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ABSTRACT 

In their paper, “On the Cross-sectional Relation between Expected Returns and Betas”, Roll and Ross (1994) demon- 
strated that the expected returns and betas can have zero relationship even when the underlying market portfolio proxies 
are nearby the efficient frontier. In this note, we provide the mathematical details that lead to their conclusion and fur- 
ther show that their claim needs not hold for the entire set of MV portfolios. 
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1. Introduction 

There is ample empirical evidence that sample mean re- 
turns and estimated betas have no statistically significant 
relationship. For example, Fama and French (1992) [1] 
finds no cross-sectional beta-return relation after control- 
ling for firm size and book-to-market financial ratio.  

Roll and Ross (1994) [2] demonstrate that expected re- 
turns and betas can have a zero relationship even if the un- 
derlying market portfolio proxies are nearby the efficient 
frontier, whereas the relationship can always be positive if 
generalized least square (GLS) regression is used for the 
test. Their demonstration implies an extreme sensitivity 
of the empirical test of cross-sectional relationship to the 
choice of proxies for market portfolio.  

In this paper, we provide analytical details on the cross- 
sectional relationship examined in [2]. Our derivation clari- 
fies the sensitivity of the risk-return covariability to the 
choice of index proxies and thus characterizes the index 
proxies that lead to the insignificant relationship. 

2. Derivation of the Index Proxies 

For comparability, let’s employ the notations used in [2]. 
Let R denote the vector of expected returns for the N 
individual assets. Let V be the N  N covariance matrix 
of returns. The unit vector is denoted by 1, the portfolio 
weights vector is denoted by q, and the scalar expected 
portfolio return is r = q'R.  

The scalar portfolio return variance is σ2 = q'Vq and 
the cross-sectional or time series variance of asset j is 

2
j . The cross-sectional mean or expected returns is de- 

noted by 1
1

N
  R  and 1

π 1
N

 R  is the vec- 

tor of scalar expected return deviations from the cross- 
sectional mean. The scalar slope from cross-sectional 
regressing R on betas computed for individual assets against 
portfolio q is denoted by k.  

Note that the slope coefficient estimate (the sample 
beta) of a time-series regression Rit = αβi Rmt + eit, is 
given by    Cov , Vari it mtR R R  mt , where 
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since   2Cov ,ii it it iV R R    and  
 Cov ,it jt ijV R Rij   . 

Denote β as the vector of the slope coefficient esti- 
mates. Then we must have  Var mtR  Vq Vq q Vq . 
In order to see this, consider the covariance of each indi- 
vidual stock and the portfolio,  
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  2Var mtR  q VqSince , it follows from (1) that 
Vq q Vq .  

 variance (MV) index proxy should satis- 
fies the following three conditions: 1) the portfolio’s ex- 
pected return is a fixed value, r; 2) its weights q sum to 
unity; and 3) a cross-sectional regression of ex
returns R on betas 

A minimum

pected 
( β Vq q Vq )) has a given s

The MV index portfolio can be obtained from minimiz- 
ing  with respect to q, subject to  

                   (2) 

 and                  (3) 

lope k. 

q Vq
r q R ,

1 1q ,

2kk   q V q Vq .             (4) 

charaThe main cteristic of the MV index portfolio is 
implied in the third constraint (Equation (4)). Consider a 
cross-sectional regression 
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The slope is given by   2
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Because the variance is treated as a simple constant, the 
β s y assumed.   
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3. Detailed Derivation of the Market  
Portfolio Weights  

Based on Equation (7), Roll and Ross (1994) claimed the 

f 
index proxies. Hence in order to understand their claim, 
we need to examine the details behind 
deri

.

  (

together with thre

   21r k 1 =R V q            (6) 

Thus in Roll and Ross (1994) the m
eights are given by  

 1 1 1r k     1q V R V A ,  

ere     is a 3  3 matrix. 1 1 1A R V V R V   

sensitivity of the risk-return covariability to the choice o

the mathematical 
vation of Equation (7).  

The first order condition (5) can be written as  

  1 2 3 32   2k      1  0Vq R V Vq  

Pre-multiplication of the above equation by 

    (8) 

n for the Lagrange multipli- 

V–1 leads 
to  
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1 2 3 3    = 2 2k      1 V R V q

In order to obtain a solutio
ers λ, we pre-multiply Equation (8) by  1R V  to 
obtain  

     1
1 2 3 3 2 2 A     .k        1 πR V q     (9) 

We need to eliminate λ3 from the right hand 
the substitution of Equation (9) i

side of 
Equation (8). By nto (8), 
Equation (8) becomes  

(10) 

The substitution of Equation (6) into (10) y
fo

, 

provided that 2 + 2kλ3  0.  
In order to see that 2 + 2kλ3  0, suppose the c

th

hich contradicts the premise that 
λ3 = −1/k. 

4. Conclusion 

R
ated as constants. Hence, the 

implicitly-assumed beta stationarity implies k is also 
constant. The choice of index proxies (in rms of ex- 
plaining the cross-sectional return-risk relationship) is an 

so follows that the return of 
th
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