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ABSTRACT 

The Differential Evolution (DE) algorithm is arguably one of the most powerful stochastic optimization algorithms, 
which has been widely applied in various fields. Global numerical optimization is a very important and extremely dif- 
ficult task in optimization domain, and it is also a great need for many practical applications. This paper proposes an 
opposition-based DE algorithm for global numerical optimization, which is called GNO2DE. In GNO2DE, firstly, the 
opposite point method is employed to utilize the existing search space to improve the convergence speed. Secondly, two 
candidate DE strategies “DE/rand/1/bin” and “DE/current to best/2/bin” are randomly chosen to make the most of their 
respective advantages to enhance the search ability. In order to reduce the number of control parameters, this algorithm 
uses an adaptive crossover rate dynamically tuned during the evolutionary process. Finally, it is validated on a set of 
benchmark test functions for global numerical optimization. Compared with several existing algorithms, the perform- 
ance of GNO2DE is superior to or not worse than that of these algorithms in terms of final accuracy, convergence speed, 
and robustness. In addition, we also especially compare the opposition-based DE algorithm with the DE algorithm 
without using the opposite point method, and the DE algorithm using “DE/rand/1/bin” or “DE/current to best/2/bin”, 
respectively. 
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1. Introduction 

Global numerical optimization problems arise in almost 
every field such as industry and engineering design, ap- 
plied and social science, and statistics and business, etc. 
The aim of global numerical optimization is to find glo- 
bal optima of a generic objective function. In this paper, 
we are most interested in the following global numerical 
minimization problem [1,2]: 

  min ,   f  x L x U            (1) 

where  f x  is the objective function to be minimized, 
 1 2, , , n

nx x x R x  is the real-parameter variable 
vector,  1 2, , , nl l l L  is the lower bound of the vari- 
ables and  1 2, , , nu u u U  is the upper bound of the 
variables, respectively, such that  ,i i ix l u . 

Many real-world global numerical optimization prob- 
lems have many objective functions that are non-differ- 
entiable, non-continuous, non-linear, noisy, flat, random, 
or that have many local minima, multiple dimensions, etc. 
However, the major challenge of the global numerical 
optimization is that the problems to be optimized have 
many local optima and multiple dimensions. Such prob- 

lems are extremely difficult to be optimized and find re- 
liable global optima [3,4]. Therefore, increasing require- 
ments for solving global numerical optimization in vari- 
ous application domains have encouraged many research- 
ers to find a reliable global numerical optimization algo- 
rithm. However, in the last decades, this problem remains 
intractable, theoretically at least [5]. 

In the global numerical optimization, the traditional 
methods can be usually classified into two main catego- 
ries [5,6]: deterministic and probabilistic global numeri- 
cal optimization methods. During the global numerical 
optimization process, the first stage is usually to find 
specific heuristic information involved in problem. Most 
of deterministic methods rely on the heuristic informa- 
tion to escape from local minima. On the other hand, 
almost probabilistic methods rely on a probability to de- 
termine whether or not search should depart from the 
neighborhood of a local minimum. Evolutionary algo- 
rithms (including genetic algorithm (GA) [7], evolution 
strategy (ES) [8], genetic programming (GP) [9], and 
evolutionary programming (EP) [10]) are inspired from 
the evolution of nature and relatively recent optimization 
methods. These algorithms have the potential to over- 
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come the limitations of traditional global numerical op- 
timization methods, mainly in terms of unknown system 
parameters, multiple local minima, non-differentiability, 
or multiple dimensions, etc. [5,11]. 

