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ABSTRACT 

This paper presents a new dynamic approach to control and stabilize the global financial derivatives. Since 2007 the 
Global Financial Economy has been experiencing what is said to be the worst financial crisis since the Great Depression 
in the 1930’s. The Bank of International Settlements (BIS) in Switzerland has recently reported that global outstanding 
derivatives have reached 1.14 quadrillion dollars: $548 Trillion in listed credit derivatives plus $596 trillion in notional 
OTC derivatives. Although the financial derivatives are governed by the celebrated parabolic partial differential Black- 
Scholes formula, but it is not clear how derivatives are controlled and stabilized. This paper investigates equilibrium, 
stability and control of financial derivatives. The analysis is based on the discretization of Balck-Scholes formula to a 
system of linear ordinary differential equations. It is found that such financial derivatives experience a drift which 
hardly can be brought to equilibrium state. Controllability and observability conditions of financial systems are pro- 
posed. Moreover, stability of such derivatives is tested by the virtue of Liapunov methodology. It is figured out that 
financial system should satisfy the quadratic form which can be interpreted as a conservation condition of financial in- 
struments. Furthermore, a financial state-feedback control system is proposed. Such analysis shows that the financial 
derivatives system needs to be injected with cash to maintain its stability. These results may explain the shortfall of li- 
quidity needed to substitute for the 1.14 quadrillion dollars bubble. Finally, examples and simulation results are demon- 
strated to verify the effectiveness of the proposed approach. 
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Discrete Model of Black-Shcoles Equation 

1. Introduction Within mainstream financial economics, most believe 
that financial crises are simply unpredictable, following 
Eugene Fama’s efficient-market hypothesis and the re- 
lated random-walk hypothesis [4]. These hypotheses state 
respectively that markets contain all information about 
possible future movements so that the movement of fi- 
nancial prices is random and unpredictable. 

Since 2007 the Global Financial Economy has been ex- 
periencing what is said to be the worst financial crisis since 
the Great Depression in the 1930’s. The current crisis is 
triggered by the shortfall of liquidity in the United States, 
followed by collapsing of large financial institutions, 
bailout of banks, turndowns of international stock mar- 
kets and credits, collapse of housing bubble, mortgage 
foreclosures, failure of key businesses, declines of wealth, 
increase of governmental debts due to substational com- 
mitments. Governments and central banks responded with 
unprecedented fiscal stimulus, monetary policy expansion, 
and institutional bailouts. Countries like Greece, Iceland, 
Ireland and more to come went (Potentially Spain, Italy 
and Portugal) through financial bailouts. Moreover, The 
Bank of International Settlements (BIS) in Switzerland 
has recently reported that global outstanding derivatives 
have reached 1.14 quadrillion dollars: $548 Trillion in listed 
credit derivatives plus $596 trillion in notional OTC de- 
rivatives [1-3].  

Modern finance has a conceptually unified theoretical 
core that includes the efficient market hypothesis (EMH), 
the relationship between risk and return based on the 
Capital Asset Pricing Model (CAPM), the Modi- 
gliani-Miller theorems (M&M) and the Black-Scholes- 
Merton approach to option pricing. The core has been 
instrumental to the growth of the financial services in- 
dustry, financial innovation, globalization, and deregula- 
tion. The significant impact of the core is explained by 
their success in elevating finance to the category of a 
science by extracting the acquisitiveness associated with 
economic freedom from the workings of a free market 
society [5]. The core theories/theorems were based on 
wildly unrealistic assumptions and did not stand out for 
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their empirical strength. This view led to a series of finan- 
cial practices that increased the fragility and vulnerability 
of financial institutions setting the context for the occur- 
rence of financial crises including the current one [6]. 

Option contracts are usually valued by using the cele- 
brated partial differential equation of Black-Scholes [7,8]. 
Although an exact solution for European style options is 
known, but discretization model is necessary to determine 
the value of American style options and for many exotic 
options.  

The most important application of the It^o calculus, 
derived from the It’o lemma, in financial mathematics is 
the pricing of options. The most famous result in this area 
is the Black-Scholes formulae for pricing European va- 
nilla call and put options [9]. As a consequence of the 
formulae, both in theoretical and practical applications, 
Robert Merton and Myron Scholes were awarded the 
Nobel Prize for Economics in 1997 to honor their con- 
tributions to option pricing. Unfortunately, Fischer Black, 
who has also given his name and contributions, had 
passed away two years before. 

Innovative Laplace transformation method introduced 
in [10] to solve the Black-Scholes equation. The algorithm 
is of arbitrary high convergence rate and naturally paral- 
lelizable. It is shown that the method is very efficient for 
calculating various option prices. Existence and unique- 
ness properties of the Laplace transformed Black-Scholes 
equation are analyzed. Also a transparent boundary con- 
dition associated with the Laplace transformation method 
is proposed. Several numerical results for various options 
under various situations confirm the efficiency, conver- 
gence and parallelization property of the proposed scheme. 

