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ABSTRACT 

The paper presents and tests Dynamic Value at Risk (VaR) estimation procedures for equity index returns. Volatility 
clustering and leptokurtosis are well-documented characteristics of such time series. An ARMA (1, 1)-GARCH (1, 1) ap- 
proach models the inherent autocorrelation and dynamic volatility. Fat-tailed behavior is modeled in two ways. In the 
first approach, the ARMA-GARCH process is run assuming alternatively that the standardized residuals are distributed 
with Pearson Type IV, Johnson SU, Manly’s exponential transformation, normal and t-distributions. In the second ap- 
proach, the ARMA-GARCH process is run with the pseudo-normal assumption, the parameters calculated with the 
pseudo maximum likelihood procedure, and the standardized residuals are later alternatively modeled with Mixture of 
Normal distributions, Extreme Value Theory and other power transformations such as John-Draper, Bickel-Doksum, 
Manly, Yeo-Johnson and certain combinations of the above. The first approach yields five models, and the second ap- 
proach yields nine. These are tested with six equity index return time series using rolling windows. These models are 
compared by computing the 99%, 97.5% and 95% VaR violations and contrasting them with the expected number of 
violations. 
 
Keywords: Dynamic VaR; GARCH; EVT; Johnson SU; Pearson Type IV; Mixture of Normal Distributions; Manly; 

John Draper; Yeo-Johnson Transformations 

1. Introduction 

VALUE AT RISK (VaR) is a popular measure of risk in 
a portfolio of assets. It represents a high quantile of loss 
distribution for a particular horizon, providing a loss thresh- 
old that is exceeded only a small percentage of the time.  

Traditional methods of calculating VaR include his- 
torical simulation and the analytic variance-covariance 
approach. However, these models fall short when tested 
against actual market conditions. The historical simulation 
approach assumes constant volatility of stocks over an 
extended period of time. It fails to account for the phe- 
nomenon of volatility clustering, when periods of high 
and low volatility occur together. This leads to underes- 
timation of VaR during periods of high volatility, and 
overestimation in times of calm. The analytic variance- 
covariance approach assumes that returns are jointly nor- 
mally distributed. However, the fat-tailed non-normal be- 
haviour of returns would mean that this methodology tends 
to underestimate VaR as well.  

Fama [1] and Mandelbrot [2] report the failure of the  

normal distribution to model asset returns, sparking a slew 
of papers addressing the issue of accurately modeling lep- 
tokurtic time series with volatility clustering. The ap- 
proaches can be roughly divided in two, the first assuming 
that returns are independent and modeling unconditional 
distribution of returns. In this approach, numerous distri-
butions have been proposed, Fama [1] and Mandelbrot [2] 
use the stable Paretian distribution, Blattberg and Gonedes 
[3] suggest the use of Student t-distribution. The mixture 
of normal distributions is used by Ball and Torous [4] 
and Kon [5] and the logistic distribution, the empirical 
power distribution and the Student t-distributions have 
been compared by Gray and French [6]. The Pearson type 
IV distribution is used by Bhattacharyya, Chaudhary and 
Yadav [7] for dynamic VaR estimation and by Bhat- 
tacharyya, Misra and Kodase [8] for dynamic MaxVaR 
estimation. Bhattacharyya and Ritolia [9] use EVT for 
dynamic VaR estimation. 

The second approach considers returns to be serially 
correlated and uses conditional variance models or sto- 
chastic volatility models to model asset returns. Engle 
[10] and Bollerslev [11] use ARCH and GARCH models 
to account for volatility clustering. GARCH models have 

*This work was carried out when Siddarth Madhav R was a graduate 
student at the Indian Institute of Management Bangalore. 
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been shown to be more suited to this purpose by various 
studies such as Poon and Granger [12]. The GARCH (1, 
1) model performs well for most stock returns and this 
paper adopts this approach. 

The following model has been extensively used to 
model dynamism in forecasts of returns and volatility of 
returns. 

t t t tX Z                  (1) 

where tX  is the actual return on day t, t  is the ex- 
pected return on day t, t  is the volatility estimate on 
day t and tZ  is the standardized residual, having a nor- 
mal distribution with zero mean and unit standard devia- 
tion.  

ARMA processes are useful for modeling t , the 
predicted mean of the time series data, and GARCH 
processes are good models for t , the predicted volatile- 
ity. However, the inherent leptokurtic behaviour of asset 
returns makes the ARMA-GARCH model insufficient 
for the purpose of calculating VaR. 

In this paper, ARMA (1, 1) model is used for the cal- 
culation of predicted mean and GARCH (1, 1) model is 
used for modeling the observed volatility clustering. 
Models are developed using two approaches. In the first 
one, consisting of five models, ARMA-GARCH model 
parameters are calculated assuming that standardized 
residuals alternatively follow Pearson Type IV distribu- 
tion, Johnson U  distribution, Manly’s exponential trans- 
formation, normal and Student t-distributions. In the 
second approach, the ARMA-GARCH parameters are 
calculated using the pseudo-normal assumption, i.e., as- 
suming that standardized residuals are normally distrib- 
uted, and they are later modeled using the mixture of 
normal distributions, Extreme Value Theory, and other 
power transformations such as John-Draper, Bickel- 
Doksum, Manly, Yeo-Johnson and certain combinations 
of the above. The second approach yields nine models. 

S

While developing and testing VaR models, the authors 
find it important to develop those that are applicable in 
real world scenarios. This translates to certain simplicity 
in execution and fast run-times for calculations, as time 
can be a critical issue. At the same time, the importance 
of creating an accurate measure of risk cannot be under- 
stated, given how the stock market crash of 2008 bank- 
rupted firms and individuals alike, and sent the world spi- 
raling into recession. 

2. Leptokurtic Density Functions 

2.1. Pearson Type IV Distribution 

The Pearson family of curves, a generalized family of fre- 
quency curves developed by Karl Pearson, embodies a 
wide range of commonly observed distributions. The Pear- 
son curves are a solution to the differential equation 

 
 

2
0 1 2

d1

d

f x x

f x x c c x c x




 
          (2) 

The system of curves which arise from the above dif- 
ferential equation cover a wide spectrum of skewness 
and kurtosis (Figure 1). The type of distribution obtained 
post-integration is dictated by the roots of the quadratic 
equation 2

0 1 2 0c c x c x   . 
The Type IV curve is obtained when the roots of the 

quadratic equation 2
0 1 2 0c c x c x    are complex, i.e., 

when 2 . It is suitable for those distributions 
which have high excess kurtosis and moderate skewness. 
Financial return data fall in this category. The probability 
density function (PDF) of the Type IV curve (Heinrich, 
[13]) is 

2
1 04c c c

 
2

11 exp tan

m

x x
f x k

a a

 



                  


   (3) 

where λ, a, ν and m are real parameters (functions of α, 
), m > 1/2, 0 1 2,  and c c c x     and k is a norma- 

 

 

Figure 1. The diagram of the Pearson curve family. It shows 
the type of curve to be used for each range of skewness and 
kurtosis. The x-axis is β1 = skewness2, and the y-axis is β2, 
the traditional kurtosis. 
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

lizing constant, dependent on λ, a, ν and m. ARCH process, we require a transformation function which 
can accept arguments that may be positive or negative. 
Hence we need to use the Johnson U  distribution, as the 
sine hyperbolic inverse function has a domain all over the 
real line. 

S
The PDF gives rise to a bell shaped curve, where λ is 

the location parameter, a is the scale parameter, ν and m 
can be interpreted as the skewness and kurtosis parame- 
ters respectively.  

