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ABSTRACT

The paper presents and tests Dynamic Value at Risk (VaR) estimation procedures for equity index returns. Volatility
clustering and leptokurtosis are well-documented characteristics of such time series. An ARMA (1, 1)-GARCH (1, 1) ap-
proach models the inherent autocorrelation and dynamic volatility. Fat-tailed behavior is modeled in two ways. In the
first approach, the ARMA-GARCH process is run assuming alternatively that the standardized residuals are distributed
with Pearson Type IV, Johnson Sy, Manly’s exponential transformation, normal and #-distributions. In the second ap-
proach, the ARMA-GARCH process is run with the pseudo-normal assumption, the parameters calculated with the
pseudo maximum likelihood procedure, and the standardized residuals are later alternatively modeled with Mixture of
Normal distributions, Extreme Value Theory and other power transformations such as John-Draper, Bickel-Doksum,
Manly, Yeo-Johnson and certain combinations of the above. The first approach yields five models, and the second ap-
proach yields nine. These are tested with six equity index return time series using rolling windows. These models are
compared by computing the 99%, 97.5% and 95% VaR violations and contrasting them with the expected number of
violations.

Keywords: Dynamic VaR; GARCH; EVT; Johnson Sy; Pearson Type 1V; Mixture of Normal Distributions; Manly;

John Draper; Yeo-Johnson Transformations

1. Introduction

VALUE AT RISK (VaR) is a popular measure of risk in
a portfolio of assets. It represents a high quantile of loss
distribution for a particular horizon, providing a loss thresh-
old that is exceeded only a small percentage of the time.

Traditional methods of calculating VaR include his-
torical simulation and the analytic variance-covariance
approach. However, these models fall short when tested
against actual market conditions. The historical simulation
approach assumes constant volatility of stocks over an
extended period of time. It fails to account for the phe-
nomenon of volatility clustering, when periods of high
and low volatility occur together. This leads to underes-
timation of VaR during periods of high volatility, and
overestimation in times of calm. The analytic variance-
covariance approach assumes that returns are jointly nor-
mally distributed. However, the fat-tailed non-normal be-
haviour of returns would mean that this methodology tends
to underestimate VaR as well.

Fama [1] and Mandelbrot [2] report the failure of the

“This work was carried out when Siddarth Madhav R was a graduate
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normal distribution to model asset returns, sparking a slew
of papers addressing the issue of accurately modeling lep-
tokurtic time series with volatility clustering. The ap-
proaches can be roughly divided in two, the first assuming
that returns are independent and modeling unconditional
distribution of returns. In this approach, numerous distri-
butions have been proposed, Fama [1] and Mandelbrot [2]
use the stable Paretian distribution, Blattberg and Gonedes
[3] suggest the use of Student ¢-distribution. The mixture
of normal distributions is used by Ball and Torous [4]
and Kon [5] and the logistic distribution, the empirical
power distribution and the Student ¢-distributions have
been compared by Gray and French [6]. The Pearson type
IV distribution is used by Bhattacharyya, Chaudhary and
Yadav [7] for dynamic VaR estimation and by Bhat-
tacharyya, Misra and Kodase [8] for dynamic MaxVaR
estimation. Bhattacharyya and Ritolia [9] use EVT for
dynamic VaR estimation.

The second approach considers returns to be serially
correlated and uses conditional variance models or sto-
chastic volatility models to model asset returns. Engle
[10] and Bollerslev [11] use ARCH and GARCH models
to account for volatility clustering. GARCH models have
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14 M. BHATTACHARYYA ET AL.

been shown to be more suited to this purpose by various
studies such as Poon and Granger [12]. The GARCH (1,
1) model performs well for most stock returns and this
paper adopts this approach.

The following model has been extensively used to
model dynamism in forecasts of returns and volatility of
returns.

X; :ﬂt+GtZt (1)

where X, is the actual return on day ¢, g, is the ex-

pected return on day ¢, o, is the volatility estimate on
day t and Z, is the standardized residual, having a nor-
mal distribution with zero mean and unit standard devia-
tion.

ARMA processes are useful for modeling g, , the
predicted mean of the time series data, and GARCH
processes are good models for o, , the predicted volatile-
ity. However, the inherent leptokurtic behaviour of asset
returns makes the ARMA-GARCH model insufficient
for the purpose of calculating VaR.

In this paper, ARMA (1, 1) model is used for the cal-
culation of predicted mean and GARCH (1, 1) model is
used for modeling the observed volatility clustering.
Models are developed using two approaches. In the first
one, consisting of five models, ARMA-GARCH model
parameters are calculated assuming that standardized
residuals alternatively follow Pearson Type IV distribu-
tion, Johnson S, distribution, Manly’s exponential trans-
formation, normal and Student #-distributions. In the
second approach, the ARMA-GARCH parameters are
calculated using the pseudo-normal assumption, i.e., as-
suming that standardized residuals are normally distrib-
uted, and they are later modeled using the mixture of
normal distributions, Extreme Value Theory, and other
power transformations such as John-Draper, Bickel-
Doksum, Manly, Yeo-Johnson and certain combinations
of the above. The second approach yields nine models.

While developing and testing VaR models, the authors
find it important to develop those that are applicable in
real world scenarios. This translates to certain simplicity
in execution and fast run-times for calculations, as time
can be a critical issue. At the same time, the importance
of creating an accurate measure of risk cannot be under-
stated, given how the stock market crash of 2008 bank-
rupted firms and individuals alike, and sent the world spi-
raling into recession.

2. Leptokurtic Density Functions
2.1. Pearson Type |V Distribution

The Pearson family of curves, a generalized family of fre-
quency curves developed by Karl Pearson, embodies a
wide range of commonly observed distributions. The Pear-
son curves are a solution to the differential equation

Copyright © 2012 SciRes.

X—a

1 df(x) 3 )

f(x) dx - Co+ox+e,x”

The system of curves which arise from the above dif-
ferential equation cover a wide spectrum of skewness
and kurtosis (Figure 1). The type of distribution obtained
post-integration is dictated by the roots of the quadratic
equation ¢, +c,x+c,x> =0.

The Type IV curve is obtained when the roots of the
quadratic equation ¢, +¢,x+c,x” =0 are complex, i.e.,
when ¢} <4c,c,. It is suitable for those distributions
which have high excess kurtosis and moderate skewness.
Financial return data fall in this category. The probability
density function (PDF) of the Type IV curve (Heinrich,
[13]) is

f(x)zk{1+(x;/lj2:|_mexp{—vtanl(x;/lﬂ 3)

where A, a, v and m are real parameters (functions of a,
¢»¢ andc,), m > 1/2, —o<x<o and k is a norma-
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Figure 1. The diagram of the Pearson curve family. It shows
the type of curve to be used for each range of skewness and
kurtosis. The x-axis is 8, = skewness?, and the y-axis is £,
thetraditional kurtosis.
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lizing constant, dependent on 4, a, v and m.

The PDF gives rise to a bell shaped curve, where 4 is
the location parameter, a is the scale parameter, v and m
can be interpreted as the skewness and kurtosis parame-
ters respectively.