Fourier-based sparse grid method for pricing multi- 
asset options is presented in [11]. This involves comput- 
ing multidimensional integrals efficiently and we do it by 
the Fast Fourier Transform. We also propose and evaluate 
ways to deal with the curse of dimensionality by means of 
parallel partitioning of the Fourier transform and by in- 
corporating a parallel sparse grids method. Finally, we test 
the presented method by solving pricing equations for 
options dependent on up to seven underlying assets. 

Work [12-14] presents an accurate numerical solution 
for the Black-Scholes equation with only a few grid points. 
Fourth order finite difference discretizations are employed, 
as well as a grid stretching in space by means of an ana- 
lytic coordinate transformation. Next to standard Euro- 
pean options, the method is also evaluated for digital 
options (discontinuous final condition) and for problems 
with discrete dividend modeled with a jump condition at 
the ex-dividend date. The method presented will be a basis 
for the numerical solution of high dimensional partial 
differential equations dealing with multi-asset options. 

Polynomial-time interior-point algorithms for solving 
the Fisher and Arrow-Debreu competitive market equi- 

librium problems with linear utilities and n players. The 
algorithm for solving the Fisher problem is a modified 
primal-dual path following algorithm, and the one for 
solving the Arrow-Debreu problem is a primal-based al- 
gorithm [15]. 

Assets of all sorts are traded in financial markets: stocks 
and stock indices, foreign currencies, loan contracts with 
various interest rates, energy in many forms, agricultural 
products, precious metals, etc. The prices of these assets 
fluctuate, sometimes wildly [16]. A fundamental principle 
of finance, the efficient market hypothesis asserts that all 
information available to anyone anywhere is instantly ex- 
pressed in the current price, as market participants race to 
be the first to profit from new information. Thus success- 
sive price changes may be considered to be uncorrelated 
random variables, since they depend on as-yet unrevealed 
information. 

Existence of equilibrium of an integrated model pro- 
duction, exchange and consumption is introduced in [17]. 
A simplification of the proofs has been made possible 
through the use of an abstract economy. Stability of price- 
demand of Enthoven-Arrow dynamics is presented in 
[18].  

A derivative is a financial instrument whose value de- 
pends on (or derived from) the values of other, more basic, 
underlying assets. Financial derivatives, such as options, 
futures, and swaps of financial assets play an important 
role in today’s complex financial world. Considering the 
importance of financial derivatives, a crucial problem in 
finance is how to evaluate and price each financial de- 
rivative. Black and Scholes (1973) discovered the partial 
differential equation which financial derivatives (the un- 
derlying assets of which are stocks) have to satisfy; fur- 
thermore, they found the evaluation formula when the 
financial derivative is a European call option. The partial 
differential equation is known as the Black-Scholes 
equation. Scholes obtained a Nobel Prize for economics in 
1997 for this contribution. 

This paper is organized as follows. Sections 2 and 3 will 
review modeling of Black-Scholes and how to obtain a 
discrete form, respectively. Transformation to the heat 
equation is shown in Section 4. The drift nature of finan- 
cial derivatives is discussed in Section 5. The controlla- 
bility of financial system is presented in Section 6. Section 
7 investigates Laipunov stability. Detailed financial de- 
rivative control design case is detailed in Section 8. Fi- 
nally, the paper results are concluded. 

2. Black-Scholes Financial Derivatives  
Overview 

This section applies the Ito lemma to derive the Black- 
Scholes equation, whose basic and the first assumption is 
a geometric Brownian motion for the asset price. Assume 
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that the asset price S follows the geometric Brownian mo- 
tion [7-9]. 

The problem is stated as follows: let  be time and  
be the price of stock. Consider a derivative security whose 
price depends on  and . The price is a function of  
and , so we call it  or just C . Then, our task is 
to find the equation which C  satisfies. We assume that 
there is a risk-free bond  which earns a risk-free rate . 
That is, the following holds: 

t S

S

r

S t
, t

B

t C S 

Bond (Cash): A riskless bond B that evolves in accor- 
dance with the process 

d dB rB t                  (1) 

In addition, an underlying security which evolves in 
accordance with stock price  that follows the geomet- 
ric Brownian motion (Ito process): 

S

Stock: d d dS S t S Z              (2) 

Here  is a Brownian motion, S Z  is a Wiener proc- 
ess,   is constant parameter called the drift. It is a 
measure of the average rate of growth of the asset price. 
Meanwhile,   is a deterministic function of time. When 
  is constant, (2) is the original Black-Scholes model of 
the movement of a security, . In this formulation, S   is 
the mean return of , and S   is the variance. We note in 
passing that   is no longer seen as the historical vola- 
tility of an underlying in real market applications. 

The quantity dZ  is a random variable having a normal 
distribution with mean 0 and variance : dt

 2
d 0, dZ N t 

 
 . This component is a random con- 

tribution to the return. For each interval , dt dZ  is a  

sample drawn from the distribution  2
0, dN t  
 

, this is  

multiplied by   to produce the term dZ . The value 
of the parameters   and   may be estimated from 
historical data. 

