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ABSTRACT 

In this paper, we relax the assumption of a known time horizon in optimal control models. 
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1. Introduction 

The literature on control and optimization mainly 
considered a known predetermined time horizon or infinite 
horizon. However, the previous studies did not examine 
the possibility of unknown (random) time horizon. 
Examples include Alghalith (2009) [1], Fleming (2004) 
[2], and Focardi and Fabozzi (2004) [3], among many 
others. In some cases, it is more realistic to assume that 
the horizon depends on some of the stochastic factors of 
the model and therefore it is random. Hence, it cannot be 
predetermined at the initial time. For example, the horizon 
of the investor might depend on the stochastic asset price 
or any other economic factor. Therefore the investor adjusts 
the horizon accordingly. Consequently, the assumption of 
a non-random horizon is somewhat restrictive. 

In this paper, we relax the assumption of a known time 
horizon without significantly complicating the optimal 
solutions. As an example, we apply our methods to a 
stochastic factor incomplete markets investment model. In 
so doing, we provide solutions for the optimal portfolio 
under the assumption that the investor does not have a 
predetermined time horizon. 

2. The Model 

We consider an investment model, which includes a risky 
asset, a risk-free asset and a random external economic 
factor. We use a three-dimensional standard Brownian 
motion 
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turn and sY  is the stochastic economic factor. 
The dynamics of the risky asset price are given by 
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where  sY  and  sY  are the rate of return and the 
volatility, respectively. The economic factor process 
dynamics are given by 
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The stochastic terminal time is denoted by ,  and its 
dynamics are given by  
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where x  is the initial wealth,  π ,s s t s  
  is the port-  
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The investor’s objective is to maximize the expected 
utility of the terminal wealth 
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where  .V  is the value function,  is a continuous, 
bounded and strictly concave utility function. 

 .u

The value function satisfies the Hamilton-Jacobi- 
ellman PDE B    
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   , , = ,V x y u x                                             (5) 

where ij  is the correlation coefficient between the Brownian motions. Hence, the optimal solution is 
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Clearly, following previous studies, we can obtain an 

explicit solution for specific functional forms of the 
utility such as an exponential utility function. 
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