10 eM M ) [4]. The conven-
ient characteristic of a system of entangled linear mac-
romolecules (solutions and melts of polymers) appears to 
be  2 2 2π 12eM Mc  , which, for strongly entangled 
systems, is inversely proportional to number of entan-
glements for one macromolecule— eM M . Here   is 
the polymer density. The quantity   can be easily with 
estimated the value e  of real component of dynamic G
modulus  G   on the typical plateau, according to the 
formula for weakly and strongly entangled systems, cor-
respondingly 

1 2 1,p pG G     . 

In this paper we consider the case of weakly entangled 
systems and formulate a rheological equation of state 
(RES) that establishes a relationship between the stress 
tensor, kinetic characteristics, and internal dynamic pa-
rameters. At present, a large number of such equations of 
various complexity is known for polymeric liquids, but, 

despite various approaches both phenomenological [5-7] 
and microstructural [1,2,8-11] ones, the problem how to 
include specific features of a polymer system into the 
form of constitutive equations has no complete solution. 
This is due to both complexity of these systems, which 
are formed by tangled macromolecules, and mathemati-
cal difficulties [11]. The information about the micro-
structure and micro dynamics of the material ought to be 
incorporated into the present theory of linear and nonlin-
ear relaxation phenomena in polymer systems. An ad-
vantage of the micro structural approach is a possibility 
of studying the relationship between the micro character-
istics of a polymer system (concentration and molecular 
weight of the polymer) and macroscopically observed 
quantities (viscosity, shear and normal stresses, etc.). In 
this connection using microstructural concepts it’s feasi-
ble to formulate a sequence of RES that takes into ac-
count new molecular effects in each stage. At [4,9,12] 
obtained and studied a simple rheological model which 
can be chosen as an initial approximation in formulating 
such a sequence of RES. In this work, RES [4] is ex-
tended to the case of allowance for the additional correc-
tions caused by intrinsic viscosity and the delayed inter-
action of a macromolecule with its environment. Realiza-
tion of this approach involves consequent solution of two 
problems: formulation of the equations of dynamics for a 
macromolecule and transition from the formulated equa-
tions to RES. The resulting equations can be recom-
mended as the first approximation in constructing a se-
quence of RES. Comparison of the approach with others, 
Graessley [1,3] and Doi-Edwards [8] approaches, one 

*This work was supported by the Russian Foundation for Basic Re-
search (Grant No. 09-01-00293). 

Copyright © 2012 SciRes.                                                                                 WJM 



G. PYSHNOGRAI  ET  AL. 20 

can find in [9,12]. 

2. Dynamics of a Macromolecule in Flow 

The mesoscopic approach to the description of the dy-
namics of polymer systems is based on the equations of 
the macromolecule dynamics which cannot be formu-
lated without additional assumptions, namely: 

1) A monomolecular approximation of the system. It 
means that, instead of the entire set of interacting mac-
romolecules in the volume we consider are non-inter-
acting separate macromolecule, moving in the effective 
medium formed by the solvent and the other macro-
molecules. 

2) The coarse-grained approximation of a macro-
molecule. It means that, irrespective of the chemical na-
ture of the polymer, the slow motions of the chosen 
macromolecule can be described as motions of N centers 
of friction (beads) connected by elastic entropy forces 
(springs) in a chain. These assumptions lead to the fol-
lowing equations of the macromolecules dynamics [9] in 
normal modes: 

 i j
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,        (1) 

where i
  and i

  are the i-th components of the 
normal coordinates and velocity,  is the mass of a m
bead. Here   is the friction coefficient of a bead in a 
monomer fluid, ij  is the velocity-gradient tensor, 
which is conveniently expressed below as the sum of 
symmetric ij  and anti-symmetric ij  parts, and the 
bracketed expression is the difference between the parti-
cle velocity at a given point of space and the velocity of 
undisturbed flow at this point. The force i

  describes 
the interaction of the polymer chain with the environ-
ment via the solvent, while the force iT  is an intrinsic 
resistance force, i

  is a random force, and 2T   is 
the coefficient of elasticity. 