An option  written on the underlying security 
(by Ito’s Lemma) evolves in accordance with the process. 
Regarding the derivative of 

 ,C S t 

 ,C S t , the following holds: 
Derivative Parabola:  

2
2 2

2

1
d

2

C C C C
C S S t S

t s sS
  

    
       

d dZ



  (3) 

 ,C S t  is sufficiently smooth, namely, its second- 
order derivatives with respect to S and first-order deriva- 
tive with respect to t are continuous in the domain. As it 
can be seen Ito’s lemma, the price change is proportional 
to a coupled second order partial differential equation 
which depends on the random stochastic variable dZ , the 
deterministic function  , and the drift parameter  . If 
two people agree on the volatility of an asset they will 
agree on the value of its derivatives even if they have 

different estimates of the drift rate. 
Replicating the derivative with a stock and a bond First, 

we form a portfolio using  and  so that the portfolio 
behaves exactly the same with . Let’s consider that the 
portfolio  consists of 

B S
C

G x  shares of the stock and  
units of the bond, 

y

G xS yB                 (4) 

We want the portfolio to be self-financing, which means 
that no money is added or withdrawn. Under this condi- 
tion, the instantaneous gain in the value of the portfolio 
due to changes in security prices, by (1) and (2), is 

 
 

d d d

d d d

d d

G x S y B

G x S t S Z yrB t

G x S yrB t xS Z

 

 

d

d

 

  

  

         (5) 

In order to mimic ,  and , that is, 
(3.5) must coincide with (3.3). Since  and 

C G C d dG C
dt dZ  are 

independent, the respective coefficients should be equal; 
otherwise, there will be an opportunity for arbitrage. 
Therefore, we hope that the following equations will hold 

xS yB C                     (6) 

2
2 2

2

1

2

C C
xS yrB S S

t s S
   C  

   
  

      (7) 

C
xS S

s
  




                   (8) 

From (8), 
C

x
s





. Plugging this result into (6), we 

obtain 
1 C

y C S
B s

    
. 

Plugging these results into (7), we finally obtain 
2

2 2
2

1
0

2

C C C
rS S rC

t s S
  

  
  

       (9) 

This partial differential Equation (9) is celebrated Black- 
Scholes equation. In this derivation, we replicated the 
derivative with a stock and a bond.  

Although the exact solution of the Black-Scholes 
equation is known, a numerical method is so useful. A 
reason is to create a general numerical model for many 
different types of options. In particular, American options 
are not solvable in an analytic sense. If the numerical 
method works for European style option, then this is the 
basis to get the solution for an American option [11-13]. 

Consider a general form of a parabolic partial differ- 
enttial equation with non-constant coefficients, Dirichlet 
boundary conditions and an initial condition (for more 
details refer to [14]): 

         
2

2
, ,

C C C
S S S C S t f

t SS
    

   
 

S t

(10) 
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Along with boundary and initial conditions 

   ,u a t L t                 (11) 

   ,u b t R t                 (12) 

   ,0u S S                 (13) 

These equations are solved nu
N

merically on a grid with 
 points and a constant step size h. Such a grid is called an 

equidistant grid. If the interval will be [ , ]a b , then the step 
size is equal to  h b a N  . Let ea int a ihch po   be 
denoted by iS  [

To get a s ond ord difference appr tion 
of

19]. 
ec er central oxima

 the solution at point iS a ih  , Taylor expansions of 
the solution in the adjac  are needed. Applying 
Taylor’s expansions in the points 1iS   gives: 

ent points

   
2 3

2 3
1 2 3

1 1u  
2 6

i i i

i i
S S S

u u
u S u S h h h

S S S     
  

   

(14) 

assuming that all relevant derivatives occurring exist. With 
linear combinations of u at point jS , it is easily possible 
to get second order approximations of the first and second 
derivatives: 

   
2

2
1 12 2

1
2

i

i i i

S

u
u u u h

h S 


   


       (15) 

   2
1 1

1

2
i

i i
S

u
u u h

h S 


  


          (16) 

here, is the abbreviation for iu   i iu S
uation

. It is then possi- 
ble to scretize the differential eq  (10). The factors 
in front of the differential operator can be evaluated in 
each point xi. For the second order approximation, the 
semi-discretized systems turn into: 

di

 1 1 1 1
2

2i i i i iu u u u u     
2

i
i i i i i

u
u f t

S hh
     


   

These equations hold for 

(17) 

1 1i N   . The first
la pecial treatm

 and 
st point of the system need s ent. System of 

Equation (34) reads in matrix form 

   du

d
t t

t
  u b f          (18) 

with is the discretized source function, tf     the 
coefficient matrix and  tu  the discrete solution The 
vector  tb  contains the ndary values and may be a 
time-de ent function (see [14] for details) where 

 0u L t  and  Nu R t . 