The type of Pearson curve to use for a particular situa-
tion is dictated by the skewness and kurtosis. Table 1
shows the observed skewness and excess kurtosis for the
six equity indices. Cross-referencing them with Figure 1,
we can see that Pearson Type IV curve is the model to be
used.

For a standardized Pearson Type IV curve, i.e., with
zero mean and unit standard deviation, we need to add the
following constraints.

a = =1 @)
r-+uov
A =av)r 5)

2.2. Johnson S, Distribution

The Johnson family of distributions (Johnson, [14]) con-
sists of three distributions, which cover all possible av-
erage, standard deviation, skewness and kurtosis values,
excluding the impossible region. These consist of the
Sy.Sg and the lognormal curves. The transformations
have the general form

Z=7/+5.g(XT_§) (©6)

where the transformation parameters ¢ is the location, 4 is
the scale and y and 0 are shape parameters. Z is the re-
sulting normal distribution. g() is one of the following
functions:

In(y) Lognormal distribution
3 sinh™' Sy distribution

In ( y / (1 - y)) Sy distribution

y Normal distribution

Since we are modeling the innovations of the ARMA-

ARCH process, we require a transformation function which
can accept arguments that may be positive or negative.
Hence we need to use the Johnson S, distribution, as the
sine hyperbolic inverse function has a domain all over the
real line.

So we have

Z=y+0*sinh™ (XT_‘?) @)

where ¥ and ¢ are assumed to be positive.
The density function of Johnson S, distribution can
be easily found in closed-form from variable transforma-

tion:
SR q{y +&sinh™ (ﬂﬂ
x—& ’ A

A 1+( j
)]

where xe R, ¢ is the density function of N(0,1), &
and A > 0 are location and scale parameters respect-
tively, » can be interpreted as a skewness parameter,
and 6 > 0 can be interpreted as a kurtosis parameter.
The distribution is positively or negatively skewed ac-
cording to whether y is negative or positive. Holding
y constant and increasing o reduces the kurtosis. How-
ever, ¥ and O cannot be viewed purely as skewness or
kurtosis parameters, respectively. The mean and the
variance of Johnson Sy distribution are given as:

f(x7:6:,64) =

=&+ 0" sinhQ )
12
o’ :7(a)—1)(a)ccosh2§2+l) (10)

where wzexp(é"z) and Q=y/5.

2.3. Extreme Value Theory

Extreme value theory provides a framework to formalize
the study of behavior in the tails of a distribution. Ac-
cording to the Fisher-Tippet theorem, there can be three
possible extreme value distributions for the standardized
variable.

Table 1. Comparison of momentsfor each stock index return series.

Index Sensex NIFTY

DJI FTSE HSI Nikkei

Observations 1500 1500

1500 1500 1500 1500

Dates Mar 03 -Feb09 Mar03-Feb09 Mar03-Feb09 Mar03-Feb09 Mar03-Feb09  Mar03-Feb 09
Mean 0.0009 0.0009 0.0001 0.0002 0.0004 0.0001
Std. Deviation 0.0178 0.0181 0.0124 0.0127 0.0169 0.0163
Skewness —0.4276 —0.5130 0.2624 0.1409 0.3876 —0.2730
Kurtosis 7.2358 8.6112 17.3926 14.5248 15.5344 12.8085
Copyright © 2012 SciRes. JMF



16 M. BHATTACHARYYA ET AL.

2.3.1. Gumbel Distribution

As with the normal and gamma distributions, the tail can
be unbounded, have finite moments and decay exponent-
tially. The distribution function is given by:

G(x):exp(e”‘) for—oo < x <o (11)

2.3.2. Frechet Distribution

The tail can be unbounded, and decay by a power as with
the Cauchy and Student #-distribution. The distribution
function is given by

{0 for x<0

G(x)= exp(—x’“) for x>0

(12)

Moments exist only up to the integer part of a, higher
moments do not exist, as the tails are fat, they are not
integrable when weighted by tail probabilities.

2.3.3. Weibull Distribution

The tails are constant-declining, and all moments exist.
They are thin, and have upper bounds. The distribution
function is:

exp(—(—x)a) for x <0

1 for x>0

G(x)= (13)

Now, since the financial returns data are fat-tailed and
unbounded, we must clearly use the Frechet distribution
for modeling extreme value distributions.

2.3.4. Generalized Extreme Value Distribution

The Generalized Extreme Value Distribution (GEVD)
unifies the above three distributions. Here the tail index
(7) is the inverse of the shape parameter (o). In this equa-
tion given below, if 7 =0, it is a Gumbel distribution, if
7<0, it is a Frechet distribution else if >0 it is a
Weibull distribution.

)= exp(—(l+z’x)71/r) forz#0 (14)
exp(—e’x) forz=0

To build the series of maxima or minima, there are two
methods:

2.3.5. Block Maxima

This approach consists of splitting the series into equal
non-overlapping blocks. The maximum from each block
is extracted and used to model the extreme value distri-
bution. As volatility clustering is a well observed pheno-
menon in financial data, very high or very low observa-
tions tend to occur together. Thus, this technique runs the
risk of losing extreme observations.

Copyright © 2012 SciRes.

2.3.6. Peak over Threshold

The second approach consists of sampling maxima by se-
lecting those that exceed a chosen threshold. A low thres-
hold would give rise to a larger number of observations,
running the risk of including central observations in the
extremes data. The tail index computed has lesser vari-
ance but is subject to bias. A high threshold has few ob-
servations, and the tail index is more imprecise, but un-
biased. The choice of the threshold is thus a trade-off be-
tween variance and bias. For the analysis in this paper,
we use the Peak over Threshold method.

2.4. Mixture of Normal Distributions

The mixture of normal distributions, used to model fat-
tailed distributions, assumes that each observation is gen-
erated from one of N normal distributions. The probabil-

[73%:2]

ity that it is generated from a distribution “’ is  p, , with

Zfilpf:l-

The resultant density function
N
1(x: sty - Pyt ) = 2. 0.8 (%) (15)
i=1

where ¢ is a normal distribution with mean g, and
standard deviation o,. For the special case of N =2,
we have

1(x:0) = pg (x)+(1-p) ¢, (x) (16)

where 6 =(p,u,1,,0,,0,) is the parameter vector.
For a mixture of N normal distributions, the first four
moments are:

N
=D ity (17
i=1
2 y 2 Y 2 2
o, :ZP,-U[ +ZP,~,U,~ —H, (18)
i=1 i=1
_ 1 2 3 _ 2_ 3 1
7, =—| 2(3u0r + ') =3uo; -4, (19)
i=1

n

N
K, = L4|:Z: D; (30-1'4 + 6#:’20-1’2 + /11'4)
(e (20)

3 2 2 4
_4177#77 77_6/177 77_/177:|

A mixture of more than two normal distributions may
provide a better fit to the series, but Tucker [15] reports
that the improvement by increasing the number of nor-
mal distributions in the mixture from two is not too sig-
nificant. Estimation of parameters for the mixture of nor-
mal distribution is problematic. This is because, although
we have a well defined distribution function in a closed
form, using maximum likelihood techniques for parame-
ter estimation leads to convergence issues (Hamilton, [16]).