Expression (1) is the basis for the description of the 
dynamics for different polymer systems [12]. The defini-
tion of the extra forces i

  and iT  allows one to 
specify the polymer system. Different models of these 
forces correspond to different physical cases. For dilute 
polymer solutions, in which polymer macromolecules 
can be considered non-interacting, the extra forces are 
considered to be equal to zero [9]. In concentrated poly-
mer systems, the macromolecules cannot be considered 
as not interacting. So, one has to take into account the 
reaction of the environment and the strengthening of the 
friction coefficient. The first factor is due to the delayed 
character of interaction of the macromolecule with its 
environment, and the second is due to the fact that the 

chosen bead undergoes resistance not only from the 
monomer solvent, but also from other macromolecules. 
Furthermore, one should take into account that, in the 
flow with nonzero velocity gradients, a macromolecular 
coil changes its form, and the medium, formed by the 
coils becomes anisotropic. This mobility anisotropy of 
beads is called induced and is determined by the shape 
and orientation of macromolecular coils [4,9,12]. Ac-
cording to all these factors the equation for the force of 
hydrodynamic entrainment follows: 

 0

d

d i ij j ij j

ij j jn n

p
t

B

i
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Here   is the relaxation time of the environment, 
0
ij  is the dimensionless tensor friction coefficient of a 

bead,  is the strengthening measure of the friction B
coefficient  , and  is a parameter. The bracketed p
expression on the left side of (2) is a substantial deriva-
tive of the vector quantity i

  [9]. The presence of this 
derivative allows one to meet the principle of material 
objectivity in Equation (2) [6,9]. Numerical parameter 
p  entering into the definition of the substantial deriva-

tive can take different values. For  = 0, the substantial p
derivative becomes the Jaumann derivative which has a 
simpler form while for  = 1 and –1, it becomes the p
upper and lower convective derivatives, respectively. 
The specific value of  corresponding to one of the p
above-mentioned derivatives in (2) is determined below. 

If macromolecules form a tangled system besides the 
force of hydrodynamic entrainment, one should take into 
account the intrinsic viscous force iT , the meaning of 
which is elucidated by Pokrovskii et al. [12]. The spe-
cific requirement imposed on the force iT  is that this 
force is vanishing when a macromolecular coil is rotating 
as a unit. All this allows one to write the equation for this 
force in similar to (2) manner in the form 

 0

d

d i ij j ij j

ij j jn n

T T p T T
t

E

i
  

 
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    

     
 
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,       (3) 

where: 0
ij  is the dimensionless tensor friction coeffi-  

cient and  is the strengthening measure of the friction E
coefficient   for the intrinsic viscous force iT . Intrin-
sic viscous force iT  (since i

 ) has relaxation charac-
ter and depends on the anisotropic properties of the en-
vironment. 

We assume that the anisotropy of mobility in consid-
ered polymer system is characterized by the second-order 
symmetric tensor . Then, for coefficients ika 0

ij  and 
0
ij  we write [9] 
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Thus, (1-4) is the system of equations of dynamics of a 
macromolecule. The random force  i t  entering into 
(1) is the Gaussian random process with a zero average. 
Its correlation tensor satisfies the corresponding fluctua-
tion-dissipation relation [9,10]. 

3. Stress Tensor and Rheological Equation of 
State 

Equations (1)-(4) give a microscopic picture of a poly-
mer system flow based on discrete variables. Transition to 
the continuous case, i.e., to the description of polymer-sys- 
tem flows in terms of continuum mechanics, requires 
introduction of macroscopic variables—density  ,x t  
and momentum density  ,x t . These variables are 
introduced in the standard manner [9,11]: 

   
   
, ,

, .

x t m x r
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


          (5) 

Here r  and u  are vectors of position and velocity 
of the bead with number  , x  is the co-ordinate vec-
tor of the chosen point in space, and  is time. Sum is t
taken over all beads in a unit volume, and averaging is 
performed over the ensemble of all possible realizations  

of the random force  i t . 

