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ABSTRACT 

The time evolution of the value of a firm is commonly modeled by a linear, scalar stochastic differential equation (SDE) 
of the type  d d dt t t v tV rV t t V W 

 v t
d tr

v

is

 where the coefficient  in the drift term denotes the (exogenous) stochastic 

short term interest rate and  is the given volatility of the value process. In turn, the dynamics of the short term 

interest rate, , are modeled by a scalar SDE. It is shown that  exhibits a lognormal distribution when  is a 

normal/Gaussian process defined by a common variety of narrow sense linear SDEs. The results can be applied to dif- 
ferent financial situations where modeling value of the firm is critical. For example, with the context of the structural 
models, using this result one can readily compute the probability of default of a firm. 

tr

tV tr
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1. Introduction 

Modeling the value of the firm is one of the more impor- 
tant research topics in finance. The value of an unlevered 
firm is the value of expected future cash flows discounted 
at a rate appropriate for an all-equity firm whereas the 
value of a levered firm is commonly expressed as the 
value of an unlevered firm plus the gain from leverage 
due to a tax shield provided by the debt. Including busi- 
ness disruption costs, the optimal capital structure can 
then be characterized as a trade-off between the interest 
tax shield and disruption costs. Recent analysis by Hack- 
barth, Hennessy and Leland [1] extends this line of re- 
search by examining an optimal mixture of debt; that is, 
the optimal mixture of bank debt and market debt (bonds).  

Improved models for value of the firm are potentially 
useful in several contexts. For one example, consider 
models of credit spreads. Leland and Toft [2] develop an 
ambitious model of firm value that addresses optimal 
capital structure, optimal debt maturity, and the term 
structure of credit spreads. Recently, Qi [3] has modified 
the Leland and Toft [2] model by setting the lower bank- 
ruptcy boundary to be a fraction of bond face value. The 
importance of good structural models for credit spreads 
has been enhanced with the growth of credit derivatives 
and the credit crisis of 2007 and 2008. More specifically, 
notional amounts of credit derivatives grew by over 100% 

for every year from 2004 through 2006. At the end of 
2006, there was 34.5 trillion outstanding (see Saha-Bubna 
and Barrett [4]). The weakened credit quality of many 
financial firms in 2007 and 2008 caused high volatility in 
equity markets and, also, large changes in the value of 
credit spreads and credit default swaps. 

Our purpose is to derive distributions of t  whose evo- 
lution critically depends on the models for the short term 
interest rate process, t . Models for t  can be broadly 
classified as (a) general linear and (b) non linear models. 
General linear models are also popularly known as affine 
models. In this context, we refer to Duffie, Filipovic and 
Schachermayer [5]; Duffie and Singleton [6]; and Lam- 
berton and Lapeyre [7]. In this paper we are particularly 
interested in a special class of the general linear models 
called narrow sense linear models described by Arnold 
[8]. 

V

r r

The next section describes the processes for value of 
the firm and short term interest rates. Next, we discuss a 
general framework for the solution of the distribution of 

t . Then, we describe solutions in the cases where tr  pro- 
cesses are narrow sense linear. Such tr  processes are 
quite popular for models of credit risk. The shapes of the 

tV  d tributions are shown to be sensitive to such pa- 
rameters as the correlation between the V  and  
processes. For example, a positive correlation displays a 

 distribution with fatter tails than one with negative 

V

tV

t tr
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correlation. 

2. The Processes for Value of the Firm and  
Interest Rates 

The time evolution of the value, t , of a firm is rou- 
tinely modeled under the risk neutral measure by a linear, 
scalar, stochastic differential equation (SDE) 

V

 d
d dt

t v
t

V
r t t W

V
  v

rW




,          (1.1) 

where the instantaneous drift t  denotes the (exogenous) 
stochastic variable known as the short-term interest rate 
process and  is a deterministic function represent- 
ing the instantaneous volatility as in Acharya and Car- 
penter [9].  

r

 v t

This general form of value process has been used in 
numerous important structural models of credit risk. For 
example, see Merton [10] and Acharya and Carpenter [9] 
where any dividends and coupon payments, outflows of γ 
from the firm to investors, are subtracted from the rt drift 
term. Many firms do not pay dividends and our model is 
one of zero coupon debt so that a γ of zero is reasonable. 
We note that Longstaff and Schwartz [11] similarly have 
a zero γ. 