JMF
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Using method of moments is another option, but even for
the simplest case of N =2, we need five moment equa-
tions to find the five parameters,

D, 1y, M,,0,,0,, and there may not be a solution at all
(Titterington, Smith and Makov, [17]). Alternate meth-
ods have been suggested, such as fractile-to-fractile
comparisons (Hull and White, [18]) and Bayesian updat-
ing schemes (Zangari, [19]).

This paper uses the fractile-to-fractile comparison tech-
nique along with a simplifying assumption that one of the
means of the mixture of normal distributions is zero. This
is a reasonable assumption, in the data set, as most ob-
servations (about 95%) lie in the zero-mean normal dis-
tribution, and it simplifies calculations considerably.

2.5. Power Transformations

Box and Cox [20] propose one of the first power trans-
formations converting a non-normal distribution into a
normal one. In its original form, the transformation func-
tion is:

Yoloieas0
2

y(4)= @1

logy, ifA=0

However, as it can be seen, the power transformation
cannot be applied to negative values of y . Since then,
many modifications of the original Box-Cox power
transformation have been proposed.

2.5.1. Manly’s Exponential Distribution
Manly [21] proposed the exponential distribution given
below.

1 a0
y(a)=y"2 "7 22)

y, if A=0

Negative values of y are permitted. This transforma-
tion is useful for transforming skewed distributions to
normal (Li, [22]).

2.5.2. Bickel-Doksum Transfor mation
Bickel and Doksum [23] transform the original Box-Cox
transformation to

_|y|isign(y)—l
y(2) == for >0 (23)
where
_ +1, if y>0
- 24
sign(») {—1, if y<0 @)

The addition of the sign function makes this transfor-
mation compatible for negative values of y as well.

Copyright © 2012 SciRes.

2.5.3. John-Draper Modulus Transformation
John and Draper [24] propose the modulus transforma-
tion given below:

A (25)
sign(y)log(|y[+1), if2=0

A
1y -1
Y1) sign(y)M, i2£0

where

+1, ify>0

sign(y) = {_1 ify <0 (26)

The modulus transformation works best on those dis-
tributions which are approximately symmetric about some
central point (Li, [22]). It reduces the kurtosis of the se-
ries, while introducing some degree of skewness to a
symmetric distribution.

2.5.4. Yeo-Johnson Transformation
Yeo and Johnson [25] propose the following transforma-
tion in 2000:

A_
O =l 020
A
log(y+1), 4=0,y2>0
y(4)= Lo (27)
=y -1 , A#2,y<0
A=-2
—log(1-y), 4=2,y<0

In their original paper, Yeo and Johnson [25] find the
value of A by minimizing the Kullback-Leibler distance
between the normal and transformed distributions. In this
paper however, we have found A by maximizing log-
likelihoods. This transformation, like Manly, reduces skew-
ness of the distribution and makes the transformed vari-
able more symmetric.

3. Dynamic VaR Models

This section describes the methods used to calculate dy-
namic Value at Risk for equity index returns.

3.1. Model for Conditional M ean and Variance

To calculate conditional mean 4, given the time series
data until time 7 — 1, we use an ARMA (1, 1) process.

X, =C+4 X _ +0¢,_ +¢ (28)

We use the GARCH (1,1) process to model the volatil-
ity of the innovation term.

O'rz =K+ algtz—l + ﬂlo-tz—l (29)
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18 M. BHATTACHARYYA ET AL.

3.2. Modelsfor Innovations

In Equation (1), the forecasted mean and variance are
calculated by an ARMA (1, 1)-GARCH (1, 1) model. As
mentioned in the introduction, there are two approaches
followed to model innovations. In the first approach,
ARMA (1, 1)-GARCH (1, 1) model parameters are cal-
culated assuming that standardized residuals alternatively
follow Pearson Type IV distribution, Johnson S dis-
tribution, Manly’s exponential transformation, normal
and Student t-distributions. In the second approach,
ARMA (1, 1)-GARCH (1, 1) parameters are calculated
assuming that standardized residuals are normally dis-
tributed. The extracted standardized residuals are then
modeled using the mixture of normal distributions, Ex-
treme Value Theory, and other power transformations such
as John-Draper, Bickel-Doksum, Manly, Yeo-Johnson and
certain combinations of the above.

Method 1

The first approach consists of five models, whose de-
signs are outlined below.

Model 1.1 GARCH-N Model

In Equation (1), Z, is assumed to be a standard nor-
mal distribution. Therefore, the innovations term, ¢,, has
zero mean and the standard deviation of 7, .

Z,~N(0,1)=¢ ~N(0,h,) (30)

1 qz
———exXp| —— 3D
21'Eht { 2ht j
Therefore, the log likelihood function, which is maxi-

mized to find the parameters of the ARMA-GARCH
model for the series of length 7T is given by

1Z e
LLF =——> |log(2nh )+—— 32
2 LIC T I

t

f(fx|Fx-1):

The maximum likelihood estimates for the ARMA (1,
1)-GARCH (1, 1) parameters are found by minimizing
the negative of the above function using the fmincon func-
tion in MATLAB.

Model 1.2 GARCH-t Model

In Equation (1), Z, is assumed to be a Student #-dis-
tribution with zero mean and unit standard deviation. There-
fore, the log likelihood function, the logarithm of the den-
sity function of the innovations term, ¢, for the series of
length T is given by

) r[v;—l}
LLF =Y {log

L2 _1
)

_(vzl)log{wﬁiz)}

Copyright © 2012 SciRes.

(33)

where v represents the degrees of freedom in the #-dis-
tribution.

The maximum likelihood estimates for the ARMA (1,
1) GARCH (1, 1) parameters are found by minimizing
the negative of the above function using the fmincon func-
tion in MATLAB.

Model 1.3 GARCH-PIV Model

In Equation (1), Z, is assumed to be a Pearson Type
IV distribution. The standardized innovations series has
unit variance, but not necessarily a zero mean. This was
justified by Newey and Steigerwald [26], who proved that
an additional location parameter is needed to satisfy the
identification condition for the consistency of parameter
estimates when conditional innovation distribution in the
GARCH model is asymmetric. Hence Equation (4) holds,
but Equation (5) does not. Therefore,

E(X,IF,-1)=M+JE(1—“;”

j (34

Hence, for modeling innovations, we need to change
the location and scale parameters to /1\/2 and as\/_/%
respectively. The normalizing parameter is inversely pro-

portional to the scale parameter, so it changes to k/ \/Z .
Z, ~PIV (k,m,v,a ,A)=
€ ~ PIV(k/ﬂ,m,v,aSﬁ,ﬁﬂ)

The distribution function of the innovation series is
given by

(35)

L 6_’_& h, Qm

f(6,|Ft_1)=7 1+[a—\/;ll_]

-vtan™ {—6’ il H
a,\[h,

The log likelihood function to be maximized is given
by

(36)

exp

T

LLF =)’ logk—lloght _(r+2j
= 2 2

(q —/”L\/hj)z (rz +v2)
I (r—l)ht

. (q —/1\/2)\/;’2 +v7

\/rz (r—l)h[

We use Equation (4) and the relation r=2(m-1) to
write a, and m in terms of ». The log likelihood func-
tion is maximized (by minimizing —LLF’) using the fmin-

log| 1+

37

vtan
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con function in MATLAB. The maximum likelihood
estimates from the GARCH-N model and the Pearson
Type IV parameters calculated from the first four mo-
ments of the resulting standardized innovations series
(under the pseudo-normal assumption) are used as initial
estimates for the optimization function. The normalizing
constant k is computed by the technique used by Heinrich
[13].