Differentiating (5) due to time yields an equation of 
mass conservation, and transformation to generalized 
coordinates using (1) yields an equation for momentum 
density. In the latter case, we have an expression for the 
stress tensor of a polymer system in terms of statistical 
characteristics of the system (1-4) solutions: 


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,      (6) 

where 0  is pressure, n is the number of macromole-p
cules in a volume unit, T is the temperature in energy units,  

and 2 3ik i kx 
     and  3ik i ku T   T  

are internal thermodynamic parameters with equilibrium 
values  

1

3ik ikx  ,              (7) 0iku 

In the inertia-free case (m = 0), one can formulate (see 
Appendix) the relaxation equations for the dimensionless 
correlation moments ikx  and iku  in the following form  
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where: 
d

dik ik ij jk kj ij
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Dt t
x        is the Jaumann  

derivative of the tensor quantity ikx  and E B   is the  

 measure of intrinsic viscosity, 24T 
R       

is a set of the Rouse relaxation times. In Equations (8)-(9) 
symbols , , ,ik ik ik ikb c f d    are used. 
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Thermodynamic variables ikx  entering into (6) char-
acterize the inertial properties of a macromolecular coil 
and, hence, can be used to determine anisotropy tensor 

ika  in (4). Following [9], we write 

   26 3 πik ik ika x


   . 

Therefore it becomes possible to establish the physical 
meaning of the microanisotropy parameters entering into 
(4). These parameters take into account dimensions 
 ,   and shape  ,   of a macromolecular coil in 
the equations for macromolecule dynamics. 

The Equations (6), (8), and (9) define a nonlinear, ani-
sotropic, viscoelastic fluid. The behavior of system (6), 
(8), and (9) is determined by the six dimensionless pa-
rameters ( 2B    ,  ,  ,  , , and   ) and 
two dimensional parameters ( B   and ). Parameter nT
  characterizing the ratio of the relaxation time of the 
environment   to the maximum relaxation time B   
was estimated in [9], where it was shown that 1   
for sufficiently long polymer chains. As to parameter  , 
here two cases can be distinguished: 1   [13,14-16] 
and 1   [5], which are discussed below. As in [13], 
it is convenient to consider simpler forms of equations (8) 
and (9) by using the smallness of the parameters   and 
 . We consider in more detail the case 1  , which 
corresponds to the dynamics of polymer solutions at a 
concentration about of 1%. 

Considering only effects of the first order with respect 
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to   and  , we note that Equations (6) and (8) do not 
change, and Equation (9) takes the form 
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In the zero-th approximation for   and  , variable 
0iku   and Equations (6) and (8) take the form 
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The parameters of this system are B  ,  , and  . 
Note that when  = 1, system (12) is the system of N
equations for a dumbbell model 
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where 0 0nT   and 0  are the initial shear viscosity 
and the relaxation time, and jjI a . The system (13) 
under the assumption of isotropic relaxation (   = 0), is 
followed by the well-known structural phenomenological 
Vinogradov-Pokrovskii model [13,14-17]. 

The model (13) is simple and gives high accuracy in 
describing steady nonlinear effects, though it is only the 
zero-order approximation model, which does not permit 
one to predict all features of polymer flow. In case, one 
needs more details, one can consider the contributions of 
parameters   and   which take into account the re-
laxation character of the environment and the intrinsic 
viscosity in the equations for macromolecule dynamics. 