. 
 bou

pend

    

     

2

2

, 1
2

0 , 2 2

, 1
2

i

a h
L t i

hh

b i N

a h a h
R t i N

hh

 

  
   

 
   
   

a h  

    

  (17) 

and the matrix elements read: 

2

2
aii i ih

                   (18) 

1 2

2 1

2ii i ia
hh

                   (19) 

1 2

2 1

2ii i ia
hh

                   (20) 

After the space discretization of the equation, which 
may have been transformed, a system of ordinary differential 
equations remains 

   

 

d

d
0

t t
t

u 

  



u
Αu b f

          (21) 

with   
sc

the matrix generated by the second or the fourth 
order heme, the vector  tb  contains boundary condi- 
tions.  tf  is the sourc nction and e fu   the (trans- 
formed l condition (13).  ) initia

3. Financial Derivatives Drift 

rivatives Equation 

              (22) 

such that   

Recall now the quantitized financial de
(35) and modify it in the form 

 u Αu w  t  

    t t w b f  t
The financial derivatives dynamics (22) represents an 

affine system (in the input  tw ) which does not have 
any equilibrium point due to th n-zero drift vector term e no

 0 for u Αu  which characterizes a kinematic con- 
r that straint. Remembe  tw  term can be treated as an 

enforced input to the fin l derivative system resulted 
from boundary conditions defined in (17). With zero 
boundary conditions in Equation (22) yields 

ancia

u Αu                   (23) 
which represents a Pfaffian diff

ormed financial derivative system (23) can 
be

                (24) 

System (24) represents a dr

erential constraints (see [20] 
for Pfaffian differential constraints) but not of kinematic 
nature arises from the conservation of non-zero financial 
derivatives. 

The transf
 re-expressed as 

dAu  

ifted financial derivative 
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system with a drift term d. In such a system the deriva- 
tive value u  can be solved by computing the pseudo- 
inversion A  of the positive definite matrix A  expressed 
as follows 

u d A                 

in which 

            (2

The financial system (22) is cont
ch

(25) 

6)   1T  A A A A  

rollable if, for any 
oice of 1u , 2u R , there exists a finite time T and an 

input  :w T  such that  1 2,0, ,u T u w u0 : W  . Un- 
fortun iteria for ver l form 
of controllability do no exist. 

For the sake of the current o

ately, general cr ifying this natura

bjective clarification, com- 
bine Equations (24) and (25) as a deterministic linear 
financial system ( 0  ) defined by 

0 
0

r BB

SS 
    

    
   


  


            (27) 

The deterministic financial system (28) is composed of 
bond and stock option experiences a drifted constraint 
with no equilibrium states. The only possibility of brining 
such a system to a driftless equilibrium posture to enforce 
zero risk-free rate r  and zero drift parameter  .  

Given a neighborhood V  of 0u , denote by  0 ,R uV   
the set of states   for wh h the exists ic re : 0w  
such that  0,0, ,u u w

:T W
   and   0, ,0, ,x t u t u w V  

for t  . In words,  0 ,VR u   ach- is the set of states re
able at time   from t0u  wi jectories contai  
[20]. Also, define 

   T T

h tra ned in V

0 0 ,
V V

T

R u R u





  , 

which is the set of states reachable within time  from 

neighborhoods 

 controllable from if, for all 
ne

  definitions are local in nature. They may 

mplies local accessi- 

T

0u  with trajectories contained in the neighborhood V  . 
The financial system (22) is called: 
1) Locally accessible from 0u  if, for all 

V  of 0u  and all T ,  0V

TR u contains a non-empty 
open se ; 

2) Small-time locally

 
t Ω

0u  

0ighborhoods V  of 0u  and all T ,  TR u  contains 
a non-empty neig borh d of x0. 

Note that: 

V

h oo

The previous
be globalized by saying that system (22) is locally 
accessible, or small-time locally controllable, if it is 
such for any 0u  in all NR . 

 Small-time local controllability i
bility as well as controllability, while local accessibil- 
ity does not imply controllability in general, as shown 
by the previous example. However, if no drift vector is 
present, then local accessibility implies controllability. 

 However, when dealing with the control of financial 
systems with generalized Pfaffian constraints, the 
presence of a drift term  1span , , mA w w   implies 
that accessibility is not e bility. 

 For the linearized case  of the financial derivativ
quivalent to controlla

e 
(22), all the previous definitions are global and col-
lapse into the classical linear controllability concept. 
In particu- lar, the accessibility rank condition at 

0 0u   corre- sponds to  
2rank B AB A B 1nA B n    

the well-known Kalman necessary and sufficient condi- 

ajor concern to seek whether financial derivatives 
ca

4. Controlability and Observability of  

A llable at time if it is 

tion for controllability as will be detailed in the next sec- 
tion.  

A m
n be controlled and if yes, what are the tools to achieve 

such an objective. 

Financial Derivatives 

system is said to be contro 0t  
vpossible by means of unconstrained control ector to 

transfer the system from an initial state  0x t  to any 
other state in a finite interval time. The con  of con- 
trollability and observability were introduced by Kalman. 
They play an important role in the design of control sys- 
tems in state space. In fact, the conditions of controllabil- 
ity and observability may govern the existence of a com- 
plete solution to the control system design. Although 
most physical systems are controllable and observable, 
corresponding mathematical models may not possess the 
property of controllability and observability. In what 
follows, we shall derive the condition for complete state 
controllability.  