Model 1.4 GARCH-JSU Model

In this model, the standardized innovations in Equa-
tion (1), Z, is assumed to be a Johnson S, distribu-
tion. As with the GARCH-PIV model, the standardized
innovations have unit variance, but not necessarily zero
mean. Therefore, from Equation (10), the scale parameter
A is constrained.

2
: _\/(‘U_l)(a)COShcoshZQ+1) (38)

where o= exp(é’z) and Q=y/5.

Note that Equation (9) does not hold, and the parame-
ter ¢ has to be estimated during optimization. The pre-
dicted future value of the time series is given by

E(X,|F_)=u,+~h, (£+10"sinhQ)  (39)
Now, for modeling the innovations series ¢, the loca-

tion and scale parameters must be changed to (f\/hj and
AAh, .

Zt ~JSU(7/957§52®)

= & ~JSU (7,8, Ah, ) )
f(elEL) - . il
€I_§ hl
PN B
b +[ ﬂsﬁ] (41)

o )

where ¢~ N(0,1).
The log likelihood function to be maximized is given

by

L 1
LLF =)’ {log5 —log A, —Elog 2mh,
! 1 | (42)
2

—Elog(1+77f)—5(;/+ Ssinh™ 77,) }

The maximum likelihood estimates are calculated by
minimizing the negative of the above function using the
fmincon function in MATLAB.

Model 1.5 GARCH-Manly Model

In this model, the standardized innovations in Equation
(1), it is assumed that when Z, is put through Manly’s ex-
ponential transformation (Equation (22)), it becomes nor-

Copyright © 2012 SciRes.

mally distributed. Assuming that the transformed normal
function has zero mean and unit standard deviation, Z,
has the following closed form probability distribution func-

tion
_—\/2/—11 exp[ﬂZ, _M(~z) ](43)
A

where M (A,Z,) is the exponentially transformed (Equa-
tion (22)) value of Z, and erf is the error function.

Therefore the standardized innovations (¢ have the
following distribution

2
f(fz|F;—1): & 1
ht [1 +erf (ij
[ﬂ,x] 2 44)
exp| — |1
hl
eXPI=> 2 exp(Ax/h,)

The log likelihood function to be maximized is given
by

T

LLF =3 -log

P 1
1+erf (/1\/5)

2
M [/1, ]
t

2

(45)

1 2 €
——log2nh” + A-L—
g BT T

t

The maximum likelihood estimates are calculated by
minimizing the negative of the above function using the
fmincon function in MATLAB. The above equations are
derived in detail in the Appendix.

Method 2

The second approach consists of nine models, whose de-
signs are outlined below.

Model 2.1 GARCH-EVT Model

In this model, the ARMA (1, 1)-GARCH(1, 1) para-
meters are found under the pseudo-normal assumption,
i.e., that the standardized innovations in Equation (1) Z,
is a standard normal function. Now, the assumption made
is that the values of Z, considered for calculation of
VaR, i.e., the 99", 97.5™ and 95™ percentiles are part of
an extreme value distribution. This assumption is theo-
retically justified, as the ARMA-GARCH process gets rid
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of the serial correlation between terms, and the Fisher-
Tippet theorem is applicable.

We use the Peak over Threshold (POT) method to ob-
serve the number of values which exceed a high thresh-
old. The distribution of conditional excess losses over a
certain high threshold follows a Generalized Pareto Dis-
tribution (GPD).

-
1—(1+%} R
G?ﬂ(x): .
l—exp| —= |, =0
exp( ﬁj :

where ¢ is the shape parameter (positive in our specific
case, as this yields a heavy tailed GPD) and S is the
scaling parameter.

The formula for conditional excess losses above the
threshold u (We consider the negative of the return series,
thereby ensuring that the threshold is positive, and mean
excess return is positive) is given by

(46)

F (y):P(X<y+u|X>u)

u

F,(v)=(F(y+u)=F ())/(1- F ()

Since F,(y) is a GPD with positive &, we need to
back-calculate F(y+u). F(u) is given by N,/N,
where N is the total number of observations and N,

(47)

(43)

Sensex: Critical Threshold

e
o

FTSE: Critical Threshold

is the number of observations above the threshold u.
Therefore, the tail estimator becomes
1

F(x)zl—JX; (1+§x;;”)§, forx>u  (49)
BN )
VaR, :u—i-E (Vu(l—q)] -1 (50)

The Value at Risk is now calculated by the formula
(5D

Choosing the threshold to be used in the calculations is
a subjective process. In this paper, we calculate the mean
excess returns for various values of thresholds and plot
them. For a GPD, the mean excess return is given by:

VaR] = y, +o,VaR,

o(u) = "lt‘?’

The threshold is calculated by observing the graphs
and identifying the point from which the conditional ex-
cess return increases linearly with the threshold values. It
is possible to consider any larger value as a threshold as
well, but this way, the maximum number of data points
gets accommodated in the extreme value distribution,
thus reducing the variance of the obtained parameters. In
Figures 2(a) and (b), we observe that the thresh old

(52)

Nifty: Critical Threshold

0.9 i 1.1
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Figure 2. The optimal threshold is calculated by plotting the mean excess function of the six time series. The point is chosen at
the point where the graph beginsto slope upwards. As can be seen, the DJI graph is an anomaly, where no such clear point is

present.
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value for Sensex returns is at 1.4, and for Nifty, it is at
1.5. Note that in the graphs, we consider the negative of
the return series, which is why the threshold values are
positive.

For certain time series, the graph obtained is not very
useful for finding the threshold. Consider the mean ex-
cess return for DJI in Figure 2 for instance. In such cases,
we consider an appropriately high value for the threshold,
such as the 95" percentile of negative returns.

Model 2.2 GARCH-MixNorm Model

This model also makes use of the pseudo-normal as-
sumption to calculate the ARMA (1, 1)-GARCH (1, 1)
parameters. The standardized innovations are assumed to
have a mixture of two normal distributions. We calculate
the mean, standard deviation, skewness and kurtosis of
these standardized innovations.

The mean of one of the two normal distributions in the
mixture is assumed to be zero. This assumption is rea-
sonable, as results show that the probability that the stan-
dardized residuals lie in this normal distribution is very
high. A small percentage lies in the other distribution, with
the non-zero mean and higher variance, these yield the
very high and very low values observed in the data.

Thus, the parameter vector is of size four:
0=(p,u,0,,0,). p is the probability that the data
point lies in the first (non-zero mean) distribution, g is
the mean of the first distribution, o, and o, are the
standard deviations of the first and second distributions
respectively. The mean of the second distribution is as-
sumed to be zero.

The parameter vector components must satisfy the four
moment constraints.

M, = piy (53)
2 2 2 2 1
o, =po; +(1=p)oy + 4, [——1j (54)
p
H, 2 2 o 1
T, 20_3{3(0-1 -0, )+,ue [?—IH (55)

2
K, :%{317014 +3(1—p)0§ +6,ue2 (o-—l—ofj

e

1
~4r,u,0) + i [—3— 1]}
P

An obtained solution is feasible if it satisfies the con-
straints o >0,0; >0 and 0<p<1.