The type of Pearson curve to use for a particular situa- 
tion is dictated by the skewness and kurtosis. Table 1 
shows the observed skewness and excess kurtosis for the 
six equity indices. Cross-referencing them with Figure 1, 
we can see that Pearson Type IV curve is the model to be 
used. 

So we have 

1*sinh
X

Z
 


   
 


           (7) 

where   and   are assumed to be positive. 
The density function of Johnson U  distribution can 

be easily found in closed-form from variable transforma- 
tion: 

S
For a standardized Pearson Type IV curve, i.e., with 

zero mean and unit standard deviation, we need to add the 
following constraints. 

  1
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; ; ; ; sinh

1

x
f x

x

       



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 (8) 

2
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s
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a

r 





                 (4) 

s a r                    (5) 

where x R ,   is the density function of , (0,1)N   
and   > 0 are location and scale parameters respect- 
tively,   can be interpreted as a skewness parameter, 
and   > 0 can be interpreted as a kurtosis parameter. 
The distribution is positively or negatively skewed ac- 
cording to whether   is negative or positive. Holding 
  constant and increasing   reduces the kurtosis. How- 
ever,   and   cannot be viewed purely as skewness or 
kurtosis parameters, respectively. The mean and the 
variance of Johnson SU distribution are given as: 

2.2. Johnson SU Distribution 

The Johnson family of distributions (Johnson, [14]) con- 
sists of three distributions, which cover all possible av- 
erage, standard deviation, skewness and kurtosis values, 
excluding the impossible region. These consist of the 

U B  and the lognormal curves. The transformations 
have the general form 
S ,S

.
X

Z g
 


  

 

                (6) 

1 2 sinhΩ                  (9) 
where the transformation parameters ξ is the location, λ is 
the scale and γ and δ are shape parameters. Z is the re- 
sulting normal distribution.  .g  is one of the following 
functions: 

 
2

2 1 ccosh 2Ω 1
2

               (10) 

where  2exp    and    . 

 

 

  
1

U

B

ln                 Lognormal distribution

sinh             S distribution

ln 1    S distribution

                    Normal distribu

 

t on

 

i

y

g y
y

y

y

y





 





 

2.3. Extreme Value Theory 

Extreme value theory provides a framework to formalize 
the study of behavior in the tails of a distribution. Ac- 
cording to the Fisher-Tippet theorem, there can be three 
possible extreme value distributions for the standardized 
variable. Since we are modeling the innovations of the ARMA-  

 
Table 1. Comparison of moments for each stock index return series. 

Index Sensex NIFTY DJI FTSE HSI Nikkei 

Observations 1500 1500 1500 1500 1500 1500 

Dates Mar 03 - Feb 09 Mar 03 - Feb 09 Mar 03 - Feb 09 Mar 03 - Feb 09 Mar 03 - Feb 09 Mar 03 - Feb 09

Mean 0.0009 0.0009 0.0001 0.0002 0.0004 0.0001 

Std. Deviation 0.0178 0.0181 0.0124 0.0127 0.0169 0.0163 

Skewness −0.4276 −0.5130 0.2624 0.1409 0.3876 −0.2730 

Kurtosis 7.2358 8.6112 17.3926 14.5248 15.5344 12.8085 
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2.3.1. Gumbel Distribution 
As with the normal and gamma distributions, the tail can 
be unbounded, have finite moments and decay exponent- 
tially. The distribution function is given by: 

   exp e    forxG x x    



      (11) 

2.3.2. Frechet Distribution 
The tail can be unbounded, and decay by a power as with 
the Cauchy and Student t-distribution. The distribution 
function is given by 

   
0                 for  0

exp   for  0

x
G x

x x

  
          (12) 

Moments exist only up to the integer part of α, higher 
moments do not exist, as the tails are fat, they are not 
integrable when weighted by tail probabilities. 

2.3.3. Weibull Distribution 
The tails are constant-declining, and all moments exist. 
They are thin, and have upper bounds. The distribution 
function is: 

    exp    for  0

1                       for  0

x x
G x

x

    
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         (13) 

Now, since the financial returns data are fat-tailed and 
unbounded, we must clearly use the Frechet distribution 
for modeling extreme value distributions.  

2.3.4. Generalized Extreme Value Distribution 
The Generalized Extreme Value Distribution (GEVD) 
unifies the above three distributions. Here the tail index 
(τ) is the inverse of the shape parameter (α). In this equa- 
tion given below, if 0  , it is a Gumbel distribution, if 

0  , it is a Frechet distribution else if 0   it is a 
Weibull distribution. 

 
  

 

1/
exp 1    for 0 

exp                for 0
x

x

x
F x

e
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





    
  

     (14) 

To build the series of maxima or minima, there are two 
methods: 

2.3.5. Block Maxima 
This approach consists of splitting the series into equal 
non-overlapping blocks. The maximum from each block 
is extracted and used to model the extreme value distri- 
bution. As volatility clustering is a well observed pheno- 
menon in financial data, very high or very low observa- 
tions tend to occur together. Thus, this technique runs the 

2.3.6. Peak over Threshold 

risk of losing extreme observations. 

of sampling maxima by se- 

2.4. Mixture of Normal Distributions 

o model fat- 

The second approach consists 
lecting those that exceed a chosen threshold. A low thres- 
hold would give rise to a larger number of observations, 
running the risk of including central observations in the 
extremes data. The tail index computed has lesser vari- 
ance but is subject to bias. A high threshold has few ob- 
servations, and the tail index is more imprecise, but un- 
biased. The choice of the threshold is thus a trade-off be- 
tween variance and bias. For the analysis in this paper, 
we use the Peak over Threshold method. 

The mixture of normal distributions, used t
tailed distributions, assumes that each observation is gen- 
erated from one of N normal distributions. The probabil- 
ity that it is generated from a distribution “i” is ip , with  

1
1

N

ii
p


 . 

The resultant density function 
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1

;
N
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i
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

         (15) 

where  is a normal distribution with mean ii  and 
standar eviation id d  . For the special case of 2N  , 
we have 

       1; 1 2x p x p x            (16) 

where  1 2 1 2, , , ,p      
 mixture of N normal

is the parameter vector. 
ur 

m
For a  distributions, the first fo
oments are: 

1

N
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i

p 


                 (17) 
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               (18) 
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N
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i

p
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

 
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        (20) 

A mixture of more than two normal distributions may 
provide a better fit to the series, but Tucker [15] reports 
that the improvement by increasing the number of nor- 
mal distributions in the mixture from two is not too sig- 
nificant. Estimation of parameters for the mixture of nor- 
mal distribution is problematic. This is because, although 
we have a well defined distribution function in a closed 
form, using maximum likelihood techniques for parame- 
ter estimation leads to convergence issues (Hamilton, [16]). 
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Using method of moments is another option, but even for 
the simplest case of 2N  , we need five moment equa- 
tions to find the five p ters,  

1 2 1 2, , , ,p
arame

    , and there may n
mith and Makov, [17]). Alternate meth- 

ods have been suggested, such as fractile-to-fractile 
comparisons (Hull and White, [18]) and Bayesian updat- 
ing schemes (Zangari, [19]). 

This paper uses the fractile

ot be a solution at all 

-to-fractile comparison tech- 
ni

2.5. Power Transformations 

f the first power trans- 

(Titterington, S

que along with a simplifying assumption that one of the 
means of the mixture of normal distributions is zero. This 
is a reasonable assumption, in the data set, as most ob- 
servations (about 95%) lie in the zero-mean normal dis- 
tribution, and it simplifies calculations considerably. 