4. Linear Effects of the Rheological Model 

To obtain an expression for the dynamic shear modulus 
that corresponds to system (6), (8), and (9), we find a 
solution to this system in a linear approximation with 
respect to the velocity gradients. In this case, anisotropy 

tensor ik  is equal to zero, and the terms a ik  can be 
omitted. Then (8) and (9) are written as 
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where  2 1 RB       ;  2 2B
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The latter equations can be written as 
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Solving the first equation of (14) by the method of 
successive approximations with first-order approxima-
tion due to the velocity gradients, we obtain 
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Substitution of this expression into the second equa-
tion in (14) yields 
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 ~ exp i t12In the simple oscillating shear flow    
and the last two expressions together with (6) define the  
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Next, it is convenient to distinguish the real and imagi-  
nary parts in  G  :     G G iG      . 

If the value of the modulus on the plateau is deter-
mined by (15), then 
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   

  
  

lim

2

2 1

p

R R

R

G G

p B B
nT

B





 

 

    

   


 

 


 


.       (16) 

This series converges only for p = 0. Thus, the Jau-
mann derivative in the equations of dynamics of a mac-
romolecule (2) and (3) corresponds to cases a) and b). 
The definitions of the relaxation times  , R

 , and   
are given through parameters   and  , estimates of 
which are given in [4,9], where it was shown that, for 
sufficiently long chains, one can always assume 1  . 
As to intrinsic viscosity parameter  , here two alterna-
tive cases 1   and 1   are distinguished. 

The curves of G  *  and  G *  versus the di- 

mensionless frequency B    
 calculated by (18) 

are given in Figures 1-4, from which one can see that the 
values of  *G   and  *G   are mainly determined 
by parameter  , and the impact of parameter   (for 

1  ) is insignificant. The existence of characteristic 
plateau is determined by relaxation time  . In the case, 
when   = 0, that corresponds to dilute solutions, irre-
spective of the type of convective derivative, a plateau on 

G *  is absent. For 1  , which corresponds to the 
dynamics of melts and strongly concentrated solutions 
[4], from (16) we have  2 12 1πpG nT  . The calcu-
lation results show that, for 1  , the modulus on the 
plateau 1 2~pG  . 

Therefore, the non-dependence of pG  on the mo-
lecular weight of a polymer means 2M  . Using the 
estimate for  obtained in [11], from the last 2c M   1

relation one can obtain 
3 0

pG c M  . 

The value of the initial shear viscosity 0 , which can 
be expressed from (16) as 
 

 

Figure 1. The contribution of parameter   to the dimen-
sionless frequency dependence of real component of dy-

namic modulus   G  . 

 

Figure 2. The contribution of parameter   to the dimen-
sionless frequency dependence of imaginary component of 

dynamic modulus   G  . 

 

 

Figure 3. The contribution of parameter   (internal vis-
cosity) to the dimensionless frequency dependence of real 

component of dynamic modulus   G  . 

 

 

Figure 4. The contribution of parameter   (internal vis-
cosity) to the dimensionless frequency dependence of imag-

inary component of dynamic modulus   G  . 

 

  2

0
0

π
lim

6

G
nT B




 







  .       (17) 

To compare the calculation and experimental results, 
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we turn to the data of Menezes and Graessley [16,17], 
where  G   and  G   were measured for solutions 
of polybutadiene with different molecular weights at the 
same concentration of c = 0.0676 g/cm. The above for-
mulae allow us to find the following estimates of the 
parameters of the rheological model (6), (8), and (9) were 
obtained:   = 0.077; 0.025; 0.011 and 0.005, B   = 
0.21; 2.35; 16.27 and 147 sec, and  = 840.4; 480.2; 
321.5 and 206.7 Pa for molecular weights  

, respectively. 
In all cases, 

nT

3 105 5; 5.17 52 10 10 ; 8.1M  510 ; 3.4 
  = 0.025. The comparison of the results 

is given in Figures 5 and 6, from which one can see sat-
isfactory agreement between the theoretical and experi-
mental curves of  G   and  G   for   < 10 
sec–1. The values of   as a function of M  are given 
on Figure 7 showing good agreement with (17). 