Lately, some new methods for global numerical opti- 
mization were gradually introduced. Particle Swarm Op- 
timization (PSO) was originally proposed by J. Kennedy 
as a simulation of social behavior, and it was initially 
introduced as an optimization method in 1995 [12]. PSO 
has been a member of the wide category of Swarm Intel- 
ligence methods for solving global numerical optimiza- 
tion problems [13-15]. Differential Evolution (DE) was 
introduced by Storn and Price in 1995, and developed to 
optimize real-parameter functions [3,16,17]. DE mainly 
uses the distance and direction information from the cur- 
rent population to guide its further search, and it mainly 
has three advantages: 1) finding the true global minimum 
regardless of the initial parameter values; 2) fast conver- 
gence; 3) using a few control parameters. In addition, DE 
is simple, fast, easy to use, very easily adaptable and use- 
ful for optimizing multimodal search spaces [18-22]. Re- 
cently, DE has been shown to produce superior perform- 
ance, and perform better than GA and PSO over some 
global numerical optimization problems [13,14]. There- 
fore, DE is very promising in solving global numerical 
optimization problems. 

This paper proposes an opposition-based DE algorithm 
for global numerical optimization (GNO2DE). This algo- 
rithm employs the opposite point method to utilize the 
existing search spaces to speed the convergence [21-24]. 
Usually, different problems require different settings for 
the control parameters. Generally, adaptation is intro- 
duced into an evolutionary algorithm, which can improve 
the ability to solve a general class of problems, without 
user interaction. In order to improve the adaptation and 
reduce the control parameter, GNO2DE uses a dynamic 
mechanism to dynamically tune the crossover rate CR 
during the evolutionary process. Moreover, GNO2DE can 
enhance the search ability by randomly selecting a can- 
didate from strategies “DE/rand/1/bin” and “DE/current 
to best/2/bin”. Numerical experiments clearly show that 
GNO2DE is feasible and effective. 

The remainder of this paper is organized as follows. 
Section 2 briefly introduces the basic idea of the DE   
algorithm. Section 3 describes in detail the proposed 
GNO2DE algorithm. Section 4 presents the experimental 
setup adopted and provides an analysis of the experi- 
mental results obtained from our empirical study. Finally, 
our conclusions and some possible paths for the future 
research are provided in Section 5. 

2. The Classical DE Algorithm 

The DE algorithm is a population-based stochastic opti- 

mization algorithm like many evolutionary algorithms 
such as genetic algorithms using three similar genetic op- 
erators: crossover, mutation, and selection [7]. The main 
difference in generating better solutions is that genetic 
algorithms mainly rely on crossover while DE mainly 
relies on mutation operation. The DE algorithm uses 
mutation operation as a search mechanism and selection 
operation to direct the search toward the prospective re- 
gions in the search space. The DE algorithm also uses a 
non-uniform crossover that can take child vector para- 
meters from one parent more often than it does from oth-
ers. By using the components of the existing population 
members to generate trial vectors, the recombination (i.e., 
crossover) operator efficiently shuffles information about 
successful combinations, enabling the search for a better 
solution space [3,16,17]. 

A global numerical optimization problem consisting of 
n parameters can be represented by a n-dimensional vec- 
tor. In DE, a population of NP  solution vectors is ran- 
domly created at the start, where 4NP  . The popula- 
tion is successfully improved by applying mutation, cross- 
over, and selection operators [13,25,26]. 

2.1. Randomly Initializing Population 

Like other many evolutionary algorithms, the DE algo- 
rithm starts with an initial population, which is randomly 
generated when no preliminary knowledge about the so- 
lution is available. In DE, let us assume that an individ- 
ual  , ,1, ,2, , ,, , ,i G i G i G i n Gx x x x  stands for the thi  in- 
dividual of population GP  (population size NP ) at the 
generation G . The population  0 1,0 2,0 ,0, , , NPP  x x x  
is initialized as  

 , ,0,  : i j j j j ji NP j n x l rand u l          (2) 

where NP  is the population size, n  is the number of 
variables, jrand  is a uniformly distributed random num- 
ber in the range [0,1], and , ,0i jx  is the thj  variable of 
the thi  individual at the initial generation, which is ini- 
tialized within the thj  range ,j jl u   . 