Box and Cox [20] propose one o
formations converting a non-normal distribution into a 
normal one. In its original form, the transformation func- 
tion is: 

 
1

,   if 0

log ,      if 0

y
y

y



 


 
 
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           (21) 

However, as it can be seen, the power transformation 
ca

ox

2.5.1. Manly’s Exponential Distribution 
ibution given 

nnot be applied to negative values of y . Since then, 
many modifications of the original B -Cox power 
transformation have been proposed. 

Manly [21] proposed the exponential distr
below. 
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1

,   if 0

,            if 0

ye
y

y



 


 
 
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            (22) 

Negative values of  are permitted. This transforma- 
tio sf

2.5.2. Bickel-Doksum Transformation 
iginal Box-Cox 

 y
n is useful for tran orming skewed distributions to 

normal (Li, [22]). 

Bickel and Doksum [23] transform the or
transformation to 

   sign 1
,  for 0

y y
y







          (23) 

where 

          (24) 

The addition of the sign function makes this transfor- 
m

at
John and Draper [24] propose the modulus transforma- 
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y
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 
  

 

ation compatible for negative values of y  as well.  

2.5.3. John-Draper Modulus Transform ion 

tion given below: 

     

   

1 1
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     (25) 

where 

 
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            (26) 

The modulus transformation works best
tributions which are approximately symmetric about some 
ce

nsformation 
Yeo and Johnson [25] propose the following transforma- 

 on those dis- 

ntral point (Li, [22]). It reduces the kurtosis of the se- 
ries, while introducing some degree of skewness to a 
symmetric distribution. 

2.5.4. Yeo-Johnson Tra

tion in 2000: 

 
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      (27) 

In their original paper, Yeo and Johnson [25] find the 
value of   by minimizing the Kullback-Leibler distance 
between the normal and transformed distributions. In this 
paper however, we have found   by maximizing log- 
likelihoods. This transformation, like Manly, reduces skew- 
ness of the distribution and makes the transformed vari- 
able more symmetric. 

3. Dynamic VaR Models 

s used to calculate dy- 
x returns. 

ariance 

This section describes the method
namic Value at Risk for equity inde

3.1. Model for Conditional Mean and V

To calculate conditional mean t  given the time series 
data until time t − 1, we use an ARMA (1, 1) process. 

1 1 1 1t t t tX C X                  (28) 

We use the GARCH (1,1) process to m
ity of the innovation term. 

t

odel the volatil- 

2 2 2
1 1t K 1 1t                   (29) 
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3.2. Models for Innovations 

In Equation (1), the forecasted mean and variance are 
ARCH (1, 1) model. As 

pr

calculated by an ARMA (1, 1)-G
mentioned in the introduction, there are two approaches 
followed to model innovations. In the first approach, 
ARMA (1, 1)-GARCH (1, 1) model parameters are cal- 
culated assuming that standardized residuals alternatively 
follow Pearson Type IV distribution, Johnson US  dis- 
tribution, Manly’s exponential transformation, normal 
and Student t-distributions. In the second ap oach, 
ARMA (1, 1)-GARCH (1, 1) parameters are calculated 
assuming that standardized residuals are normally dis- 
tributed. The extracted standardized residuals are then 
modeled using the mixture of normal distributions, Ex- 
treme Value Theory, and other power transformations such 
as John-Draper, Bickel-Doksum, Manly, Yeo-Johnson and 
certain combinations of the above. 

Method 1 
The first approach consists of five models, whose de- 

si ned below.  gns are outli
Model 1.1 GARCH-N Model 
In Equation (1), tZ  is assumed to be a standard nor- 

mal distribution. Therefore, the innovations term, , has 
ze

t
ro mean and the standard deviation of th . 

   0,1 0,t t tZ N N h            (30)   
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mized to find the parameters of the 
m

           (31) 

, which is maxi- 
ARMA-GARCH 

odel for the series of length T is given by 

 
2

1

1
log 2π

2 2

T
t

t
t t

LLF h
h

 
   

 



         (32) 

The maximum likelihood estimates for
1)-GARCH (1, 1) parameters are found 
th

 the ARMA (1, 
by minimizing 

e negative of the above function using the fmincon func- 
tion in MATLAB. 

Model 1.2 GARCH-t Model 
In Equation (1), tZ  is assumed to be a Student t-dis- 

tribution with zero mean and unit standard deviation. There- 
fore, the log likeliho  function, the logarithm of the den- 
sity function of the innovations term, t , for the series of 
length T is given by 

od
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 

 
 

1

2

1
Γ

log
T

LLF
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        log 1
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 
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



    
        


 

  
  





  (33) 

where represents the degrees of freedom in the t-dis- 
tribution. 

The maximum likelihood estimates for the ARMA (1, 
1) GARCH (1, 1) parameters are found by minimizing 
the negative of the above function using the fminco
tion in MATLAB. 

Model 1.3 GARCH-PIV Model 
In Equation (1),

n func- 

 tZ  is assumed to be a Pearson Type 
IV distribution. Th andardized innovations series has 

ia

e, 

e st
unit var nce, but not necessarily a zero mean. This was 
justified by Newey and Steigerwald [26], who proved that 
an additional location parameter is needed to satisfy the 
identification condition for the consistency of parameter 
estimates when conditional innovation distribution in the 
GARCH model is asymmetric. Hence Equation (4) holds, 
but Equation (5) does not. Therefor

 1
s

tt t t

a
E X F h

r


 

    
 

       (34) 

Hence, for modeling innovations, we need to change 
the location and scale parameters to th  and s ta h  
respectively. The normalizing parameter is inversely pro-  

portional to the scale parameter, so it changes to tk h . 

 

 
, , , ,t sZ PIV k m a  

, , , ,t t s t tPIV k h m a h h 
      (35) 

The distribution function of the innovation series is 
given by 

 
2

1 t thk
f F

      1t t
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     
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h
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


  
      


      (36) 



The log likelihood function to be maximized is given 
by 

   
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 

    
  
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


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       (37) 

We use Equation (4) and the relation  2 1r m   to 
write sa

s ma
 and in terms of . The log li c- 

tion i xim (by minim ng –LLF n- 
m  

ized 
r

izi
kelihood fun

) using the fmi
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con function in MATLAB. The maximum likelihood 
estimates from the GARCH-N model and the Pearson 
Type IV parameters calculated from the first four mo- 
ments of the resulting standardized innovations series 
(under the pseudo-normal assumption) are used as initial 
estimates for the optimization function. Th
constant k is computed by the technique use
[13]. 

Model 1.4 GARCH-JSU Model 
In this model, the standardized innovations in Equa- 

tion (1), 

e normalizing 
d by Heinrich 

tZ  
 with

is assumed to be a Johnson  distribu- 
tion. As  the GARCH-PIV model, th andardized 
in ecessarily z

 US
e st

novations have unit variance, but not n ero 
mean. Therefore, from Equation (10), the scale parameter 
λ is constrained. 

   
2

1 cosh cosh 2Ω 1s  


 
         (38) 

where  2exp    and Ω   . 
Note that Equation (9) does not hold, and the parame- 

ter ξ has to be estimated during optimization. The pre- 
dicted future value of the time series is given by 

   1 2 sinhΩ    (39) 1 tt t tE X F h    

Now, for modeling the innovations series t , the loca- 
tion and scale parameters must be changed to th  and 

s th . 
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     (41) 

ere 
The log likelihood function to be maximiz d is given 

by 

 0,1N  . 
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



The maximum likelihood estimates are calculated by 
minimizing the negative of the above function using the 
fmincon function in MATLAB. 

Model 1.5 GARCH-Manly Model 
In this model, the standardized innovations in Equation 

(1), it is assumed that when tZ  is put through Manly’s ex- 
ponential transformation (Equation (22)), it becomes nor-

mally distributed. Assuming that the transformed normal 
function has zero mean and unit standard deviation, tZ  

c- has the following closed form probability distribution fun
tion 
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(43) 

where  , tM Z  is the exponentially transformed (Equa- 
tion (22)) value of tZ  and erf  is the error function.  