To calculate the parameters through the method of
moments, we need five moment equations. It is possible
that there may not be a solution even if the first five
moments were calculated. So we employ a fractile-to-
fractile comparison test in addition to using certain mo-
ment equations.

(56)
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We employ a modified version of the technique used
by Perez [27]. The data (standardized residuals) is di-
vided into seven sets; less than 0.5 standard deviations,
05-1,1-1.5,15-2,2-2.5,2.5 -3, and greater than
3 standard deviations. The actual number of residuals in
each category (a,) is compared with the predicted
number of residuals for the solution each obtained from
the moment equations (g, ). The solution considered is
the one obtained by maximizing the log likelihood function

L(a,g):Zak log(gk) (57)

k=1

and satisfying the constraint Equations (49), (50), (52)
and (53). As it turns out in most cases, there is no solu-
tion which satisfies all of them, in such cases, constraint
Equation (52) is dropped. The minimization is carried out
using the fmincon function in MATLAB. It turns out that
the optimum values of the parameter are dependent on
the initial values considered, so the parameters obtained
for the previous data point are used as initial values in the
optimization for the next one.

The Value at Risk is now calculated by the formula in
Equation (48), where VaR/ is calculated from inserting
the calculated parameters in the mixture of normals
probability density function given by Equation (16) and
cumulating it by numerical methods.

Model 2.3 GARCH-Bickel-Doksum Model

We calculate the ARMA (1, 1)-GARCH (1, 1) parame-
ters under the pseudo-normal assumption. The standard-
ized residuals obtained (f,) are put through the trans-
formation suggested by Bickel and Doksum [23] to nor-
malize them (Equations (23) and (24)). If we assume that
for some value of the parameter A, the transformed ob-
servations T (A.,¢ ) are normally distributed with mean
4 and standard deviation o . The parameter is esti-
mated by maximizing the log likelihood function

(T (2e)-uf

207

1 (6¢)= —glog(ZRO'Q)—
(58)

+(/1—1)210g|q|
i-1

where 6 =(A,x,0). The maximum likelihood estimate
for the mean and variance is given by

ﬂ(ﬂ):%iT(ﬁ,q) (59)

G X{r(he)-a()] @0

The estimate for A can, therefore, be obtained by
simply maximizing the likelihood function
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1, (6l¢) = —glog(2n6'2)+(/1—l)log|q| (61)

As shown in Table 2(a), the Bickel-Doksum transfor-
mation does not handle skewed distributions well, as it
only reduces kurtosis. Hence, this model must be modi-
fied to fix this drawback.

The Value at Risk is now calculated by the formula in
Equation (48), where VaR? is calculated from the in-
verse Bickel-Doksum formula

Vare =—{-1-N"[(1-).4(2).6* (1))} (©2)

where N7'|q,/(4),6° (/1)} is the inverse normal func-
tion for probability (1—g), mean £(A) and variance
62(2).

Model 2.4 GARCH-John-Draper Model

We calculate the ARMA (1, 1)-GARCH (1, 1) parame-
ters under the pseudo-normal assumption. The standard-
ized residuals obtained (¢, ) are transformed with the mo-
dulus transformation proposed by John and Draper [24]
(Equations (25) & (26)). By using similar arguments as
the previous model, the parameter A is estimated by
maximizing the log likelihood function

l, (6’|5) = —%10g(2n6‘2)+(/1 —l)glog(|q| +l) (63)

where 67 is given by Equation (56) with T(4,¢) re-
presenting the modulus transformation.

As with the Bickel-Doksum transformation, Table 2(a)
shows that the modulus transformation is not a skew-
corrector, it reduces kurtosis. Hence, this model must be
modified to correct this.

The Value at Risk is now calculated by the formula in
Equation (48), where VaR/ is calculated from the in-
verse John-Draper formula

var? =1-{1-2N"[(1-q).2(2).6* ()]} (64

where N7'|q,0(2),6° (i)} is the inverse normal func-
tion for probability (1-¢), mean /(1) and variance
6 (4).

Model 2.5 GARCH-Yeo-Johnson Model

We calculate the ARMA (1, 1)-GARCH (1, 1) para-
meters under the pseudo-normal assumption. The stan-
dardized residuals obtained (¢,) are transformed with
the Yeo-Johnson [25] transformation (Equations (27)). By
using similar arguments as the previous models, the pa-
rameter A is estimated by maximizing the log likeli-
hood function

1(6]¢)= —glog(Zﬂ:é‘z)+(/1—I)Zt:sign(q)log(|q|+l)
i=1

(65)

where &7 is given by Equation (56) with T(4,¢) re-
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presenting the Yeo-Johnson transformation.

Tables 2(a) and (b) show that the Yeo-Johnson trans-
formation is a skew-correcting transformation. The model
must be modified to enable kurtosis-handling as well.

The Value at Risk is now calculated by the formula in
Equation (48), where VaR! is calculated from the in-
verse Yeo-Johnson formula

ar! =1-(1+(2-2)N ' [(1-0). 2(4).6* (2) ]}
(66)

where N7'|q,4(2),67 (l)] is the inverse normal func-
tion for probability (1-¢), mean /(1) and variance
6 (4).

Model 2.6 GARCH-Manly-John-Draper Model
We calculate the ARMA (1, 1)-GARCH (1, 1) under the
pseudo-normal assumption. The innovations are initially
transformed through the Manly exponential transforma-
tion to rid it of skewness. The symmetric data is now
transformed with the John-Draper modulus transforma-
tion, which reduces kurtosis. The doubly-transformed
data obtained is now roughly normally distributed (Ta-
bles 2(a) and (b)).

To obtain the parameter for the Manly transformation,
the following log-likelihood function is maximized.

1,(6]¢)= —%log(Znéz)—kgkq (67)

The parameter for the John-Draper transformation is
obtained by maximizing the log-likelihood function in
Equation (60).

The inverse Manly transformation is given by

VaR! = %log[l +AN[(1-q).f1(2).6° (ﬂ)ﬂ (68)

The Value at Risk is calculated in two steps. First, the
low quantile value is subjected to the inverse John-
Draper transformation in Equation (61) and this value is
back-transformed with the inverse Manly transformation
in Equation (65).

Model 2.7 GARCH-Manly-Bickel-Doksum Model

We calculate the ARMA (1, 1)-GARCH (1, 1) under the
pseudo-normal assumption. The innovations are initially
transformed through the Manly exponential transforma-
tion remove skewness, and then with the Bickel-Doksum
transformation, which reduces kurtosis. The skewness and
kurtosis of the doubly-transformed insample data is given
in Tables 2(a) and (b).

The parameters for the Manly and Bickel-Doksum trans-
formations are calculated by maximizing log-likelihoods
in Equations (64) and (58). After the two parameters are
obtained, the VaR is calculated from the inverse trans-
formations in Equations (59) and (65) carried out serially
in that order.
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Table 2. (a) Skewness comparison
after power transformation.

