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ABSTRACT 

In this paper we study stochastic dominance rules of first and second order for univariate skew-normal random variables, 
the analysis being relevant in connection with the problem of portfolio choice in stock markets showing departure from 
the classical assumption of normality on returns. Besides that, our analysis is also relevant for markets where stocks 
returns are normally distributed: if standard derivatives are tradable and straddles, characterized by V-shaped pay-outs, 
are implementable at specific strike prices, then, portfolios including them, can exhibit exact skew-normality in their 
returns. We provide a set of simple conditions on the statistical parameters of the distributions which imply FSD and 
SSD and discuss some application of our criteria. 
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1. Introduction 

Ranking portfolio return distributions is one of the key 
procedures which can be used by quantitative analysts to 
provide support to the decisional processes of portfolio 
managers. In this paper we discuss ranking criteria for 
skew-normal distributions based on stochastic dominance 
rules of first and second order; we refer the reader to Levy 
([1]) for a detailed exposition of these concepts and many 
re- lated results. 

The economical motivation underpinning second order 
stochastic dominance (SSD) is particularly appealing: a 
representative investor with increasing and concave 
utility function will always prefer a portfolio 1  to a 
portfolio 2  if the the returns of 1  stochastically 
dominate at the second order the returns of 2 . SSD 
encapsulates therefore the concept of risk-aversion. 
Investments theorists and practitioners have developed 
along the times several methods to compare risky 
investments prospects or portfolios of assets and choose 
among the feasible ones in some optimal way: the review 
paper Brandt ([2]) and the book Sharpe et al. ([3]) 
discuss many of these methodologies. Probably the 
Markowitz’s mean-variance framework, Markowitz ([4]), 
remains the most famous approach, even if it is has well 
documented intrinsic limitations. There have been various 
attempts to overcome some of these limitations: by taking 

into account higher distributional moments as in Athayde 
et al. ([5]), by investigating bayesian versions of the 
Markowitz’s idea as in Pastor ([6]) and Polson ([7]), or 
by proposing alternative or more general risk measures 
as in Konno and Yamazaki ([8]), Markowitz et al. ([9]) 
and Feiri et al. ([10]). A very original and influential 
contribution to the asset allocation problem has been 
given by Black and Litterman in Black and Litterman 
([11]): there the authors nicely incorporate in their 
framework subjective beliefs or “views” on expected 
future returns of assets (see Meucci ([12]) for a survey 
and extensions). Skewnormally distributed returns, which 
we handle in this paper, have been already considered in 
portfolio theory by Adcock and Shutes ([13]) and Harvey 
et al. ([14]), furthermore Adcock ([15]) and Bacmann 
and Massi-Benedetti ([16]) contain interesting applications 
to hedge funds portfolios. However, to our best knowledge, 
the stochastic dominance approach for comparing skew- 
normally distributed returns is considered here for the first 
time. Notice that stochastic dominance rules aim to 
compare the whole distribution and not just a limited 
number of its moments. Finally we refer to Post ([17]) 
for applications of stochastic dominance rules to empirical 
data. This paper is organized as follows. In the next 
section we consider markets with skew-normal returns and 
portfolios on these markets; in Section 3 we show that 
even in markets with normal returns in the basic 
securities there can be portfolios exhibiting skew- 
normality in their returns if on the same market derivatives 
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based strategies with V-shaped payouts can be implemented. 
In Section 4 we prove our stochastic dominance criteria 
and illustrate some possible applications. 

2. Portfolios in Skew-Normal Markets 

Following Azzalini ([18]) let us recall that a random 
vector nX  is said to follow the skew-normal 
distribution with location parameter , nm  n n 

n
 

scale matrix   and shape parameter  if its 
density has the form:  

a

      1= 2 ; , t
nf    X x x m a x m      (1) 

where   is the diagonal matrix  

 11=diag , , nn  , 0ii   for ,  = 1, ,i n

 ; ,n y m

X SN

 



 is the density of a -random 
vector and  is the cumulative distribution function 
of a univariate standard normal. In this case we write 

n . In particular, in the univariate case, 

 ,nN m
( ) 

 , ,m a
X  has the skew-normal distribution of parameters 

,    and 11 > 0:=   if for all x   

  2
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x z z
P X x z
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where . In this case we write     1:= ;0,1y y 
 2

1 , ,X SN    . Clearly for = 0  we have  

 2
1 ,X N   . For 0   the distribution is skewed  

and indeed its mean, variance and skewness can be easily 
computed. They are respectively given by:  
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with    
1 22= := 1 1,1   


   . 
We refer the reader to Arellano and Azzalini ([19]) 

and Genton ([20]) for further properties and many 
interesting applications. 