Therefore the standardize novations (  have 
following distribution 

d in t the 
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The log likelihood function to be maximized is given 
by 

(44) 
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The maximum likelihood estimates are calculated 
minimizing the negative of the above function using
fmincon function in MATLAB. The above equation
derived in detail in the Appendix. 

Method 2 
The second approach consists of nine models, whose de-

signs are outlined below.  
Model 2.1 GARCH-EVT Model 
In this model, the ARMA (1, 1)-GARCH(1, 1) 

m
at the standardized innovations in Equation (1) 

by 
 the 

 

para- 

t

s are 

eters are found under the pseudo-normal assumption, 
i.e., th Z  

ade is a standard normal function. Now, the assumption m
is that the values of tZ  considered for calculation 
VaR, i.e., the 99th, 97.  and 95th percentiles are pa
an extreme value distribution. This assumption is th
retically justified, as the ARMA-GARCH process gets rid

of 
rt of 

eo- 
 

5th
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of the serial correlation between terms, and the Fisher- 
Tippet theorem is applicable. 

We use the Peak over Threshold (POT) method to ob- 
serve the number of values which exceed a high thresh- 
old. The distribution of conditional excess losses over a 
certain high threshold follows a Generalized P
tribution (GPD). 

is the number at bove the threshol . 
Therefo , the tail estimator becomes 

of observ ions a d u
re

 
1

1 1 ,  for uN x u
F x x
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
 

u    
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     (49) 

areto Dis- 

 1 1q
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N
VaR u q

N
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        
   

        (50) 

The Value at Risk is now calculated by the formula 

q             (51) 

Choosing the threshold to be used in the calculations is 
a subjective process. In this paper, we calculate the mean 
excess returns for various values of thresholds and plot 
them. For a GPD, the mean excess return is given by: 

 

1
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1 exp ,       0
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       (46) 

  is the shape parameter (positive in our specific 
case, as this yields a heavy tailed

q
t t tVaR VaR  

 GPD) and   is the 
sc eter. 

he negative of the return series, 
th  is positive, and mean 
ex

aling param
The formula for conditional excess losses above the 

threshold u (We consider t  
1

u
e u

 






                (52) 

The threshold is calculated by observing the graphs 
and identifying the point from which the conditional ex- 
cess return increases linearly with the threshold values. It 
is possible to consider any larger value as a threshold as 
well, but this way, the maximum number of data points 
gets accommodated in the extreme value distribution, 
thus reducing the variance of the obtained parameters. In 
Figures 2(a) and (b), we observe that the thresh old 

ereby ensuring that the threshold
cess return is positive) is given by 

   |uF y P X y u X u             (4 ) 

      

7

  1uF y F y u F u F u       (48) 

Since  uF y  is a GPD with positive  , we need to 
back-calculate  F y u .  F u  is given by uN N , 
where N  is the total number of observations and uN  
 

 

Figure 2. The optimal threshold is calculated by plotting the mean excess function of the six time series. The point is chosen at 
th where w  seen, the DJI graph is an anomaly, where no such clear point is 
pres   

e point the graph begins to slope up ards. As can be
ent. 
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value for Sensex returns is at 1.4, and for Nifty, it is at 
1.5. Note that in the graphs, we consider the negative of 
the return series, which is why the threshold values are 
positive. 

For certain time series, the graph obtained 
useful for finding the threshold. Consider the mean ex- 
cess return for DJI in Figure 2 for instance. 
we consider an appropriately high value fo
such as the 95th percentile of negative returns. 

sumption to calculate the ARMA (1
parameters. The standardized innovations are assumed to 
ha

ese standardized innovations. 
The mean of one of the two normal distributions in the 

mixture is assumed to be zero. This assumption is rea- 
sonable, as results show that the probability that the stan- 
dardized residuals lie in this normal distribution is very 
high. A small percentage lies in the other distribution, with 
the non-zero mean and higher variance, these yield the 
very high and very low values observed in the data. 

Thus, the parameter vector is of size four: 

is not very 

In such cases, 
r the threshold, 

Model 2.2 GARCH-MixNorm Model 
This model also makes use of the pseudo-normal as- 

, 1)-GARCH (1, 1) 

ve a mixture of two normal distributions. We calculate 
the mean, standard deviation, skewness and kurtosis of 
th

 1 1 2, , ,p    . 
point lies in the first (no

p  is the probability that the data 
n-zero mean) distribution, 1  is 

distribution, the mean of the first 1  and 2  are 
butio

the 
 the first an ond ns 

respectively. The mean of the second distribution is as- 
sumed to be zero. 

The parameter vector components must satisfy the four 
moment constraints. 

standard deviations of d sec distri

1e p                  (53) 
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is possible 
th  if the first five 
m

di- 
vided into seven sets; less than 0.5 standard deviations, 
0.5 – 1, 1 – 1.5, 1.5 – 2, 2 – 2.5, 
3 standard deviations. The actual number of residuals in 
ea

4 4 2 21
1 24
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e e e
e
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
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      
  

 
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  (56) 

3p 

An obtained solution is feasible if it satisfies the con- 
straints 2 2

1 20, 0    and 0 1p  . 
To calculate the parameters through the method of 

moments, we need five moment equations. It 
at there may not be a solution even
oments were calculated. So we employ a fractile-to- 

fractile comparison test in addition to using certain mo- 
ment equations. 

We employ a modified version of the technique used 
by Perez [27]. The data (standardized residuals) is 

2.5 – 3, and greater than 

ch category  k  is compared with the predicted 
number of residuals for the solution each obtained from 
the moment equations  k . The solution considered is 
the one obtained by maximizing the log likelihood function 

   
7

1

, logk k
k

L  


             (57) 

and satisfying the constraint Equations (49), (50), (52) 
and (53). As it turns out in most cases, there is no solu- 
tion which satisfies all of them, in such cases, constraint 
Equation (52) is dropped. The minimization is carried out 
using the fmincon function in MATLAB. It turns out that 
the optimum values of the parameter are dependent on 
the initial values considered, so the parameters obtained 
for the previous data point are used as initial values in the 
optimization for the next one. 

The Value at Risk is now calculated by the formula in 
Equation (48), where is calculated from inserting 
the calculated param  mixture of normals 
probability density function given by Equation (16) and 
cumulating it by numerical methods. 

Model 2.3 GARCH-Bickel-Doksum Model 
We calculate the ARMA (1, 1)-GARCH (1, 1) parame- 

ters under the pseudo-normal assumption. The standard- 
ized residuals obtained 

q
tVaR  

eters in the

 t  
 Bickel and
 (23) an
rame

are put through the trans- 
formation suggested by  Doksum [23] to nor- 
malize them (Equations d (24)). If we assume that 
for some value of the pa ter  , the transformed ob- 
servations  , iT    ributed with mean are normally dist
  and st atandard devi ion  . The parameter is esti- 
mated by maximizing the log likelihood function  

      

 

22
2

1
| log 2π ,

2 2

t
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n
l T

1i
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t

i
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   


    
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


   

where  , ,    . The maximum likelihood estimate 
for the mean and variance is given by 

   
1

1
ˆ ,

t

i
i

T
t

  

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      (60) 

The estimate for 

 22 1
ˆ ˆ,

t

iT              
1it 

  can, therefore, be obtained by 
simply maximizing the likelihood function 
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     2ˆ| log 2π 1 log
2t i

n
l           (61) 

As shown in Table 2(a), the Bickel-Doksum transfor- 
mation does not handle skewed distributions well, as it 
only reduces kurtosis. Hence, this model must be modi- 
fied to fix this drawback. 