The t  drift of t  indicates our model is risk neutral. 
We could assume different firms have different drifts due 
to such things as different expected returns in their in- 
dustry as well as different riskiness of assets and future 
projects. However, such an assumption is arbitrary and 
yields a model that is not arbitrage free. We believe it is 
much more theoretically credible to posit a risk neutral, 
arbitrage free model. 

V r

The dynamics of the short term interest rate are mod- 
eled, under the same risk neutral measure, by a (scalar) 
SDE of the type 

   d , d , dt t tr r t t r t   ,       (1.2) 

where the instantaneous drift,  and the volatility, 
 are smooth functions. It is further assumed that 

the Wiener increment processes  and  are cor- 
related; that is,  

 ,tr t

d vW
 ,tr t

d rW

  d d dv rE W W t              (1.3) 

with 1  . It is worth noting that in this set up the flow 
of information is only one way – t  affects tV  and not 
vice versa. By combining several well known results from 
the literature, in this paper we characterize the distribu- 
tion of the value process  for different choices of the 

 processes.  

r

tV

tr
All the known stochastic interest rate models can be 

broadly classified into two classes—single factor models 
(SFMs) and multi-factor models (MFMs). We refer to 
Cairns [12] and Privault [13] for details. In this paper, we 

are primarily interested in the SFMs. These SFMs can be 
divided into linear and nonlinear models. Following Ar- 
nold [8], linear models can be further subdivided into two 
subclasses. The SFM in (1.2) is called a narrow sense lin- 
ear model if  

    1 2, tr t a t r a t    ,          (1.4) 

and 

  , rr t t   .             (1.5) 

A general linear model, on the other hand, has  ,r t  
in the form (1.4) and  

    1 2, tr t b t r b t    ,         (1.6) 

where    , , 1,i ia t b t i 
t

2  and  are smooth func- 
tions of time . The general linear models are also known 
as affine models as in Duffie, Filipovic, and Schacher- 
mayer [5]; Duffie and Singleton [6]; and Lamberton and 
Lapeyre [7]. The SFM in (1.2) is called a nonlinear 
model if either 

 r t

 ,tr t  and/or  are nonlinear 
functions of the short rate . 

 ,t 

t

r t

t

Refer to Tables 1(a)-(c) for examples of these models. 
The narrow sense linear models of Merton [14], Vasicek 
[15], Ho and Lee [16], and Hull and White [17] are spe- 
cial cases of the Heath, Jarrow and Morton [18] model 
and define normal/Gaussian processes. 

r

We first solve the scalar SDE (1.2) for t , and using it 
in (1.1), we then recover . It is well known that t  is 
a lognormal process when t a constant. See Kloeden 
and Platen [19]. We extend this result by first showing 
that t  also inherits this lognormal distribution where 

t  is a normal process defined by the narrow sense linear 
models in Table 1.  

r

tV V
r r

V
r

This problem of quantifying the probability distribu- 
tion of t  is critical to credit risk analysis. For a review 
of various approaches to credit risk refer to the books by 
Duffie and Singleton [6], Bielecki and Rutkowski [20], 
and Jarrow et al. [21]. Clearly computation of the default 
probability in structural models requires knowledge of 
the probability distribution of  contingent on the cho- 
sen model for the interest rate. 

V

tV

3. A framework for the Solution 

In this section we develop a framework for solving (1.1)- 
(1.2). Setting lntg V  and applying Ito’s lemma, Equa- 
tion (1.1) becomes.  

   2
,

1
d d

2t t v v vd tg r t t t     
 

W .    (2.1) 

See Kloeden and Platen [19]. 
Setting ,d dr t tW W1,  and  

2
, 1,d d 1 dv t t tW W W     2, (Shreve [22]) we can re- 
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Table 1. Alternative Models of .2) is called a narrow sense linea el if tr . The single factor model in (1 r mod

     ,  1 2t tr t a t r a t  and    , t rt t  . In contrast, the model is called an affine model or a generr al linear model if 

 ,r t  is of the above form and      ,tr t  1 2tb t r b t . The model is called nonlinear if either  ,tr t  and/or  ,tr t  

linear functions of the short nse linear models; (b) General linear or affine models; (c) N

ear models. 