23

of std. residuals after power transformation; (b) Kurtosis comparison of std. residuals

(a)

Sensex NIFTY DJI FTSE HSI Nikkei
Initial skewness —0.4764 —0.5311 —0.1024 —0.3660 —0.1836 —0.3209
Manly 0.0134 0.0615 0.0035 0.0162 0.0126 0.0072
John-Draper —0.3694 —0.2842 —0.0801 —0.2763 —0.0815 —0.2299
Yeo-Johnson 0.0037 0.0442 0.0094 0.0055 —0.0175 —0.0306
Bickel-Doksum —-0.4379 -0.3769 —0.0858 —0.3045 —0.1069 —0.2638
Manly-Yeo-Johnson 0.0052 0.0356 0.0093 0.0068 —0.0221 —0.0287
Manly-John-Draper 0.0070 —0.0026 —0.0026 0.0052 0.0226 0.0150
Manly-Bickel-Doksum 0.0126 0.0281 —0.0015 0.0068 0.0208 0.0123
John-Draper-Yeo-Johnson —0.0063 —0.0087 0.0051 —0.0022 —0.0151 —0.0284
Yeo-Johnson-John-Draper —0.0002 0.0028 0.0028 —0.0002 0.0088 —-0.0130
Yeo-Johnson-Bickel-Doksum 0.0029 0.0233 0.0041 —0.0003 0.0026 —0.0193

The standardized residuals for the in-sample data are transformed with various power transformations. The skewness of each transformed output is compared to
check their normalizing effect. For double-transformations, the data is first transformed with the transformation mentioned first, and then subjected to the sec-

ond transformation.

(b)
Sensex NIFTY DJI FTSE HSI Nikkei
Initial kurtosis 3.7840 5.0195 3.3459 3.8574 3.9326 3.5752
Manly 3.3038 49318 3.3380 3.4958 3.8097 3.1979
John-Draper 3.1862 3.1718 2.8817 3.1754 2.8691 3.0347
Yeo-Johnson 3.3475 4.7952 3.3385 3.5389 3.8324 3.2611
Bickel-Doksum 3.5532 3.8147 2.9518 3.3488 3.0716 3.2118
Manly-Yeo-Johnson 3.3032 4.8972 3.3388 3.4952 3.8182 3.2126
Manly-John-Draper 3.0932 3.2107 2.8838 3.0976 2.8498 2.9224
Manly-Bickel-Doksum 3.2771 3.8375 2.9502 3.1660 3.0251 2.9903
John-Draper-Yeo-Johnson 2.9229 3.0349 2.8775 3.0082 2.8458 2.8674
Yeo-Johnson-John-Draper 3.1005 3.1869 2.8840 3.1073 2.8531 2.9431
Yeo-Johnson-Bickel-Doksum 3.2998 3.7688 2.9565 3.1907 3.0305 3.0275

The standardized residuals for the in-sample data are transformed with various power transformations. The kurtosis of each transformed output is compared to
check their normalizing effect. For double-transformations, the data is first transformed with the transformation mentioned first, and then subjected to the sec-

ond transformation.

Model 2.8 GARCH-Yeo-Johnson-John-Draper Model

We calculate the ARMA (1, 1)-GARCH (1, 1) under
the pseudo-normal assumption. The innovations are ini-
tially transformed through the Yeo-Johnson transforma-
tion to rid it of skewness. The symmetric data is now trans-
formed with the John-Draper modulus transformation,
which reduces kurtosis. The doubly-transformed data ob-
tained is now roughly normally distributed (T ables 2(a)
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and (b)).

After the parameters for the two transformations are
obtained from Equations (62) and (60), the VaR is com-
puted from the inverse transformations in Equations (61)
and (63).

Modd 2.9 GARCH-Yeo-Johnson-Bickel-Doksum Model
We calculate the ARMA (1, 1)-GARCH (1, 1) under the
pseudo-normal assumption. The innovations are initially

JMF
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transformed through the Yeo-Johnson transformation to
remove skewness, and then transformed with the Bickel-
Doksum transformation, which removes excess kurtosis.
The skewness and kurtosis of the doubly-transformed
data obtained are given in Tables 2(a) and (b).
Parameters for the Yeo-Johnson and Bickel-Doksum
transformations are calculated by maximizing log-likeli-
hoods in Equations (62) and (58). The VaR is calculated

from the inverse transformations in Equations (59) and (63)
carried out serially in that order.

4. Testing

The data series are of length 1500; these are divided into
the in-sample series (length 1000) and out-of-sample series
(length 500). For each data point in the out-of-sample
region, we estimate model parameters using the pre-

Table 3. (a) 99% VaR violations comparisons for model 1 series; (b) 97.5% VaR violations comparisons for model 1 series; (c)
95% VaR violations comparisonsfor model 1 series.

(@)
99% VaR Model 1.1Normal ~ Model 1.2 T Pea'\r’lggeT' ylp:’ v J'\(’)'}?riinl's‘i Model 1.5Manly  Expected Violations

Sensex 16 16 7 7 8 5

Nifty 16 14 8 8 13 5

DIl 2 20 9 9 11 5
FTSE 19 21 13 13 17 5

HSI 15 13 6 6 10 5
Nikkei 11 13 7 7 9 5

This table shows the VaR violation comparisons for the Model 1 series. The expected number of violations is given in the last column, 99% VaR is expected to
be violated 5 times for a 500 point out-of-sample data set. As can be seen, Models 1.3 and 1.4 are the best performing ones.

(W]
97.5% VaR Model 1.1 Normal Model 1.2 T Peaﬁgg?‘y]iﬁ v J'\éll?:silnl'st Model 1.5 Manly Expected Violations
Sensex 28 27 16 15 21 12.5
Nifty 24 24 16 15 21 12.5
DII 34 27 22 22 23 12.5
FTSE 29 30 25 25 24 12.5
HSI 24 23 20 19 22 12.5
Nikkei 29 29 14 14 18 12.5

This table shows the VaR violation comparisons for the Model 1 series. The expected number of violations is given in the last column, 97.5% VaR is expected
to be violated 12.5 times for a 500 point out-of-sample data set. As can be seen, Models 1.3 and 1.4 are the best performing ones.

(©
95% VaR Model 1.1 Normal Model 1.2 T Pea'\r/;(?g?ll";;:: v J'\g}?nds ilnllsi Model 1.5 Manly Expected Violations

Sensex 38 38 29 28 33 25
Nifty 40 38 29 32 36 25
DJI 55 49 42 41 42 25
FTSE 38 39 36 36 41 25
HSI 37 34 33 33 33 25
Nikkei 46 43 33 33 38 25

This table shows the VaR violation comparisons for the Model 1 series. The expected number of violations is given in the last column, 95% VaR is expected to
be violated 25 times for a 500 point out-of-sample data set. As can be seen, Model 1.3 is the best performing one.
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vious 1000 data points, i.e., for finding VaR on day ¢, we most cases.
consider data points from day #—1000 today ¢-1.
The tests are run in MATLAB version 7.2 on a Win- 5. Reaults
dov&{s XP operatmg system with 1.6 GHz processing speed. 5.1. Data and Model Parameters
While running the program to calculate VaR for a single
day, the results are generated well within 30 seconds for The models are tested on six equity indices, Sensex, Nifty,

Table 4. (a) 99% VaR violations comparisons for model 2 series; (b) 99% VaR violations comparisons for model 2 series; (c)
95% VaR violations comparisons for model 2 series.