The Value at Risk is now calc
Equation (48), where is calculated from the in- 
verse Bickel-Doksum

ulated by the formula in 
 q

tVaR  
 formula 

      1
1 2ˆ ˆ1 1 , ,q

tVaR N q


            (62) 

where    1 2ˆ ˆ, ,N q         
 for probability 

is the inverse
tion

 normal func- 
1 q , mean  ̂   and variance 

 2̂ 
Mo

. 
del 2.4 GARCH-John-Drape

We calculate the ARMA (1, 1)-GARCH (1, 1) p
ters under the pseudo-normal assumption. The standard-
ized residuals obtained are transformed with the mo- 
dulus transformation p ed by John and Draper [24] 
(E

ious model, meter 

r Model 
arame-

  t  
ropos

th
quations (25) & (26)). By using similar arguments as 

the prev e para   is estimated by 
maximizing the log likelihood function 
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ˆlog 2π 1 log 1
2

t

t i
i

n
l   


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where 2̂  is given by Equation (56) with  , iT    re- 
presenting the modulus transformation. 

ere

As with the Bickel-Doksum transformation, Table 2(a) 
shows that the modulus transformation is not a skew- 
corrector, it reduces kurtosis. Hence, this model must be 
modified to correct this. 

The Value at Risk is now calculated by the formula in 
Equation (48), wh  q

tVaR  is calculated from the in- 
verse John-Draper formula 

      1
1 2ˆ ˆ1 1 1 , ,q

tVaR N q


             (64) 

where    1 2ˆ ˆ, ,N q         
r probability  1 q , m

is the inverse normal func- 
tion fo ean ˆ    and variance 

 2̂  . 
Model 2.5 GARCH-Yeo-Johnson Model 
We calculate the ARMA (1, 1)-GARCH (1, 1) para- 

meters under the pseudo-normal assumption. The stan-
dardized residuals obtained  t  are transformed with 
the Yeo-Johnson [25] transformation (Equations (27)). By 
using similar arguments as the previous models, the pa- 
rameter   is estimated by maximizing the log likeli- 
hood function 

         
1

ˆlog 2π 1 sign log 1
2t i i

i

l   


      

 (65) 

2  re- 

Yeo-Johnson trans- 
fo  The model 
m

2n t

where ̂  

presenting the Yeo-Johnson transformation. 
Tables 2(a) and (b) show that the 
rmation is a skew-correcting transformation.
ust be modified to enable kurtosis-handling as well. 
The Value at Risk is now calculated by the formula in 

Equation (48), where V  is calculated from the in- 
verse Yeo-Johnson formula  

       

q
taR

   1 2
1 2ˆ ˆ1 1 2 1 , ,q

tVaR N q


    


         

(66) 

ere wh    1 2ˆ ˆ, ,N q        s the inverse normal func- 
tion for probability 

 i
 1 q , mean  ̂   and variance 

 2̂ 
Mo

. 
del 2.6 GARCH-Manly-John odel 

We calculate the ARMA (1, 1)-GARCH (1, 1) und
pseudo-normal assumption. The innovations are initially 
transformed through the Manly exponential transforma- 

 rid it of skewn

oubly-transformed 
data obtained is now roughly normally distributed (Ta- 
bles 2(a) and (b)). 

To obtain the parameter for the Manly transformation, 
the following log-likelihood function is maximized. 

-Draper M
er the 

tion to ess. The symmetric data is now 
transformed with the John-Draper modulus transforma- 
tion, which reduces kurtosis. The d

   2

12t i
i

The parameter for the John-Draper tran

ˆlog 2π λ
tn

l            (67) 

sformation is 
obtained by maximizing the log-likelihood funct
Equation (60). 

ion in 

The inverse Manly transformation is given by 

     1 21
ˆ ˆlog 1 1 , ,q

tVaR N q    


         (68) 

The Value at Risk is calculated in two steps. First, the 
low quantile value is ected to the inverse John- 
Draper transformation in Equat

subj
ion (61) and this value is 

back-transformed with the inverse Manly transformation 
in Equation (65). 

 2.7 GARCH-Manly-Bi
MA (

ption. vatio
tran sforma- 
tio  

he inverse trans- 
formations in Equations (59) and (65) carried out serially 
in that order. 

Model ckel-Doksum Model 
We calculate the AR 1, 1)-GARCH (1, 1) under the 

pseudo-normal assum  The inno ns are initially 
msfor ed through the Manly exponential tran

n remove skewness, and then with the Bickel-Doksum
transformation, which reduces kurtosis. The skewness and 
kurtosis of the doubly-transformed insample data is given 
in Tables 2(a) and (b). 

The parameters for the Manly and Bickel-Doksum trans- 
formations are calculated by maximizing log-likelihoods 
in Equations (64) and (58). After the two parameters are 
obtained, the VaR is calculated from t

is given by Equation (56) with  , iT  
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Table 2. (a) Skewness comparison of std. residuals er transformation; (b) Kurtosis comparison of std. residuals 
after power transformation. 

 NIFTY 

 after pow

(a) 

 Sensex DJI FTSE HSI Nikkei 

Initial skewness −0.4764 −0.5311 −0.1024 −0.3660 −0.1836 −0.3209 

Manly 0.0134 0.0615 0.0035 0.0162 0.0126 0.0072 

−0.0801 −0.2763 −0.0815 −0.2299 John-Draper −0.3694 −0.2842 

Yeo-Johnson 0.0037 0.0442 

Bickel-Doksum 

0.0094 0.0055 −0.0175 −0.0306 

−0.0858 −0.3045 −0.1069 −0.2638−0.4379 −0.3769  

Manly-Yeo-Johnson 0.0052 0 0.0093 0.0068 −0.0221 

Manly-John-Draper −0.0026 0.0052 0.0226 0.0150 

m 126 

−0.0087 

0130 

0.0041 −0.0003 0.0026 −0.0193 

.0356 −0.0287 

0.0070 −0.0026 

Manly-Bickel-Doksu 0.0 0.0281 −0.0015 0.0068 0.0208 0.0123 

0.0051 −0.0022 −0.0151 −0.0284 John-Draper-Yeo-Johnson −0.0063 

Yeo-Johnson-John-Draper −0.0002 0.0028 

Yeo-Johnson-Bickel-Doksum 0.0029 0.0233 

0.0028 −0.0002 0.0088 −0.

The standardized residuals for the in-sample data are transformed with various
check their normalizing effect. For double-transformations, the data is first tra
ond transformation. 

(b

 power transformations. The skewness of each transformed output is co
nsformed with the transformation mentioned first, and then subjected to the sec-

) 

 Sensex NIFTY 

mpared to 

DJI FTSE HSI Nikkei 

Initial kurtosis 3.7840 5.0195 3.3459 3.8574 3.9326 3.5752 

Manly 3.3038 4.93

3.17

4.7952 

72 

3.2771 3.8375 

John-Draper-Yeo-Johnson 2.9229 3.0349 

Yeo-Johnson-John-Draper 3.1005 3.18

Johnson-Bickel-Doksum 3.1907 3.0305 3.0275 

18 3.3380 3.4958 3.8097 3.1979 

John-Draper 3.1862 18 

Yeo-Johnson 3.3475 

2.8817 3.1754 2.8691 3.0347 

3.3385 3.5389 3.8324 3.2611 

2.9518 3.3488 3.0716 3.2118 

3.3388 3.4952 3.8182 3.2126 

Bickel-Doksum 3.5532 3.8147 

Manly-Yeo-Johnson 3.3032 4.89

Manly-John-Draper 3.0932 3.2107 

Manly-Bickel-Doksum 

2.8838 3.0976 2.8498 2.9224 

2.9502 3.1660 3.0251 2.9903 

2.8775 3.0082 2.8458 2.8674 

2.8840 3.1073 2.8531 2.9431 

2.9565 

69 

Yeo- 3.2998 3.7688 

The standardized residuals f -sample data nsformed with variousor the in  are tra  power transformations. The kurtosis of each transformed output is compared to 
check their normalizing effect. For double-transformations, the data is first transformed with the transformation mentioned first, and then subjected to the sec-
ond transformation. 
 