are non  rate tr . (a) Narrow se onlin-

(a) 

Merton [14] r  - Gaussian d d dt rr t W    tr

Vasicek [15]  d dt t rr cr t     d rW tr  - Gaussian 

Ho-Lee [16]  d d dt rr t t W    r

Hu 7] 

tr  - Gaussian 

ll and White [1   d dt t rr t cr t     d rW tr  - Gaussian 

Hull [23]       d dt t rr t c t r t t     d rW tr  - Gaussian 

 
(b) 

Dothan [24] rd d dt t r tr r t r W    

Bren [25] nan-Schwartz  d dt t r tr cr t r     d rW

 
(c) 

Cox-Ingersoll-Ross [26]  d dt t r tr r t r      d rW

Pearson-Sun [27]  d d d where limits the short rate.t t r t rr r t r W         

Black, Derman and Toy [28]    
   '

d d d   where  lnt t r r

t
t t t W

t


    


 

     
   

t tr

Black-Karasinski [29]       d d d   where  lnt t r tt c t t t W r         t t

 
rite the pair of Equations (1.2) and (2.1) as 

      (2.2) 

and 

w

    1,d , d , dt t t tr r t t r t W    

     2
1 1, 3

1
2,d d d

2t t v t tdg r t t v t W v t W      
  (2.3) 

where  and  are two independent 1,d tW
nt pro

2,d tW
 and 

Wiener 
increme cesses  

       2
1 3 and vv t t v 1 vt t   .    (2.4) 

Integrating (2.3), we obtain 

 2
0 0 0

1
d

t t
d

2t s v t tg g r s     s s x z       (2.5) 

where 

, 1 10
d

t

t sx v s W                (2.6) 

and 

,             (2.7) 

From the properties of the Ito in

and Shreve [22], it follows that  

     1 3~ 0,  and ~ 0,t tx N T t z N T t      (2.8) 

where 

       2 2
3 30 0

d  and d
t t

T t v s s T t v s s   .    (2.9) 1 1

Since  and  are independent Wi
 

1,tW
esses, it readily follows that 

2,tW ener proc- 

      1 30,t t ~x z N T t t  . Thus, the distribution of 

t

T
g  and hence of tg

tV e  critically depend on the 
pr n (2.2). 

In closing this section consider the special case when 
op he r ess ierties of t t  proc

 v vt  , a constant. Then,  

     2 2 2 2
1 3 and 1v vT t t T t t      .    (2.10) 

Further, when 0  , we obtain  

t2,0 and t t vx z W  .        

4. Narrow Sense Linear Mod

   (2.11) 

els for rt 
 3 20

d
t

t sz v s W  .

tegral, Mikosch [30] 

Setting  

         ,  and ,r t t c t r r t t      , t t r t r    (3.1) 
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in (2.2), we get a narrow sense (time varying) linear 
model known as the generalized Hull and W
model given by 

ther narrow sense linear models in Table 
1 are special cases of (3.2), we first concen
ing (3.2). Defining 

hite [17] 

      1,d d d dt t r tr c t r t t t t W     .      (3.2) 

Since all the o
trate on solv- 

   
0

d
t

c t c s s  ,             (3.3) 

we get  

   e c tt   .             (3.4) 

This is known as the fundamental solution of (3.2). 
Hence the solution of (3.2) is given
[31], Kuo [32], Lamberton and Lap

 by (Arnold [8], Gard 
eyre [7]) 

   dett t tr r r ran  ,            (3.5) 

where 

         ds s s ,    (3.6) 0 0
det e e

t c t cc t
tr r     

,           (3.7) 

and 

   2 10
d

t

t ur ran v u W  ,

       2 e c t c u
rv u u    .          (3.8) 

Hence, 


w

 combining (3.5)-(3.10), it follows that  

tegral on 
the right hand side of (3.11) and using (3.7),
that  

    2~ det ,t tr N r T t            (3.9) 

here 

   2
2 20

d
t

T t v u u  .          (3.10) 

Now

 
0 0 0

d det d
t t t

s s sr s r s r     dran s .   (3.11) 

Applying integration by parts to the second in
 it follows 

        
0 0

d
t t

t s t sr ran r ran s tr ran sd r ran   
(3.12) 