(a)
oo var MOUO2L NS, Mode 23 Mode 24 MO 25 (LS v ikl Yo o Yoo lohmon- EXPEEES
Normals Draper Doksum  John-Draper Bickel-Doksum
Sensex 7 7 15 13 13 7 7 7 7 5
Nifty 9 9 13 12 13 9 10 9 10 5
DJI 11 15 17 14 15 10 11 10 11 5
FTSE 14 16 18 18 16 14 15 13 15 5
HSI 6 13 9 8 10 6 6 6 6 5
Nikkei 8 9 10 12 10 8 8 8 8 5

This table shows the VaR violation comparisons for the Model 2 series. The expected number of violations is given in the last column, 99% VaR is expected to
be violated 5 times for a 500 point out-of-sample data set. As can be seen, Model 2.6 is the best performing one.

(b)
or5vvar MO 2L i op | Modd 23 Modd 24 Modd 25 \LTLSCL i Bk veo-Jomson- Yeo ommaan- EATSEES
Normals Draper Doksum John-Draper Bickel-Doksum
Sensex 22 20 24 23 22 19 19 19 19 12.5
Nifty 22 18 22 21 21 18 18 18 18 12.5
DIJI 33 25 28 28 25 22 22 22 22 12.5
FTSE 25 23 24 24 24 23 23 23 23 12.5
HSI 23 19 21 21 23 19 19 19 19 12.5
Nikkei 24 19 23 23 19 17 17 18 18 12.5

This table shows the VaR violation comparisons for the Model 2 series. The expected number of violations is given in the last column, 97.5% VaR is expected
to be violated 12.5 times for a 500 point out-of-sample data set. As can be seen, Models 2.6 and 2.7 are the best performing ones.

©
o596 Vo MU 2T Niroor  M208 23 Modd 24 Mot 25 RS "N . Yoo Johmon: EXPSEE
Normals Draper  Bickel-Doksum John-Draper Bickel-Doksum
Sensex 34 38 36 36 34 34 32 32 32 25
Nifty 34 43 36 36 34 34 33 33 32 25
DJI 51 57 52 52 49 47 45 45 43 25
FTSE 35 38 37 37 34 34 34 33 32 25
HSI 31 37 35 37 34 34 33 34 33 25
Nikkei 37 44 43 38 35 34 34 34 25

This table shows the VaR violation comparisons for the Model 2 series. The expected number of violations is given in the last column, 95% VaR is expected to
be violated 25 times for a 500 point out-of-sample data set. As can be seen, Model 2.9 is the best performing one.
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DIJI, FTSE, HSI and Nikkei. The data used is the closing
value of these indices from the period March 2003 to
February 2009. The data was obtained from www.fi-
nance.yahoo.com, and the time period includes the stock
market crash of 2008. The details regarding the returns of
the series, and the first four moments are given in Table 1.

5.2. VaR Violations and Comparison of Models

We test the effectiveness of each model by calculating
the number of times the calculated VaR has been violated.

The expected number of violations for a g-percentile VaR
is given by
Expected g% VaR violations = (1 - q%) N (69)

where N is the total number of VaR measurements.

We measure VaR for each out-of-sample data point,
therefore, N = 500. We calculate 95%, 97.5% and 99%
VaR for each data point. Therefore, the expected viola-
tions for each would be 25, 12.5 and 5 respectively.

Tables 3(a)-(c) compare the five models of the Model
1 series, comparing VaR violations for the six equity

Table5. (a) LR Test for 99% VaR violations for model 1 series; (b) LR Test for 97.5% VaR violations for model 1 series; (c)

LR Test for 95% VaR violationsfor model 1 series.

(a)
99% VaR Model 1.1 Normal Model 1.2 T Model 1.3 Pearson Type IV Model 1.4 Johnson Sy Model 1.5 Manly
Sensex 15.47 15.47 0.72 0.72 1.54
Nifty 15.47 10.99 1.54 1.54 8.97
DJI 31.78 25.91 2.61 2.61 5.42
FTSE 23.13 28.80 8.97 8.97 17.90
HSI 13.16 8.97 0.19 0.19 391
Nikkei 542 8.97 0.72 0.72 2.61

This table shows the LR test statistic for the Model 1, 99% VaR violation observations. The numbers in bold indicate situations where the null hypothesis, i.e.

the observed violations is equal to the predicted one, is rejected.

(W]
97.5% VaR Model 1.1 Normal Model 1.2 T Model 1.3 Pearson Type IV Model 1.4 Johnson Su Model 1.5 Manly
Sensex 14.66 13.02 0.92 0.48 4.94
Nifty 8.59 8.59 0.92 0.48 4.94
DJI 26.01 13.02 6.06 6.06 7.28
FTSE 16.38 18.16 9.98 9.98 8.59
HSI 8.59 7.28 3.92 3.00 6.06
Nikkei 16.38 16.38 0.18 0.18 2.19

This table shows the LR test statistic for the Model 1, 97.5% VaR violation observations. The numbers in bold indicate situations where the null hypothesis, i.e.

the observed violations is equal to the predicted one, is rejected.

(©
95% VaR Model 1.1 Normal Model 1.2T Model 1.3 Pearson Type IV Model 1.4 Johnson Sy Model 1.5 Manly
Sensex 6.18 6.18 0.64 0.37 2.46
Nifty 8.08 6.18 0.64 1.90 451
DJI 28.67 19.18 10.19 911 10.19
FTSE 6.18 7.10 451 451 9.11
HSI 5.32 3.08 2.46 2.46 2.46
Nikkei 15.04 11.33 2.46 2.46 6.18

This table shows the LR test statistic for the Model 1, 95% VaR violation observations. The numbers in bold indicate situations where the null hypothesis, i.e.

the observed violations is equal to the predicted one, is rejected.

Copyright © 2012 SciRes.

JMF



M. BHATTACHARYYA ET AL. 27

indices. Tables 4(a)-(c) compare the same for the nine
models of the Model 2 series. The expected violations for
99%, 97.5% and 95% VaR are given in the last column
of each table. The mean violation for each model is
computed, and the best model for each percentile VaR is
found.

It can be seen that Models 1.3 and 1.4 are best per-

forming models across all indices. Amongst those of the
Model 2 series (where ARMA (1, 1)-GARCH (1, 1) pa-
rameters are calculated with the pseudo-normal assump-
tion) however, Models 2.6, 2.7, 2.8 and 2.9 perform the
best. This is expected from the skewness-kurtosis Table
2, where the most normalized transformations are shown to
be Manly-John-Draper, Manly-Bickel-Doksum, Yeo-John-

Table6. (a) LR Test for 99% VaR violations for model 2 series; (b) LR Test for 97.5% VaR violations for model 2 series; (c)
LR Test for 95% VaR violationsfor model 2 series.