Model 2.8 GARCH-Yeo-Johnson-John-Draper Model 
We calculate the ARMA (1, 1) H (1, 1

the pseu ption. T vations - 
tially tra ugh the Y on tra - 
tion to rid it ness. The symm ata is no - 
formed w hn-Draper m transfo , 
which reduces kur sis. The doub ed d - 
tained is  normally di ed (Tab  

and (b)). 
A  the para  for the two transform

obt from Eq  (62) an  the VaR - 
p  the i ransfor  in Equ 1) 
and (63). 

2.9 GA o-John el-Doksum Model 
We c he (1, 1) (1, 1) und e 
ps ormal a n. Th tions a lly  

-GARC ) under 
do-normal assum
nsformed thro

he inno
eo-Johns

 are ini
nsforma

of skew etric d w trans
ith the Jo

to
odulus 

ly-transform
rmation
ata ob

now roughly stribut les 2(a)

fter meters ations are 
ained 

uted from
uations

nverse t
d (60),

mations
 is com

ations (6

Model 
alculate t

RCH-Ye
ARMA 

son-Bick
-GARCH er th

eudo-n ssumptio e innova re initia
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transform he Yeo-Joh sform  
remove en transfo ith the Bic l- 
Doksu  which re excess . 
The sk osis of t bly-tran
data o  Tables  (b). 

Param -Johnson ickel-D  
tran ted by izing l - 
hoo d (58). The VaR is ca d  

fr nverse ations tions (59) and (63) 
carri  seriall  order.

4. Testing 

T series are of length 15 se are di into 
th ple ser th 1000) and t-of-sam ies 
(l 00). F data p the out ple 
re we esti odel pa rs usin re- 

 
Table 3. (a) 99% VaR violations comparisons for model 1 series; (b) 97.5% VaR violations comparisons for model 1 series; (c) 

(a) 

99% VaR Model 1.1 Normal 2 T 
Model 1.   

n Type IV 
Model 1.4  

on SU 
5 Manly Expected Violations 

ed through t nson tran ation to
 skewness, and th

m transformation,
rmed w

moves 
ke

kurtosis
ewness and kurt he dou sformed 

btained are given in 2(a) and
eters for the Yeo

sformations are calcula
 and B

 maxim
oksum

og-likeli
ds in Equations (62) an lculate

om the i  transform  in Equa
ed out y in that  

he data 00; the vided 
e in-sam
ength 5

ies (leng
or each 

ou
oint in 

ple ser
-of-sam

gion, mate m ramete g the p

95% VaR violations comparisons for model 1 series. 

Model 1.
3

Pearso Johns
Model 1.

Sensex 16 7 7 8 5 16 

Nifty 16 8 8 13 5 

DJI 22 20 9 9 11 5 

FTSE 19 21 13 13 17 5 

H S I 15 13 6 6 10 5 

Nikkei 11 13 7 7 9 5 

14 

This table tion comparisons f  Model 1 se e expected f violations is g n in the last c  99% VaR is e ted to 
be violat nt out-of-sam et. As can odels 1.3 re the best ones. 
 

(b) 

9 mal  1.2 T 
del 1.3  

Pearson Type IV 
odel 1.4 

Johnson SU 
del 1.5 M Expected Violations 

 shows the VaR viola or the ries. Th  number o ive olumn, xpec
ed 5 times for a 500 poi ple data s be seen, M  and 1.4 a  performing 

7.5% VaR Model 1.1 Nor Model
Mo M  

Mo anly 

Sensex 28 27 16 15 21 12.5 

Nifty 24 24 16 15 21 12.

29 30 25 25 24 12.5 

5 

DJI 34 27 22 22 23 12.5 

FTSE 

H S I 24 23 20 19 22 12.5 

14 18 12.5 Nikkei 29 29 14 

This table shows the VaR violation comparisons for the Model 1 series. The e
to be violated 12.5 times for a 500 point out-of-sample data set. As can be seen,

 
(c) 

95% VaR Model 1.1 Normal Model 1.2 T 
Model 

Pearson T

xpe
 Mode

1.3  
ype IV 

Model 1.4  
Johnson SU 

Model 1.5 Manly Expected Violations 

cted number of violations is given in the last column, 97.5% VaR is expected 
ls 1.3 and 1.4 are the best performing ones. 

Sensex 38 38 29 28 33 25 

Nifty 40 38 29

DJI 55 49 42

 32 36 25 

 41 42 25 

 36 41 25 

33 33 25 

33 38 25 

FTSE 38 39 36

H S I 37 34 33 

Nikkei 46 43 33 

This table shows the VaR violation comparisons for the Model 1 series. The expe
be violated 25 times for a 500 point out-of-sample data set. As can be seen, M

cted number of violations is given in the last column, 95% VaR is expected to 
odel 1.3 is the best performing one.     
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vious 1000 data points, i.e., for finding VaR on day t , we 
consider data points from day t 1000  to day 1t  .  

re run in MATLAB version 7.2 on a Win- 
ating system with 1.6 GHz processing speed. 

hile running the program to calculate VaR for a single 

Table 4. (a) 99% VaR violations comparisons for model 2 ser  99% VaR violations comparisons for model 2 series; (c) 
95% VaR violations comparisons for model 2 series. 

99% VaR 
odel 2.1 
EVT 

Model 2.2 
Mixtur
Nor s 

Model 2.3 
Bickel-Doksum

4 
Draper

Model 2.5 
Yeo-Johnson

Model 2.6 
Manly-John-

Draper 

Model 2.7 
Manly-Bickel-

Doksum 

Model 2.8 
Yeo- ohnson-
John-Draper 

Model 2.9
Yeo-Johnson-

Bickel-Doksu

Expected 
Violations

The tests a
dows XP oper
W
day, the results are generated well within 30 seconds for The models are tested on six equity indices, Sensex, Nifty, 
 

most cases. 

5. Results 

5.1. Data and Model Parameters 

ies; (b)

(a) 

M
e of 

mal
 John-

Model 2.
J

 

m

Sensex 7 15 13 13 7 7 7 5 7 7 

N 9 13 12 9 10 9 10 5 

D 11 15 10 11 0 11 5 

FT 14 16 14 15 15 5 

8 5 

ifty 9 13 

JI 15 17 14 1

SE 16 18 18 13 

H S I 6 13 9 8 10 6 6 6 6 5 

Nikkei 8 9 10 12 10 8 8 8 

This table shows the VaR violation comparisons for the Model 2 series. The e ted number of violations is given in the last column, 99% VaR is expected to 
be violated 5 times for a 500 point out-of-sample data set. As can be see he be ne. 
 