   2 1,0
d

t

st s v s W 
Is also a Gaussian process with mean zero and va
given by  

riance 

      

Substituting (3.11)-(3.12) in (2.5), we get  

 2 2
2 20

var d
t

tT t r ran t s v s s   .  (3.13) 

   0 dett t tg g g g ran          

w

 (3.14) 

here 

     d2

0 0

1
det det d

2

t t

t s vg r s s  
and 

s      (3.15) 

   t t t tg ran x r ran z   .    

bstituting (2.6), (3.12) and (2.7) in (3.16), the latter 
becomes 

     (3.16) 

Su

         1 2 1, 3 2,0 0
d dt s s

t t
g ran v s t s v s W v s W      

(3.17) 

Since  and are independent, it follows that 1,d tW 2,d tW  
    ~ 0, vart tg ran N g  where 

       2 2
1 2 3r d dt  

0 0
va

t t
g v s v s s v s s  (3.18) t s  

   2 2
1 2t t   ,                     (3.19) 

where 

           1 2 2t s v s v s s T t   2
1 1 0

2 d
t

t T t   
and 

  2
2 3t T t  . 

mbining (3.15)-(3.18) with (3.14), we finally obtain  Co

    0 ~ ,t
2g g N t t          (3.20) 

where    dettt g   given by (3.16) and  
   var tt g  given

We summarize the a

2  by (3.19). 
bove developments in t

Theorem 3.1: te  evolve accord- 
in

,  is a Gaussian process d consequently 

he follow- 
ing: 

 Let the interest ra  tr

 an
g to a narrow sense linear, scalar, SDE of the type (3.2). 

Then t

0t

r
g g  in (2.5) is also a Gaussian process given by 
(3.20). 

Sinc te g
t e , from (3.14)-(3.20), we get  V

   dett V V ran          (3.21) 

where 

0
t tV 

V 

     2

0 0

1
det exp det d d

2

t t

t s vV r s s s         (3.22) 

and 

    expt t tV ran x r ran zt
     .   (3.23) 

ry is immediate. 
Corollary 3.2: Since
The following corolla

     2
0 ~ ,tg g N t  t ,  

0V 
t   is a lognormal process whose pro

V 



bability density  

function, as a function of time, is given by 
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 

 

 

2

2

0

1

2π

VV

t
t

V


    

      

. 

(3.2  

It can be verified (Johnson et al. [33]) that the time 
evolution of the mean and variance of the value process 

0

0

Prob exp
2

t

t
V V 

       

ln tV
t

      

4)

0

tV

V
 are given by  

   2
t tV 


  

 
0V 

 
exp

2
E t 

  
        (3.25) 

and 

     t  . (3.26) 2 2

0

exp 1 exp 2tV
Var t t

V
 

 
         

 

e now enlist a number of nested corollaries by con- 
sidering special cases of interest rate models. 

Case 1: Let 

W

 v vt  , a constant. Then  

  vt1v  ,   2
3 1 vv t     and  2v s  is given by 

(3.8). From (3.15) and (3.20), the mean is 

 

    21
0

det
t

d
2s vt r ts    

19)-(3.20), the 
varian

s

Case 2: Hull and White [17] model: In this model, 
 and 

     (3.27) 

where  dettr  is given in (3.6). From (3.
ce is 

     

   

22 2 2
20

20

d

            2 d

t

v

v

t t t s v s

t s v s s

 



  

 



  
t

.     (3.28) 

 c t c  r rt   where  0c  and 0r   
are constants. Thus,  c t ct ,   rv s    

2 e c t s  and  

   0 0
det e e d

tct ct cs
tr r e s s    .     (3.2

Hence the mean is
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Case 3: Ho-Lee [16] model: In this model,
and  2 rv s  . Then  

s         (3.31)    0 0
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The mean is 
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and the variance is 
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Case 4: Vasicek [15] model: In this model,  c t c , 
 t   and  r rt  . Then,  2 erv s   c t s   and  

  0det e 1 ect ct
tr r

c

   
  .        (3.34) 

Hence, the mean is 
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and the variance is 
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 t Case 5: Merton [14]: In this case, ,  
  0c t   and  r rt  . Then 2   rv s   and  

  0dettr r t  .           (3.37) 
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2
3 2