Let us now consider a market with  basic risky assets 
whose future returns, at time , are described by a 
random vector  such that:  

n
> 0T

R

 , , .nSN R m a



            (2) 

An investor, the decision maker, is facing with the 
problem of allocating her initial capital on the market by 
choosing a portfolio 1 n , with i= , ,w ww = 1w  
and holding it unchanged up to time . The portfolio 
return is given by the random variable  with:  

T
R

2

= t
w w R

1 , , ,R SN   w w w w           (3) 

and parameters , , and  = tw w m 2 = t w w w
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         (4) 

where 1=H  w  and 1= 1    , see Azzalini 
([18]). Henceforth it is clear that in order to compare the 
returns of two different portfolios 1  and 2  on this 
market we must have at our disposal criteria which allow 
us to compare two univariate skew-normal random 
variables. In Section 4 we prove simple criteria based on 
stochastic dominance, Levy ([1]). Although we only 
make use of standard techniques, to our best knowledge 
these results have never been discussed in the classical 
literature on the subject. An investor can use them to 
discard a portfolio or a family of portfolios whose returns 
are stochastically dominated by the return of another 
portfolio. 

w w

3. Portfolios Including Derivative Securities  
in Normal Markets 

In this section we briefly show how the skew-normal 
return distributions can naturally appear even in markets 
with normal returns in the primary risky assets, if in the 
same markets are traded derivative securities which 
incorporate non-linear pay-offs. More specifically consider 
markets for which the shape parameters of the basic risky 
assets are all zero ( ), that is  = 0a

  , ,0 = ,n nSN NR m m        (5) 

and suppose that a straddle on one of the assets is 
available at a cost 0  and strike price . To simplify 
the exposition we fix  and denote by 

v K
= 2n A  and  

the market basic risky securities; therefore their returns 
over the interval  will follow the law:  

B

[0, ]T

  2,A BR R N  m ,            (6) 

with  = ,t
A B m  and 12 = A B  . Let  0 0,A BS S  

be their present spot prices, a straddle is written on the 
first asset and will pay to the holder AS KT  ,  
denoting the asset price at maturity date . Consider an 
investor who wishes to allocate percentages of her capital 
both on the straddle and on shares of asset , while 
investing the remaining part on a risk-free bond. It turns 
out that for a strike value 

A
TS

T

B

K  equal to 0 AS  1A   the 
portfolios returns will display skew-normality. This 
condition on  appears to be very stringent, however 
in practice we could have 0 A

K
1AK S    with returns 

distribution close to skew-normality. Notice that the case 

A = 0  corresponds to a straddle traded “at the money” 
(this particular case, and with = 0 , has been discussed 
by Blasi ([21])). Indeed denoting by  the percentage 
of initial capital invested on the straddle on asset 

a
A , by 

 the percentage of initial capital invested on asset , 
the return of the portfolio , at time 
b B

 b, = , ,a b a bw 1 a 
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where 0 0 0 , 
,a bw ,  is the bond 

yield and standardized assets returns have been denoted 
by 

AS v   ,R a b R r

,A BZ Z . We notice that a decomposition analogous to 
(7) continues to hold also for the multi-asset case ( ), 
that is for portfolios investing on a straddle on one of the 
assets, on shares of the remaining  risky assets and 
on the risky-free asset. The following result is a straight- 
forward generalization of a result by Henze ([22]) and 
can be proven by elementary methods:  

2n 

1n 

Proposition 3.1 Let ,X Y  be correlated 1  
random variables. Let 

(0,1)N
  denote the correlation 

coefficient, < 1 , and 1 3  and ,a a 2a 0  real 
numbers. Then the random variable  

1 2= 3Z a X a Y a   

is a mixture of two skew-normally distributed random 
variables. Specifically, denoting by Zg  the probability 
density of Z , it holds:  

     1 1
=

2 2Z X Xg t g t g
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In particular for = 0  we have:  
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For example it is readily seen that for = 0  the above 
result implies: 

        2
1, , , , ,R a b SN a b a b a b   ,
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with parameters:  

     , = 1 Ba b a r b r r              (9) 