97.5%
odel 2.1 
EVT 

Model 2.2 
Mixt f 
Normals 

Model 2.3 
Bickel-Doksu

odel 2.4 
hn-Draper

Model 2.5 
Yeo-Johnson

Model 2.6 
Manly-John-

Draper 

Model 2.7 
anly- Bickel- 
Doksum 

Model 2.8 
Y hnson- 
John-Draper 

Model 2.
Yeo-Johns
Bickel-Doksum

iolations

xpec
n, Model 2.6 is t

(b) 

st performing o

 VaR 
M ure o

m 
M

Jo
M eo-Jo

9 
on-

Expected 
V

Sensex 22 20 24 23 22 19 19 19 12.5 19 

Nifty 18 22 21 21 18 18 18 12.5 

DJI 25 28 28 25 22 22 22 12.5 

FTSE 23 24 24 24 23 23 23 12.5 

19 12.5 

Nikkei 24 19 23 23 19 17 17 18 18 12.5 

 22 18 

 33 22 

 25 23 

H S I 23 19 21 21 23 19 19 19 

This table shows the VaR violation comparisons for the Model 2 serie  numb  is given in the last column, 97.5% VaR is expected 
to be 5 tim -of-  As  2.6 a es

 

95% VaR 
odel 2.1 
EVT 

Mod 2 
Mixture of 
Nor  

Model 2.3 
Bickel-Doksum

odel 2.4 
hn-Draper

Model 2.5 
Yeo-Johnson

Model 2.6
Manly-John-

Draper 

Model 2.7 
Manly- 

ckel-Doksum

8 
Yeo-Johnson- 
J aper 

Model 2.
Yeo-Johnson- 
Bickel-Doks

Expected 
Violations

s. The expected
can be seen, Models

er of violations
nd 2.7 are the b violated 12. es for a 500 point out sample data set. t performing ones. 

(c) 

M
el 2.

mals
 Jo

M
 

Bi

Model 2.

ohn-Dr

9 

um

Sensex 34 38 36 36 32 32 25 34 34 32 

Ni 34 43 36 36 33 32 25 

D 51 57 52 52 45 43 25 

8 

fty 34 34 33 

JI 49 47 45 

FTSE 35 38 37 37 34 34 34 33 32 25 

H S I 31 37 35 37 34 

Nikkei 37 44 43  3

34 33 34 33 25 

35 34 34 34 25 

Th c lations is given in the last column, 95% VaR is expected to 
del 2.9 is the best performing one. 

is table shows the VaR violation comparisons for the Model 2 series. The expe ted number of vio
be violated 25 times for a 500 point out-of-sample data set. As can be seen, Mo   
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DJI, FTSE, HSI and Nikkei. The data used is the closing 

d March 2003 to 
ed from www.fi- 

the series, and the first four moments are given in Table 1. 

5.2. VaR n e

We test the cti
th er o th lculated VaR has b te

is given by 
N   (69) 

We measure VaR for each out-of-sample data point, 
therefore, N = 500. We calculate 95%, 97.5% and 99% 
V ch e, ted viola- 
t

T 3(a) pa  
1 ser , compari VaR v ations fo he six e ity

 
Table 5. (a) LR Test fo  VaR violations for model 1 series; (b) LR Test for 97  VaR vio ions for m el 1 series; (c) 
LR t for  VaR violations for model 1 series. 

(a) 

VaR Mode Normal 2 T Mode  Pearson T  IV del 1.4 Johnson SU odel 1.5 M ly 

value of these indices from the perio
ebruary 2009. The data was obtainF

nance.yahoo.com, and the time period includes the stock 
market crash of 2008. The details regarding the returns of 

where N  is the total number of VaR measurements. 

 Violations and Compariso

f each model

 of Mod

 by calcu

ls 

lating  effe veness o
e numb f times e ca een viola d.  

The expected number of violations for a q-percentile VaR 

 Expected % VaR violations 1 %q q 

aR for ea
ions for eac

ables 

 data point
h would be 2

-(c) com

. Therefor
5, 12.5 and
re the five

 the expec
 5 respective
 models of th

ly. 
e Model

ies ng iol r t qu

r 99% .5% lat od
 Tes 95%

99% l 1.1 Model 1.  l 1.3 ype Mo M an

Sensex 47 0.72 0.72 1.54 15.47 15.

Nifty 15.47 10.99 1.54 1.54 8.97 

DJI 31.78 25.91 2.61 2.61 5.42 

FTSE 23.13 28.80 8.97 17.90 

H S .9

Nikkei 2 

8.97 

I 13.16 8

8.97 

7 0.19 0.

0.7

19 

0.72 

3.

2.

91 

61 5.42 

T how  LR test stic for the el 1, 99%  violation observations. bers in  indicate sit ns where t ll hypot . 
the observed violations is equal to the predicted one, is rejected. 
 

(b) 

 VaR Model 1.1 Normal Model 1.2 Model 1.3 Pearso pe IV el 1.4 John U Model 1.5 M

his table s s the  stati  Mod  VaR The num  bold uatio he nu hesis, i.e

97.5%    T n Ty Mod son S anly 

Sensex .66 13.02 0.92 0.48 4.94 14

Nifty 59 8.59 0.92 0.48 4.94 

8.59 

H S I 8.59 7.28 92 3.00 6.06 

16  

8.

DJI 26.01 13.02 6.06 6.06 7.28 

FTSE 16.38 18.16 9.98 9.98 

3.

Nikkei 16.38 .38 0.18 0.18 2.19

This table show R te tio m
the observed violations is equal to the predicted one, is rejected. 
 

(c) 

Model 1.1 Normal Model 1.2 Model 1.3 Pearson T pe IV 4 Johnson SU 5 Ma

s the L st statistic for the Model 1, 97.5% VaR violation observa ns. The nu bers in bold indicate situations where the null hypothesis, i.e. 

95% VaR T y Model 1. Model 1. nly 

Sensex 18 6.18 0.64 0.37 2.46 6.

Nifty 08 6.18 0.64 1.90 4.51 

I .67 19.18 10.19 9.11 10.19 

2.46 2.46 

8.

DJ 28

FTSE 6.18 7.10 4.51 4.51 9.11 

H S I 5.32 3.08 2.46 

Nikkei 15.04 11.33 2.46 2.46 6.18 

This table shows the LR test statistic for the Model 1, 95% VaR violation obse tions. The numbers in bold indicate situations where the null hypothesis, i.e. 
the observed violations is equal to the predicted one, is rejected. 

rva
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indices. Tables 4(a)-(c) compare the same for the nine 

computed, and the best model for each percentile VaR is 
found. 

It can be seen that Models 1.3 and 1.4 are best per- 

(where ARMA (1, 1)-GARCH (1, 1) pa- 
rameters are calculated with the pseudo-normal a

w the 

 
Table 6. (a) LR Test for 99% VaR violations for model 2 series; 
LR Test for 95% VaR violations for model 2 series. 

(a) 

Normals 
raper Yeo-Johnson

Manly- 
John-Draper

Manly-Bickel- 
Doksum 

Yeo-Johnson- 
John-Draper 

Yeo-Johnson-
Bickel-Doksum

models of the Model 2 series. The expected violations for 
99%, 97.5% and 95% VaR are given in the last column 
of each table. The mean violation for each model is 

forming models across all indices. Amongst those of the 
Model 2 series 

ssump- 
tion) ho ever, Models 2.6, 2.7, 2.8 and 2.9 perform 
best. This is expected from the skewness-kurtosis Table 
2, where the most normalized transformations are shown to 
be Manly-John-Draper, Manly-Bickel-Doksum, Yeo-John-  

(b) LR Test for 97.5% VaR violations for model 2 series; (c) 