Consider the con

cepts

tinuous-time systems shown in Figure 1. 

w x Ax B                   (28) 

w y Cx D                    (29) 

where,  
 state vector 

  
x  is a
y  is m -output vector
w  is a control signal 
A  is n n  matrix  
B  is 1n  matrix 
C  is n m  matrix 
Th stem  in Equation (28) is said to be 

st
e sy described

ate controllable at 0t t  if it is possible to construct 
an unconstrained con signal that will transfer an ini- 
tial state to any final state in a finite time interval 

0 1t t t

trol 

  . If every state is controllable, then t
be completely state controllable [21]. The sys- 

tem is said to be controllable if and only if the following 
n n

he system 
is said to 

  matrix is full rank n . 
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2
1 

nB AB A B A B            (29) 

This matrix is called the controllabi
te

lity matrix. A sys- 
m is said to be observable at time 0t , if with the sys- 

tem in state  0x t , it is possible to determine its state 
from the observ tion of the output over a finite time in- 
terval.  

The concept of observability is very important because, 
in 

a

practice, the difficulty is encountered with state feed- 
back control is that some of the state variables are not 
accessible for direct measurement, with the result that it 
becomes necessary to estimate the unmeasurable state 
variables in order to construct the control signals. The 
system is said to be observable if and only if the follow- 
ing n nm  matrix is of full rank n   

  2T T T T A C A C A nT T T 
  
C C   

1
(30) 

Matrix (30) is commonly called observability ma
- 

m

trix. 
This following analysis presents a design method com
only called the pole-placement technique. We assume 

that all state variables are measureable and are available 
for feedback. It is shown that if the system considered is 
completely state controllable, then poles of the closed- 
loop system may be placed at any desired locations by 
means of state feedback through an appropriate state feed- 
back gain matrix as displayed in Figure 2. Let us assume 
the desired closed-poles are to be at 1 1s  , 

2 2s  , ···, n ns  .  
We shall choose the control signal to be 

w  Kx                 (31) 

This means that the control si
in

gnal is determined by an 
stantaneous state. Such a scheme is called state feed- 

back. The 1 n  matrix K  is called the state feedback 
gain matrix. Substituting (31) into Equation (83) gives 

     t t x A BK x               (32) 

The solution of this equation is gi

      (33) 

where is the initial state caused by e

ve by 

     0 e tt  A BKx x        

xternal disturbances. 
The stability and transient response characteristics are 
determined by the egienvalues of matrix A BK . If ma- 
trix K  is chosen properly, the matrix A BK  can be 
made asymptotically stable matrix.  

Define a transformation matrix T  by  

         (34) 

where is the controllabi



T MW           

M  lity matrix 

2 -1nB AB A B A B          (35) 

and 

0

1 2

2 3

1

1

1 0

1 0

1 0 0 0

n n

n n

a a a

a a

a

 

 

 
 
 
 
 
 
  




    



W          (36) 

where the ia s  are the coefficients of the characteristic 
polynomial  

1
1 1

n n
n ns a s a s a
s     A       (37) 

Let us choose a set desired egienvalues as

I

 1 1s  , 

2s 2 , , n ns   . Then the desired characteristic equa- 
tion becomes 

     1
1 2 1 1

n n
n ns s s ss s n   

         
(38) 

The sufficient condition that the system to be 
pl

com- 
etely controllable with all egienvalues arbitrarily placed 

by choosing the gain matrix 

        1
1 1 2 2 1 1n n n na a a a    
 



      T

K

 (39) 

Example: Controllability, Observability, State 

er the deterministic Bond-Stock Option dy- 
na

Feed- 
back Control 

Let us consid
mics defined in (27) with risk-free rate 0.05r   and 

drift parameter 0.4  .  

0.05 0

0 0.4

BB

SS

     
     
    


  

For the sake of financial system control we assume the 
sy

It is desired to check the controllability condition (29) 
an

stem has been modified such that  

0.05 0 BB      
 

1

0 0.4 1
w t

SS


        
      

 

 1 1
B

y
S

 
  

 
 

d observability condition (30). It can be easily vali- 
dated the both controllability matrix and observability  

matrix are identical 
1 0.05

1 0.4

 
 
 

 and are of full rank 2. 

The original system has two eigenvalues of 1 0.05s  , 

2s 0.4 , ···. It is desired now to stabilize t  
cing the poles at 1 1s   , 2 2s   . Since the 

system is controllable the po e sign can be 
imple- mented. Then the original and desired characteris-
tic equations are, respectively, given as 

he system
with pla

le plac ment de

  10.45 0.0n na s s s    2  
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  13 2n ns s s     

The transformation matrix T for the system is 



The sufficient condition that the system to be com- 
pl

1 0.05 0.45 1 0.4 1
 

      
      T

1 0.4 1 0 0.05 1    
 

etely controllable with all egienvalues arbitrarily placed 
by choosing the gain matrix as 

   

 

1
0.005 1

2 0.02 3 0.45
0.355 1

6.15 9.6


 

      
 

 

K
 

For a negative feedback controlled financial system as 
shown in Figure 2, it implies that to stabilize such a sys- 
tem, the bonds risk-free rate r  should be increased by 
6.15 times (from 0.05 to 0.3075) and drift parameter   
should decreased the stock by 9.6 times (from 0.4 to 
−3.84). From physical point of view, the negative sigh is 
to balance the increase of the bonds and comply with the 
conservation of financial money.  