Figure 7 presents parameter   dependence molecu-
lar weight corresponding 1 2

pG   . 

5. Non Linear Effects in the Simple Shear 
Flow 

The system of constitutive Equations (6), (8), and (9) 
should be checked for correspondence to polymer fluid  
 

 

Figure 5. Real component of dynamic modulus   G  for 

polybutadiene solutions of various molecular weights 
(points) [16,17], compared with the predictions of Equation 
(15) (solid lines). 
 

 

Figure 6. Imaginary component of dynamic modulus   G  

for polybutadiene solutions of various molecular weights 
(points) [16,17], compared with the predictions of Equation 
(15) (solid lines). 

 

Figure 7. Parameter  dependence on molecular weight. 

 
flows. Diverse flows leads to difficult mathematical 
problems and, naturally, the check of the RES should be 
start with the simplest cases. One type of flows that are 
often realized in viscometers of various design is simple 
shear. In this case, the velocity-gradient tensor contains 
only one nonzero component , which varies with 
time due to a well-known law. In steady flow, the gradi-
ent of velocity is constant, and rheological behavior of 
the polymer system is conveniently characterized by the 
following viscometric functions: shear viscosity 

 12 t

  and 
first 1  and second  normal stresses differences, 
which are given by 

N 2N

12 12 1 11 22 2 22 33, ,N N             (18) 

The dependence  12 t  is often given in the form  

   12 t E t   or   12 t E t    . Here   is the 

shear velocity and  E t  is the unit function of Heavis-

ide. In the first case, system (6), (8), and (9) describes the 
establishment of stresses from the state of rest, and the 
corresponding viscometric functions (18) are denoted by 

 , t   and  , t1N  . In the second case, this system 

describes stress relaxation after shear deformation, and 

functions are denoted by  , t   and  1 t,N   and 

are generally functions of the velocity gradient and time. 
The following relations are apparently valid 

    1 1lim , , lim , .
t t

t N N t     

 
        (19) 

Solving (8) for case of a simple shear flow with shear 
velocity 12  with third-order accuracy with respect to 

12 , for viscometric functions we obtain 

 

 

 

4
11 22

1 2

12

4
22 33

2 2

12

4 2
12

0 1
12

π

45

π

90

4π 2
1 .

105 5 9

nT

nT

B

 


  


      





 


  

2

       
  

，

，  
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Thus, the parameters  and    are responsible for 
the nonlinear properties of system (12). For simple shear, 
  appears even in the second order with respect to the 
velocity gradients, and  appears only in the third. 

from the condition of the best agreement between the 
theoretical curves and the experimental data. The value 
of  was not measured in [16,17]. 2

Let us consider nonlinear unsteady effects. The results 
of the calculation of the establishment of stresses for a  

N

At low shear velocities, the second difference of nor-
mal stresses  is given by the formula 2N  

 

2 12

15 1

22π
N    

 
N ,           (20) 

obtained in [6]. Thus the model describes a non-zero 
second normal stress difference. The calculations show 
that, for 1 

10
, formula (20) remains valid for  

. B   
To compare RES (6), (8), and (9) with experiments, 

we use the data of Menezes and Graessley [16,17], who 
studied shear flows of polybutadiene solutions with 
various molecular weights. It is convenient to use their 
results, because their data on linear viscoelastictity have 
already been compared with (6), (8), and (9) in Section 4. 

The results of the calculation for the viscometric func-
tions (18) and the corresponding experimental values are 
given in Figures 8, 9 and 10. In the calculations, we used 
the following induced anisotropy parameters:   = 0.1, 
  = 0.25,   =0, and   = 0.1. They were chosen  

Figure 8. Experimental (solid lines) and theoretical (points) 
plots of the steady shear viscosity coefficient and the first 
difference of normal stresses vs. the shear velocity for vari-
ous values of the molecular weight. 