 2 2 2 2
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We remark that given 0  and the assets volatilities 
,A B 

= 0a

 the shape parameter depends only on the ratio of 
the chosen allocation percentages and vanishes for 

. Shorting the straddle or the second asset produces 
portfolios with negative shape parameter in the returns 
distribution and hence with negative skewness. On the 
other hand positive skewness increases unboundedly as 
the percentage  approaches zero. Furthermore, for the 
above portfolios returns distributions scale and shape 
parameters satisfy the relation  

b

    2 2, = , 1 2 2
Ba b a b b    , which implies that scale 

changes with shape. In the case 0   the returns 
 ,R a b  will be described, accordingly to the previous 

proposition, by a mixture of two skew-normal distributions 
      2

1SN , , , , ,a b a b  a b , the identification of 
 ,a b  and  ,a b  being straightforward. We 

remark that while on one hand finite mixture of normal- 
distributions have been already considered in the fi- 
nancial literature as possible flexible tool for modelling 
assets returns in portfolio selection problems (Buckley 
et al. ([23])), on the other hand finite mixture of skew- 
normal distributions up to now have received attention 
mainly in applied statistical settings, see for instance 
Lee et al. ([24]), but not in connection with financial 
applications. 

An immediate consequence of the example discussed 
above is the fact that even in a normal market an investor 
can face the problem of comparing portfolios having 
returns which are skew-normally distributed. Once again 
the decision maker needs criteria which can help her 
allocation choice process by discarding portfolios which 
have dominated returns. In the next section we shall 
provide some simple, yet rigorous, stochastic dominance 
criteria. 

4. Stochastic Dominance Results 

We start recalling some basic definitions: given two real- 
valued random variables 1X  and 2X  we say that 1X  
stochastically dominates at first order 2X  (FSD), and we 
shortly write 1 2 ,FDX X  if  

  2P X x P X x1            (12) 

for all x ; we say that 1X  stochastically dominates at 
second order 2X  (SSD), and we shortly write  

,1 2SDX X  if  

   2 1d d
y y

P X x x P X x x
 

           (13) 

for all . More generally, a random variable 1y X  
stochastically dominates another random variable 2X  at 
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the order n-th if  

1 1
2 1

1 1
1 1

( )d d

( )d d

z zn
n

z zn
n

P X x x z z

P X x x z z


 


 



 

 

 

 

 

2

2



 

for all values . If the previous inequalities hold 
strictly we say that we have strict dominance. Obviously 
(n − 1)-th order dominance implies n-th order dominance. 

1nz 

The classical stochastic ordering results for univariate 
normal random variables 1 2

1 1,X N    and  
 2

2 2 ,X N 2   are the following (ref. Levy (2005)): 
1) If 1 2   and 1 2=   then 1 2FDX X ; 
2) If 1 2   and 1 2   then .1 2SDX X  
In particular we have strict dominance for 1 2=   

and 1 2<   (or 1 2>   and 1 2=  ). 
To provide a generalization of these results to the skew- 

normal case we need the following: 
Theorem 4.1: 

1) Let  2
1 1, ,X SN     and  

 2
2 2, ,X SN    . Suppose 1 2  , then  

1 2FDX X . 

2) Let  2
1 1, ,X SN   

 2
2 , ,N

 and  

2X S    . Suppose 1 2   then  

1 2FDX X . 
3) Let  2

1 1, ,X SN     and  2
2 2, ,X SN    . 

Suppose 1 2  0 and   , then 1 2SDX X . 

4) Let  1 1, ,X SN 2
1  

 2
2 2 2, ,N

 and  

X S    . Suppose 1 2   and  

2
1

1 1 2 2 2
2

1
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1


   





, then 1 2SDX X .  

Proof.  
1) Let  2, ,X SN     and denote by  , ,F x    

the corresponding distribution function. For each fixed 
 ,    and x  and arbitrary   we consider the func- 
tion . We have:     , ,:=h F x   
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where we have used      2 22π =t t       t   

and    =t t   t . Therefore  h   is decreasing and 
   , , , ,1 2

F x F    x   for all x . 
2) For each fixed  ,   and x  and arbitrary   

we consider the function    , ,:=k F   x  . We 
have:  
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by integrating by parts the first of the two integrals. 
Therefore  k   is decreasing and  

   , , , ,1 2
F x F   x     for all x . 