Some systems reveal a conservation nature such as me- 
chanical systems which comply with the principle of 
conservation energy. Liapunov methodology technique 
utilizes the concept of quadratic function to prove if a 
given system can be stabilized or not. It is desired to seek 
such a property in the financial systems as presented be- 
low. 

5. Liapunov Stability of Financial  

Th esigned so that author affiliations are  

Derivatives 

e template is d
 

 


 

Figure 1. Open-loop financial controlled system. 
 

 


 

not repeated each time for multiple authors of the same 
affiliation. Please keep your affiliations as succinct as 
possible (for example, do NOT post your job titles, posi- 
tions, academic degrees, zip codes, names of building/ 
street/district/province/state, etc.). This template was de- 
signed for two affiliations. The objective in this section is 
to investigate the stability of financial systems using 
Liapunov stability techniques. Consider a reduced dy- 
namics model (28) given by 

x Ax                   (40) 

AWe assume that  is no
eq e orig

n-singular. Then the only 
uilibrium state is th in 0x . The stability of the 

equilibrium of state of the linear, time-variant system can 
be investigated by the use of the second method of 
Laipunov. 

For the system defined by (40), let us choose a 
Liapunov candidate function as 

  TV x x Px               (41) 

where is a positive-definite funP  
riv

ction real matrix. The 
time de ative of  V x  along any trajectory is 

   TT T TV      x x Px Ax Px x PAx  x Px   (42) 

By rearrangement terms 

  T T TV   x x A Px x P  T T Ax x A P PA x   (43) 

Since  V x  
ility, th
heref

is chosen to be, we require, for 
totic stab at positive-definite  be negative 
de

asymp- 
 V x

finite. T ore, we require that  

  TV  x x Qx            (44)    

where 

  positive definiteT   Q A P PA      (45) 

Example: Liapunov Stability  
Let us consider the deterministic Bond-Stock Option 

dy -free ratenamics defined in (27) with risk  0.1r   and 
drift parameter 0.4  .  

0.1 0

0 0.4

BB

SS

     
     
    


  

It is clear that the equilibrium state is the origin 
   , 0,B S  . 0

Let us assume a tentative Liapunov function 

  TV x x Px  

where is to be determined fromP   

 T Q  A P PA  
Figure 2. Closed-loop controlled financial system with w
−Kx. 

 = 
The last equation can be written as 
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0.05 0 .05 0

0 0.2 0 0.2

0.9 0.75

0.75 0.6

a b a b

c d c d

       
       

   
 

 

0

       
 

or 





Rearranging corresponding terms leads to 




Equating both sides yields to 

 is given by  

Although matrix is positive definite positive (its 
eigenvalues are 1 a 1), but it has not uaranteed the 
system stability. Th because the time derivative of 
th

0.05 0.05 0.05 0.2 0.9 0.75

0.2 0.2 0.05 0.2 0.75 0.6

a b a b

c d c d

     
          

 

0.1 0.25 0.9 0.75a b    
    

0.25 0.4 0.75 0.6c d     

7.6667, 6.6667, 6.6667, 6667a b c d       5.

By then the candidate matrix P

7.6667 6.6667

5

 
  P  

6.6667 .6667  

P  
nd 
at is 
te

 g

e Liapunov candida   V x  is increasing, since  
T A P PA  has positive egienvalues (2.2948 and 0.0002). 

Such a stock-bond system behaves like an unstable node 
at the origin as shown in e 3. 

analysis can be summarized in the following 
theorem.  

Theorem: Consider the financial

Figur
Former 

 dynamic system de- 
scribed by u Αu , where u  is an n  state vector and 
A  is n n  constant nonsi gular trix. A necessary n ma

and sufficient condition that the equilibrium state 0u  
be asymptotica table in large is th , given any posi- 

e-de real matrix Q , there exist a positive-definite 
real matrix P  such that  

T  Q A P PA  

The scalar function V

lly s
e 

at
tiv finit


 Tx u Pu  is Liapunov candi-  

 

 

Figure 3. Bond-stock unstable node at the origin. 

date function for this system.  
Example 
To illustrate such a concept let us consider a financial 

system composed of a bond  and a stock  de- 
scribed by 

 B  S

 2 2B S B B S                 (46) 

 2 2S B S B S                  (47) 

Cleary, the origin 0, 0B S   is the only equilib- 
rium state. Determine now its stability. Let us define a
finan

 
cial scalar function 

  21
,V B S B  21

2 2
S              (48) 

which is positive definite, then the time derivative of 
 ,V B S along any trajectory is 

   2 2,V B S BB SS B S              (49) 

 ,V B Swhich is negative definite. This shows that  is 
continually decreasing along any trajectory; hence 
 , is a Liapun  that guarantees the 

equilibrium state at the origin of the financial system is 
asymptotically stable in large as shown in Figure 4. 