 

 

Figure 9. The comparison of experimental (solid lines) and theoretical (dashed lines) dependences of an establishment of sta-
tionary values of the shear viscosity coefficient and the first difference of normal stresses at various shear velocities. 
 

 

Figure 10. The comparison of experimental (solid lines) and theoretical (dashed lines) dependences of relaxation of the shear 
viscosity coefficient and the first difference of normal stresses after shear deformation at various shear velocities. 
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specimen with are given in Figure 9, 
which shows that Equations (2), (4), and (5) describes 
(the non-monotonic attainment of 

53.5 10M  

 , t    and 
1 ,N t 

 , t  
 at high shear velocities. It is also found that 

 and at small t. t   2
1 ,N t 
 , t

t
The data for    and 1  ,N t  are given in 

Figure 10, which show that (18), (8) and (19) confirm 
the presence of two characteristic times for stress relaxa-
tion after intense shear deformation. The anisotropy pa-
rameter values are the same as in Figures 8 and 9. 

6. Conclusion 

Thus, the proposed microstructural approach to the de-
scription of the dynamics of polymer fluids does not 
contradict the available experimental data on the linear 
and non linear viscoelasticity of linear polymer solutions 
and melts. The obtained rheological equation of state is 
applicable for the description of steady and unsteady 
effects in both linear and nonlinear regions of strain rates 
and more complex flow regimes of linear polymer solu-
tions and melts. The model can serve as a basis for the 
description of nonlinear effects in polymeric systems. 
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Appendix: Derivation of Relaxation 
Equations 

We introduce relaxation equations for the dimensionless 
moments ikx  and iku . In the inertia-free case (m = 0), 
Equations (1)-(4) can be written as 

     (A1) 

Here 

 d
( )

4 di i ij ij j it p
T t

  



1   
 

     


 


 

is a new random process which is   correlated [9], 
  24R T        is a set of the Rouse relaxa-

tion times, and E B   is the measure of intrinsic 
viscosity. 

Using (8), we obtain a closed system of equations for 
the moments i k

    and i k
   : 

d

d i k i k k it
            ,       (A2) 
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 



 

The moment i k
    which is unknown in (A2), 

can be found from the fluctuation-dissipation theorem. 
Besides there is another method. The equilibrium values 
of the moments i k

    and i k
    were deter-

mined previously by Pokrovskii [6]: 

0

1

2i k ik
 



  


 , 
0

0i k
     (A3) 

These values should be obtained from (A2) at zero 
velocity gradients, and the moments i k

    and 

i k
    enter into (A2) in a linear manner. Hence, 

taking into account the desired moment i k
   , in (A2) 

we should replace the moments i k
    and i k

    

that do not have the velocity-gradient tensor as a cofactor 

by i k
   -

0i k
    and i k

   -
0i k

   , re-

spectively. 
Going over to the dimensionless moments ikx  in (9), 

we have 

1 1 1
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,   (A4) 
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is the Jaumann derivative of the tensor quantity ikx . 
Multiplying (A1) by i

  and averaging the resulting 
expression, we write the following equation for iku : 
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.  (A5) 

We find the moment i kT   entering into (A5) by 
multiplying (A1) by kT  and performing averaging. 
Using (A3), we finally obtain 
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  (A6) 

Since the expression for the stress tensor (6) is written 
in symmetric form, it is more convenient to use the vari-
able   2ik ik kiy u u     instead of iku . The equation for 
this variable can be obtained from (9) using the symme-
try of tensors ikc  and ikb  and assuming the permuta-
bility of tensors iku  with ik , ikc , and ikb . Assuming 
the existence functional relationship between ikx , iku  
and ik  and also by virtue of the fact that ikc  and ikb  
are expressed in terms of ikx , this assumption is not a 
significant constraint. Then, instead of (9), one obtains 
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    (A7) 
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