3
r

v r vt t
 2t     .       (3.39b) 

Case 6: Let a constant and tr r , 0t  . Then 
 2 0v s  ,  r ran  0t  and  mean  dettr r . The
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         (3.40) 
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 2 2t v  .          (3.    41) 

We now provide sample plots o
when follows the Vasicek [15]

e correlation (

f the tV  distribution, 
 model, for three dif- tr  

ferent values of th 0 
h case 
re

the p

, 0.9 and −0.9) in 
tively. In eac

 for and 20 a
Figures 1-3 respec the distribution of 

 given. From these fig- TV
ure

5, 10, 15  T

e 
s it follows that as T  increases both the mean and 

varianc of TV  increases. Further, comparing Figures 1 
and 2, it follows that the effect of ositive correlation 
( 0  ) is to reduce the peak while making the tails fat- 

comp case when 0ter ared to the   . Similarly from 
Figures 1 and 3, we readily see the negative correlation 
has the opposite effect of increased peak and thinner tails 
compared to 0  .  

T e primary motivation for characterizing the distribu- 
tion of tV  is to compute the p o bility of default. 
Within the framework of structural models, there has 
been an evolution of the definition of default. In the now 
classic paper, M n [10] defines default as the event 
V

h  
r ba

erto
T K  where K  is the face value of the discount 

bond with aturity T . Using the results described above, 
we could readily compute the probability default accord- 
ing to this classical definition1. 
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Figure 1. Probability density of  for Vasicek with 
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0 150V  . 

 
However, Longstaff and Schwartz [11] define default  

by the event  
0
min t

t T
V K

 
 . Recently, Giesecke [34] has  

expanded on this theme and has defined the default by the  

compound event  
0
min ort T

t T
V D V K

 
  for D K .  

Recall that the probability of these later events can be 
readily calculated using the “reflection principle” if
is a standard Wiener process or by using the Girsanov 
theorem if  is a Wiener process with a drift. (See 
Elliott and Kopp [35] and Giesecke [34]). To enable co
putation of default probability according to Giesecke [34], 
in the following, we seek to express 

 tV  

m- 
tV

 0tg g
e changed) 

 in 
as the sum a drift term and a (tim Wiene
process. 

(3.14) 
 of r 

1We note that Shimko, Tejima, and Van Deventer [42] build upon the 
Merton [11] model and solve for bond and equity prices as opposed to 
value of the firm. 
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To this end recall that every to integral is equiv
e  W  pr  

 I alent 
to a tim  changed iener ocess. (See Shiryaev [36],
Oksendal [37], Karatzas and Shreve [25]). Accordingly, 

om (3.17) we obtain  fr
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where  1B t are two independent Wiener  and  2B t  
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1 t  and  2

2 t  are given in (3.19). Since 
 1B t  and  2B t  are independent, there exists a Wie- 

ner process  B t  such that  
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where 
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1 2 tt t t Var g      

as given by (3.18)-(3.19). 
Combining (3.43) with (3.14), it follows that  
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We have analyzed the impact of  on  when 
evolves according to a narrow odel in 
ble 1(a). Consider the case when  evolve according 

enera  mod Br
-S z [38]

 of t
rd [15] pey 7]) a

given by  

where the process  is given by  

     (3.44) 

where detg  in (3.20).  

5. Conclusio
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tr
sense linear m
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Ta- 

en- to a g l linear el, such as for example, the 
nan chwart  model in Table 1(b). In this case the 
explicit form he solution for well known (Ar- 
nold [8], Ga , Lamberton

tr
 an nd is 

   0 0
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which is an integral of the exponential functionals of the 
Wiener process. Processes of the type tA  routinely arise 
in the evaluation of Asian type options (Vorst [39]). By 
relating  t  to a Bessel process, Yor [40] and Geman 
and Yor [41] have provided a complete characterization 
of the distribution of the tA  process. Combining these 
results with (2.5) to derive the distribution of tg  is an 
interesting open problem. Similar , computing the dis- 

tribution t

ly

g  when tr  evolves according to the nonlin- 
ear models is 

problem

ntere

Table 1(c)
will shed furthe

 ana

em

d c

 is also wide open. Solutions to 
these  r light on the impact of the 
choice of interest rate models on default probability and 
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