(a)
oovar MOIE21 VTGOS Modd2a - Mode 24 Maa2s - MUDP®\UERE (o hn  veodomson
Normals John-Draper Doksum John-Draper  Bickel-Doksum
Sensex 0.72 0.72 13.16 8.97 8.97 0.72 0.72 0.72 0.72
Nifty 2.61 2.61 8.97 711 8.97 2.61 3.91 2.61 391
DII 5.42 13.16 17.90 10.99 13.16 3.91 5.42 3.91 5.42
FTSE 10.99 15.47 20.46 20.46 15.47 10.99 13.16 8.97 13.16
HSI 0.19 8.97 2.61 1.54 3.91 0.19 0.19 0.19 0.19
Nikkei 1.54 2.61 391 711 3.91 1.54 1.54 1.54 1.54

This table shows the LR test statistic for the Model 2, 99% VaR violation observations. The numbers in bold indicate situations where the null hypothesis, i.e.
the observed violations is equal to the predicted one, is rejected.

(®)
oy MOIZL Vo Modd2a Moddza wodd2s MDY MRET STECL Tomson
Normals John-Draper Bickel-Doksum John-Draper  Bickel-Doksum
Sensex 3.92 6.06 8.59 7.28 6.06 3.00 3.00 3.00 3.00
Nifty 2.19 6.06 6.06 4.94 4.94 2.19 2.19 2.19 2.19
DII 9.98 23.95 14.66 14.66 9.98 6.06 6.06 6.06 6.06
FTSE 7.28 9.98 8.59 8.59 8.59 7.28 7.28 7.28 7.28
HSI 3.00 7.28 4.94 4.94 7.28 3.00 3.00 3.00 3.00
Nikkei 3.00 8.59 7.28 7.28 3.00 1.50 1.50 2.19 2.19

This table shows the LR test statistic for the Model 2, 97.5% VaR violation observations. The numbers in bold indicate situations where the null hypothesis, i.e.
the observed violations is equal to the predicted one, is rejected.

(©
99% VaR M%j\‘f'Tz'l M&C:iesz Bic'\l"(;‘?goifum J('\)’}'lgfjgri;‘;r Y'Z'o‘_’?ifs'gn Ml\?lgrelllyz-ﬁ M';An?yd-%liii;l- Ygf)f}%?mzsfn- Ygf)f}?)?mzs-ogn-
Normals John-Draper Doksum John-Draper  Bickel-Doksum
Sensex 3.08 6.18 451 451 3.08 3.08 1.90 1.90 1.90
Nifty 3.08 11.33 451 451 3.08 3.08 2.46 2.46 1.90
DJI 22.17 32.16 23.73 23.73 19.18 16.37 13.75 13.75 11.33
FTSE 3.77 6.18 5.32 5.32 3.08 3.08 3.08 2.46 1.90
HSI 1.41 5.32 3.77 5.32 3.08 3.08 2.46 3.08 2.46
Nikkei 5.32 12.52 11.33 11.33 6.18 3.77 3.08 3.08 3.08

This table shows the LR test statistic for the Model 2, 95% VaR violation observations. The numbers in bold indicate situations where the null hypothesis, i.e.
the observed violations is equal to the predicted one, is rejected.
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son-John-Draper and Yeo-Johnson-Bickel-Doksum. Model
2.1 performs well too, especially for higher VaR estima-
tion.

In order to test the observed VaR numbers, we use
Kupiec’s test to determine if the observed VaR violations
are significantly different from their expected values. The
test is based on the fact that the number of violations N
in a sample of size 7 1is binomially distributed as
N ~B(T,p). Thus, the probability of N excesses oc-
curring over a 7T day period is given by p" (1-p)" "
where p is the probability of exceeding VaR on a giv-
en day. Under the null hypothesis that N/T =p, we
calculate the Likelihood Ratio (LR) test statistic

2m[ (1-N/1)" (N/T)" |
_2ln[(1—p)T_N pNJ ~ 7 (1)

The test statistics for the VaR violation observations
are given in Tables 5(a)-(c) for the Model 1 series, and
in Tables 6(a)-(c) for the Model 2 series. The values in
bold are those where the observed VaR violations are
significantly different from expected ones.

(70)

6. Conclusions

In this work, we build different models for accurate

measurement of Value at Risk. We use an ARMA (1, 1)

process to model conditional expectation, and a GARCH

(1, 1) process to model conditional variance. Models 1.x

calculate parameters for the above processes without the

pseudo-normal assumption, while Models 2.x calculate
them with the pseudo-normal assumption. The following
conclusions can be made from the results.

e Models 1.3 and 1.4 (GARCH-PIV and GARCH-JSU)
are far and away the best performers among all the mod-
els. Their consistency can be seen across indices and
VaR percentiles.

e Among the models which use the pseudo-normal as-

sumption, Models 1.6, 1.7, 1.8 and 1.9 perform the best.

These use two transformations to normalize the stan-
dardized innovations, the first one makes the distribu-
tion symmetric, while the second one reduces the
kurtosis.

e Model 2.1 (GARCH-EVT) performs well for high
percentile VaR estimates.

Computationally, Model 2.x series are slightly faster
than Models 1.3 and 1.4, but the difference of a few sec-
onds does not mandate using them in the place of the more
accurate GARCH-PIV and GARCH-JSU models.
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Appendix

In the model 1.5 used, the returns series r, is modeled
as follows

r,=pu+0,X, (71)

We assume that Z, is a distribution such that when
transformed through Manly’s exponential transformation
(Equation (22)) it becomes normal.

Z=T(X),Z~N(uo0) (72)

P(z<a):ﬁ j exp{—%(%J }dm (73)
-1/2

The lower limit is given by —1/4 since Z=T(X).
As X varies from —oo to +oo, Z varies from
—1/A to +oo. In other words, it is impossible for Z
to take on a value less than —1/4 .

P(z<a)=P(x<T"(a)) (74)

This arises since the Manly’s transformation is one-to-
one and monotonically increasing. We name b=17" (a)

and proceed
e 1[m—y)2
expys——| —— | pdm (75
EML) e s (75)
Wename m=T(n),and dm=T"(n)dn follows.

éaiexp{—%[”nfwj}r(n)dn

(76)

We need to add a normalizing constant & to the equ-
ation, such that P(x<—o0)=1.

P(x<-w)= ka iexp {-%(@T }T’(n)dn

(77)

P(x<b):

P(x<b):

o T'(0)

T —
(n) # w = dn , and

NP V20

changing limits from (—o0,+0) to —('u+l//1j,+oo .
V2o

Substituting w=

P(x<—<>o)=i7t T} exp{—WZ}dw (78)
%)
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+00

P(x <o) =% _[ exp{—wz}dw

(%7
2 ”
+\/; I'; exp{ w}dw
H+—

1+erf

A
V2o

The innovations are related to the standardized inno-
vations by ¢ =hn,. We also assume that the trans-
formed standardized residuals have zero mean and unit
standard deviation. Therefore

2

flFa)=——7=
1+erf()

W2

exp{-é(%jz}expw)

Since P(, <a)=P([,<ah,),
2

f(fz|F;—1): &

]

exp {%{MJ }exp (Ax/h,)

(82)

The log likelihood function to be minimized, is there-
fore

81

T
LLF =) {-log —llog 2mh’
=l l+erf [1 J 2
N2
2 (83)
+ﬂi _—h[
, 2
JMF
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