99% VaR 
Model 2.1 

EVT 

Model 2.2 
Mixture of Model 2.3 

Bickel-Doksum 
Model 2.4 

John-D
Model 2.5 

Model 2.6 Model 2.7  Model 2.8 Model 2.9 

Sensex 0.72 0.72 13.16 8.97 8.97 0.72 0.72 0.72 0.72 

Nifty 2.61 2.61 8.97 7.11 8.97 2.61 3.91 2.61 3.91 

DJI 42 90 10.99 13. 3.91 5.42 3.91 

FTSE 10.99 15. 20.46 20.46 15. 10.99 13.16 8.97 

H S I 0.19 2.61 1.54 3. 0.19 0.19 0.19 

Nikkei 1.54 3.91 7.11 3. 54 1.54 1.54 

 5. 13.16 17. 16 5.42 

47 47 13.16 

 8.97 91 0.19 

2.61 91 1. 1.54 

This ta s the LR test sta  for the Model 2,  VaR violation obser  The numbers in bold indica tions where the null hy sis, i.e. 
the ob iolations is equ e predicted one, cted. 
 

aR 
Model 2.1 

EVT 
Mixture of 
Normals 

Model 2.3 
Bickel-Doksum 

Model 2.4 
John-Draper

Model 2.5 
Ye nson

Model 2.6 
Manly- 

John-Draper

Model 2.7 
Manly- 

Bickel-Doksum 

Model 2.8 
Yeo-Johnson- 
John-Draper 

Model 2.9 
Yeo-Johnson- 

Bickel-Doksum

ble show tistic  99% vations. te situa pothe
served v al to th  is reje

(b) 

Model 2.2
99% V

o-Joh

Se 92 8 28 00 nsex 3. 6.06 .59 7. 6.06 3.00 3.00 3. 3.00 

Nif 2.19 6.06 4.94 4.94 2.19 2.19 2.19 19 

DJI 9.98 2 14.66 14.66 9.98 6.06 6.06 6.06 06 

FTSE 7.28 8.59 8.59 8.59 7.28 7.28 7.28 28 

H S 3.00 4.94 4.94 7.2 3.00 3.00 3.00 00 

Nikkei 3.00 7.28 7.28 3.00 1.50 1.50 2.19 19 

ty 6.06 2.

3.95 6.

 9.98 7.

 I 7.28 8 3.

8.59 2.

This ta s the LR test s r the Model 2, VaR violation obser  The numbers in bold ind tuations where the nu thesis, i.e. 

(c) 

99% VaR 
Model 2.1 

Model 2.2 
Mixture of 

Model 2.3  
el-

Model 2.4 
-Dra

Model 2.5 
Model 2.6 

Manly- 
er

Model 2.7 
Manly-Bickel- 

Model 2.8 
Yeo-Johnson- 

aper

Model 2.9 
Yeo-Johnson- 

ble show tatistic fo  97.5% vations. icate si ll hypo
the observed violations is equal to the predicted one, is rejected. 
 

EVT 
Normals 

Bick Doksum John per Yeo-Johnson
John-Drap Doksum John-Dr  Bickel-Doksum

Sensex 3.08 6 4.51 4.51 3.08 3.08 1.90 1.90  .18 1.90

Nif 3.08 1 4.51 4.51 3.08 3.08 2.46 2.46  

DJI 22.17 3 23.73 23.73 19. 16.37 13.75 13.75  

FTS 3.77 6 5.32 5.32 3.08 3.08 3.08 2.46  

H S 1.41 5 3.77 5.32 3.08 3.08 2.46 3.08  

Nik 5.32 1 11.33 11.33 6.18 3.77 3.08 3.08  

ty 1.33 1.90

2.16  18 11.33

E .18 1.90

 I .32 2.46

kei 2.52  3.08

This table shows the LR test statistic for the Model 2, 95% VaR violation observations. The numbers in bold indicate situations where the null hypothesis, i.e. 
e observed violations is equal to the predicted one, is rejected. th 
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son-John-Draper and Yeo-Johnson-Bickel-Doksum. Model 
2.1 performs well too, especially for higher VaR estima- 
tion. 

In order to test the observed VaR numbers, we use 
Kupiec’s test to determine if the observed VaR violations 
are significantly different from their expected values. The 
test is based on the fact that the number of violations N  
in a sample of size T  is binomially distributed as 

 ~ ,T p . Thus, the probability of N  excesses oc- N B
curring over a T  day period is given by  1

T NNp p
  

where p  is the probability of exceeding VaR on a giv- 
en day. Under the null hypothesis that N T p , we 
calculate the Likelih  (LR) test statood Ratio istic 

   N N
N T

 

   

1

ln 1 1Np


 

 

       (70) 

Th statistics fo VaR v  observ tions 
are en in les 5  for t del 1 , and
in s 6 ) for odel s. Th es in 
bo  tho here observe R viol s are 
signi ntly rent fr  expected es. 

 
measurement of Value at Risk. We use an ARMA (1, 1) 
process to m exp d a GARCH 

o
calculate par ters th
p orm ssump  while Models 2.x calculate 
the ith th al assum The f wing 
co ions ad m the r s. 
 dels 1.3 and 1.4 -P d GAR SU) 

r and away the perform mong al mod- 
r consistency can be seen across in

 per es. 
 ng odels h use t seudo-n l as- 

dardized innovations, the first one makes the distribu- 
tion symmetric, while the second one reduces the 
kurtosi

  
percentile VaR es

utat ly, M  2.x se re sligh aster 
th s and 1 t the di nce of a few sec- 
onds does not ndate them i more 
accurate GARCH-PIV and GARCH-JSU model
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Appendix 

In the model 1.5 used, the returns series tr  is modeled 
as follows 

t t t tr X                   (71) 

We assume that tZ  is a distribution such that when 
transformed through Manly’s exponential transformation 
(Equation (22)) it becomes normal. 

   , ~Z T X Z N ,             (72) 

 
2

1 1

1/ 22
exp d

a m
z a m

           (73
π

P
 

  
   

 )

The lower limit is given b

 

y 1   since  Z T X . 
As X  varies from   to  , Z  varies from 

1   to  . In other words, it is impossible for Z  
to take on a value less than 1  . 

    1P z a P x T a             (74) 

This arises since the Manly’s transformation is one-to- 
one and monotonically increasing. We name  1b T a  
and proceed 

 
2( )

( )

1 1
exp d

22π

T b

T

m
P x b m


 

       
   

   (75) 

We name , and  follows.  m T n  d dm T n n

     
2

1 1
exp d

22π

b T n
P x b T n n


 

         
   

   

(76) 

We need to add a normalizing constant to the equ-
ation, such that 

k  
  1P x    . 

     
2

1
exp d

22π

T nk
P x T n n








          
   

  

(77) 

Substituting 
 

2

T n
w






 , 

 
d d

2

T n
w n




 , and  

changing limits from  to  , 
1

,
2

 


  
   
  

. 

   2

1/

2

exp d
π

k
P x w w

 




 
 
 

     

   

     (78) 

 

2

1/

2

1/

exp d
π

P x w w
 



 

 
 
 

 


   

2
2

0

2
                   exp d

π

k
w w

 

 

k 

 

      (79) 

2
1

1

k

2
erf






  

  

            (80) 

  
 

The innovations are related to the standardized inno-
vations by t t th . We also assume that the trans-
formed standardized residuals have zero mean and unit 
standard deviation. Therefore 

 

   

1

2

2

π
1

1 erf
2

exp 11
                  exp exp

2

t tf F

x






x



 
   
 

      
   

  (81) 

Since   ( )t tP a P ah    , t

 

   

1

2

2

π
1

1 erf
2

exp 11
                    exp exp

2

t t

t

t
t

f F

h

x h
x h







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    

  
       

   



 

(82) 

The log likelihood function to be minimized, is there-
fore 

2

1

2

2 1
log log 2π

21
1

2

,

            
2

T

t
t

t

tt

t

LLF h

erf

M
h

h








  
  
             
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  (83) 
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