3) For each fixed  ,   and  and arbitrary y   
we consider the function . 
We have:  

   , ,:=
y

l F  
  dx x
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and by integrating by parts the last integral  
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which is non negative for all 0  . 
Henceforth  l   is increasing,  

   , , , ,1 2
d

y y
dF x x F x x      

   for all , and we get  y

the result. 

4) Set 1 1

2
1

:=
1

b
 





  then 1<b 2   and the  

second assumption on the parameters is equivalent to  

2 2
=i

i

b

b


 
 for i . For each fixed   and   y= 1,2
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and arbitrary > b  we consider the function  
     , ,:= d

y
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which is non negative. Henceforth  g   is increasing 
for all .  y

Remark: The argument by which the result (3) has 
been obtained fails for > 0 . In such a case  l   is 
given by the difference of two positive quantities. The  

difference is positive for =y   since 21 >  . On  

the contrary for values of  much larger than y   the 
difference is negative since the first quantity becomes 
much smaller than the second one. Therefore for positive 
  the sign of  l 

y
 is going to depend on the values 

of the variable .  
Corollary 4.2:  

1) Let  2
1 1, ,X SN 1    and  

 2
2 2 , ,X SN 2   . Suppose 1 2   and 1 2  ,  

then 1 2FDX X . 

2) Let  2
1 1 1, ,X SN 1    and  

 2
2 2 2, ,X SN 2   . Suppose 1 2  , 1 2   and  

10 2    , then 1 2SDX X
 2
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3) Let 1 1 1, ,X SN 1    and  

 2
2 2 2, ,X SN 2   . Suppose 1 2  , 1 2   and  

2
1

1 1 2 2 2
2

1
=

1


   





, then 1 2SDX X . 

Proof.  
1) Let  1, ,Y SN 2  

FD FD

, then by lemma 2.1 (i) and 
(2) we have: 1 2 .X Y X    

2) Let  2
1 1 2, ,Y SN     and  2

1 2 2, ,Z SN    ,  

then by lemma 2.1 (1), (2) and (3) we have:  

1 2 .SD SD SDX Y Z X     

3) Let  2 1 1, ,Y SN 2   , then by lemma 2.1 (2)  

and (4) we have: 1 2 .SD SDX Y X    
Remark: a) The condition appearing in Corollary 4.2 

(3) can be better understood by noticing that is equivalent 
to 1 1 2 2=    . Therefore the result can be restated in 
the following form: If 1 2  , 1 2   and  

   1 2w= skeskew X X  then 1 2SDX X . 

b) Let 
2 2

2
1 2 2

1
, ,

1
X SN

   
 


  


 

 and  

 2
2 , ,X SN     with 0 <   . Being 1     

we have 1 2   
1 SD

 and from Corollary 4.2 (3) it 
follows 2X X . Notice that  

    
2

2
1 2 2

= 1var X var X var X








 
   

  
2 .  

Henceforth, a larger positive skewness parameter in a 
financial position gives rise to an improvement over a 
previous position, from a stochastic dominance view- 
point, if it is accompanied by a variance reduction which 
leaves unchanged the skewness of the position. 

c) It is well known that 1 2SDX X  if and only if 
     u X u X 1 2  for all non decreasing and con- 

cave functions u . Therefore, by choosing   =u x x , 
conditions (2) of Corollary 4.2 imply    1 2X X  . 

d) Consider the two-dimensional risky market discussed 
in Section 2 and the parametrized family of portfolios 
which invest on the straddle on asset A , on shares of 
asset , putting all the remaining wealth on a riskfree 
bond. Assume 

B
= 0  and B > r . Consider two 

portfolios  b1 1 1= , ,a b 1 1  and  1 a w
 2a b 

22R R w

2 = ,

1
Rw

2 2,1a b2  and the corresponding returns 
 and . Suppose 1) , 2)  

w

1R  1 >a a20 >

1 2
1 2>

B

1b b r
r

a a
, and 3)   



 
2 2

2 20
1 2 2 12
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B

b b a a
 


  2 , then from (2) we get  

     
    

1 1 1 1

2 2 2

, = 1

> 1 = ,

B

B

a b a r b r r

a r b r r a a

 

 

    

     2

.  

In addition from (3) we obtain    2 2, < ,a b a b 1 1 . 
Finally from (1) we have 1 2  and therefore  >b b

   1 1 2 20 > , > ,a b a b 
1 2SDR R

 Then by Corollary 4.2 (2) we 
get . 
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