Such a candidate func

V B S  ov function

tion (48) characterizes the con- 
servation of the financial system (sim
of conservation of energy). The bond

e
served a s. Truly, if for example 
the bond is increasing, then the stock shou
ing.  

m 

 

ilar to the principle 
-stock dynamics (46) 

and (47) characterizes also that it is not possible that both 
are incr asing. That is due to the fact that both are con- 

nd have constant value
ld be decreas- 

6. Controlled Financial Derivatives Syste

There are two types: component heads and text heads. 
For the sake of testing the controllability of Black-Scho- 
 

 

Figure 4. Stability of the stock-bond system. 
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les Derivatives Formula recall the disrcretized form in 
Equation (16) assuming zero source function 

ming risk-free rate 0.04r  , variance 0.3   

 wit

Assu
 tf and for 6 months, with constant left boundary condition 

0L  and constant right boundary conditions 0R h a 
step size

 as 
follows 

 d

d
w t

t
 

u
Αu B  

 of 0.1.  
where the coefficient matrix  

 

8

 
and the input vector is 

0.14 0.06 0 0 0

0.16 0.41 0.2 0 0

0 0.38 0.86 0.44 0 0 0

0 0 0.68 1.49 0.7 0

0 0 0 1.08 2.30 1.18 0 0 0

0 0 0 0 1.56 3.29 1.68 0 0

0 0 0 0 0 2.14 4.46 2.27 0

0 0 0 0 0 0 2.8 5.81 2.96

0 0 0 0 0 0 0 3.56 7.3

 
  
 
 

 
  
 

 
  

 
  

Α  

0 0 0 0

0 0 0 0

0 0

6 0 0 0

  TV x u Pu  

 90 0 0 0 0 0 0 0 110T B ; 

We are seeking a Liapunov candidate function that 
satisfies conditions (41), (44) and (45), such that 

It is possible to start with appo tive definite matrix si

9 9Q I  
to the foll

to serve this goal. Performing calculations leads 
owing definite positive matrix: 

 

 
It is desired now to design a state-feedback financial 

controlled system such that the desired closed loop poles 
are: 

, ,  

, ,  

, .  

3

     5.5389    2.5041    1.4393    0.9136    0.6035    0.3997    0.2556    0.1485    0.0660

    2.5041    3.1870    1.8318    1.1627    0.7681    0.5087    0.3253    0.1891    0.0840

    1.4393    1.8

P

318    2.0439    1.2973    0.8570    0.5676    0.3630    0.2109    0.0937

.9136    1.1627    1.2973    1.3902    0.9184    0.6082    0.3890    0.2260    0.1004

    0.6035    0.7681    0.8570  .9184    0.965

0.6396    0.6

0    0.4

    0.1485    0.1891    0.2109    0.2260    0.2377    0.2472    0.2554    0.2630    0.1168

    0.0660    0.0840    0.0937    0.1004    0.1056    0.1098    0.1134    0.1168    0.1200

 
 
 
 


 



 
 
 
 

    0


7    0.6396    0.4090    0.2377    0.1056

653    0.4254    0.2472    0.1098

090    0.4254    0.4395    0.2554    0.1134





   0

    0.3997    0.5087    0.5676    0.6082    

    0.2556    0.3253    0.3630    0.389





1 0.0745s   , 2 0.1777s   , 3 0.3978s   ,  

4 0.7914s   , 5 1.4379s   , ,  6 .4433s  2

7 3.9844s   , 8 6.3814s   , 9 10.4114s    
1 1s   , 2 2s   3 3s  

with characteristic equation is given by: 
4 4s   , 5 5s   6 6s     9 8 7

5 4

2

26.1 253.7 1184.4

          2867.8 3644.4 2362.5

            730.1 94.8 3.9

a s s s s s6

3s s s

s s

   

  

  

 7 7s   , 8 8s   9 9s  

With a corresponding characteristic equation 

  9 8 7 625 270 1650s s s s s
Before proceeding it is cruc ly imp t to check 

th (29) and 
(30). Mathematical implementations provide that the con- 
trollability matrix and observability matrix are both of 
full rank 9. It implies that we can design a pole place- 
ment controller at any desired location.    

ial ortan
    

e controllability and observability conditions 
5 4

2

           6273 15345 24080

            23  12576 2300 880

s s s

s s

  

  

 

Compared to the ori ues (p ): ginal eigenval oles
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0

Gain calculations based on Equation (37) yields to the following values (in Millions) 

94.8 730.1 2362.5 3666.4 2867.8 1184.4 253.7 26.1 1

730.1 2362.5 3666.4 2867.8 1184.4 253.7 26.1 1 0

2362.5 3666.4 2867.8 1184.4 253.7 26.1 1 0 0

3666.4 2867.8 1184.4 253.7

.7 26.1

1184.4 253.7 26.1 1

2



53.7 26.1 1 0

26.1 1 0 0

0 0 0 0 0 0

 
 
 
 
 

 
 
 
 
 

26.1 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0






 2867.8 184.4 253W

 1

1 0


 83.5 580.4 1291.1 1501.2  967.2 351.2 69.8 6.9 0.3K  (in Millions) 
 

The results show that in order to guarantee the stability 
of financials systems at the origin with the desired poles 
it is necessary to provide a negative feedback gain as 
shown in the former gain vector. It implies that for the 
first option the output value should be magnified as 
83.5 times the financial output 1 (in Millions) 

580.4 times the financial output 2 (in Millions) 

967.2 times the financial output 5 (in Millions) 
351.2 times the financial output 6 (in Millions) 

iv
e financial 

sy own in 
Fi  has 
be lains 
th

system 
in 6. Such 
re ll. In the 
si oefficient 
ex

 substational commitments.  
Financial derivatives are blamed for the catastrophic  

financial crisis since 1997. The Bank of International Set- 
tlements (BIS) in Switzerland has recently reported that 
global outstanding derivatives have reached 1.14 quadril- 
lion dollars: $548 Trillion in listed credit derivatives plus 
$596 trillion in notional OTC derivatives. Many experts 
claim that the core theories/theorems were based on wildly 
unrealistic assumptions and did not stand out for their 

ew led to a series of financial 
e lnerability of 

financial institutions setting he occurrence 
of financial crises including the current one. 

ility and control of financial deriva- 
of this article. Such objectives are in- 

 u  

1291.1 times the financial output 3 (in Millions) 
1501.2 times the financial output 4 (in Millions) 

empirical strength. This vi
practices that increased th

69.8 times the financial output 7 (in Millions) 
6.9 times the financial output 8 (in Millions) 
0.3 times the financial output 9 (in Millions) 
From practical point of view, it means that to keep the 

financial der ative system stable, $83.5 millions times 
the financial output1 must be injected into th

stem under consideration. Simulation results sh
gure 5 show that the financial derivative system
en brought back to its equilibrium state. This exp
e inflation and financial derivatives deficit.  
The transformation of the financial derivative 
to heat equation is demonstrated in Figure 
sults verify the stability of the system as we
mulation it is assumed a non-constant heat c
ponentially decreasing.  

7. Conclusions 

Just Recently the Global Financial Economy has been 
suffering from the worst financial crisis since the Great 
Depression sicne 1930. The current crisis is triggered by 
the shortfall of liquidity in the United States, followed by 
collapsing of large financial institutions, bailout of banks, 
turndowns of international stock markets and credits, 
collapse of housing bubble, mortgage foreclosures, fail- 
ure of key businesses, declines of wealth, increase of 
governmental debts due to

fragility and vu
 the context for t

Equilibrium, stab
tives is the concern 
vestigated based on the descertization of Balck-Scholes 
formula to a system of linear ordinary differential equa- 
tions.  

It is figured that such Black-Scholes based financial 
derivatives experience a drift which hardly can be brought 
to equilibrium state. The financial derivatives dynamics 
represents an affine system which does not have any 
equilibrium point due to the non-zero drift vector term 
which characterizes a kinematic constraint. 

Conditions of controllability and observability of fi- 
nancial systems are introduced. Moreover, stability of such 
derivatives is tested by the virtue of Liapunov methodo- 
logy. It is proved that financial system should satisfy the 
quadratic form which can be interpreted as conservation 
of financial instruments. This candidate inherits the con- 
servation of physical money.  

For Bond-Stock option it is implied that to stabilize such 
a system, the bonds risk-free rate r  should be increased 
and drift parameter   should decreased the stock. From 
physical point of view, the negative sigh is to balance the 
increase of the bonds and comply with the conservation 
of

cial system (similar to the principle of conservation of 

 financial money.  
Such a candidate function for stock-bond option is 

proposed. It characterizes the conservation of the finan- 
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Figure 5. Financial derivatives controlled system. 
 

 

Figure 6. Financial derivatives in the heat transformed form. 
 
energy). The bond-stock dynamics reveals that it is no t 
possible that both are increasing. That is due to the fact 
that both are conserved and have constant values. Truly, 
if for example the bond is increasing, then the stock should 
be decreasing.  

Furthermore, a financial state-feedback control system 
is proposed. Such analysis shows that the financial de- 
rivatives system needs to be injected with cash to main- 

tain a stable financial system. These results can explain 
the shortfall of liquidity needed to substitute for the 1.14 
quadrillion dollars bubble. Finally, scenarios and simula- 
tion are demonstrated to verify the effectiveness of the 
proposed approach. 

The results show that in order to guarantee the stability 
of financials systems at the origin with the desired poles 
it is necessary to provide a negative feedback gain as 
shown in the former gain vector. From practical point of 
view, it means that to keep the financial derivative sys- 
tem stable, liquidity must be injected to the financial 

ation. Simulation results shown in 
figure show that the financial derivative system has been 
brought back to its equilibrium state. 

Future work will focus on how a financial derivative 
system can be controlled by designing an observer (esti- 
mator) without the need of measuring all derivatives 
values. 
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	Theorem: Consider the financial dynamic system de- scribed by , where  is an  state vector and  is  constant nonsingular matrix. A necessary and sufficient condition that the equilibrium state  be asymptotically stable in large is that, given any posi- tive-definite real matrix , there exist a positive-definite real matrix  such that 