2.2. Mutation Operation 

In the mutation phase, DE randomly selects three distinct 
individuals from the current population. For each target 
vector ,i Gx , the thi  mutant vector is generated based 
on the three selected individuals as follows: 

 1 2 3, 1 , , ,i G r G r G r GF    v x x x        (3) 

where 1,2, ,i NP  , random indexes  

1 2 3, , {1,2, , }r r r NP   are randomly chosen integers, mu- 
tually different, and they are also chosen to be different 
from the running index i , so that NP  must be greater 
or equal to four to allow for this condition. The scaling 
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factor F  is a control parameter of the DE algorithm, 
which controls the amplification of the differential varia-
tion (

2 3, ,r G r Gx x ). And the scaling factor F  is a real 
constant factor in the range [0,2]  and is often set to 0.5 
in the real applications [27]. 

The above strategy is called “DE/rand/1/bin”, it is not 
the only variant of DE mutation which has been proven 
to be useful for real-valued optimization. In order to 
classify the variants of DE mutation, the notation:  
DE x y z  is introduced where 1) x  specifies the 
vector to be mutated which currently can be “rand” (a 
randomly chosen population vector) or “best” (the vector 
of lowest cost from the current population); 2) y  is the 
number of difference vectors used; 3) z  denotes the 
crossover scheme, there are two crossover schemes often 
used, namely, “bin” (i.e., the binomial recombination) 
and “exp” (i.e., the exponential recombination). Usually, 
there are the following several differential DE schemes 
often used in the global optimization [3]: 

“DE/best/1/bin”:  

 1 2, 1 , ,i G best r G r GF    v x x x           (4) 

“DE/current to best/2/bin”: 

   1 2, 1 , , ,i G i best i G r G r GF F       v x x x x x   (5) 

“DE/best/2/bin”: 

   1 2 3 4, 1 , ,i G best r G r G r rF F       v x x x x x  (6) 

“DE/rand/2/bin”: 

   1 2 3 4 5, 1i G r r r r rF F       v x x x x x    (7) 

where bestx  is the best individual of the current popula- 
tion G . The scaling factor F  is the control parameter 
of the DE algorithm. 

2.3. Crossover Operation 

In order to increase the diversity of the perturbed pa- 
rameter vectors, the crossover operator is introduced. The 
new individual is generated by recombining the original 
vector  , ,1, ,2, , ,, , ,i G i G i G i n Gx x xx   and the mutant vec- 
tor  , 1 ,1, 1 ,2, 1 , , 1, ,...,i G i G i G i n Gv v v   v  according to the fol- 
lowing formula: 

   
, , 1

, , 1

, ,

,   

if [0,1] [1, ]

,     otherwise

i j G

i j G

i j G

v

w rand CR j rand n

x








   



  (8) 

where [0,1]rand  stands for a uniformly distributed ran- 
dom number in the range [0,1], and [1, ]rand n  is a ran- 
domly chosen index from the set {1, 2, , }n  to ensure 
that at least one of the variables should be changed and 

, 1i Gw  does not directly duplicate ,i Gx . And the cross-

over rate CR  is a real constant in the range [0,1], one of 
control parameters of the DE algorithm. After crossover, 
if one or more of the variables in the new solution are 
outside their boundaries, the following repair rule is ap-
plied [25]: 

 

 

, , 1 , , 1

, , 1 , , 1 , , 1

, , 1

1
,          if 

2
1

,  if 
2

,                        otherwise

i j G j i j G j

i j G j i j G j i j G j

i j G

w l w l

w l w u w u

w

 

  



   

    




   (9) 

2.4. Selection Operation 

After mutation and crossover, the selection operation 
selects to decide that the new individual , 1i Gw  or the 
original individual ,i Gx  will survive to be a member of 
the next generation. If the fitness value of the new indi- 
vidual , 1i Gw  is better than that of the original one ,i Gx  
then the new individual , 1i Gw  is to be an offspring in 
the next generation (G + 1) else the new individual 

, 1i Gw  is discarded and the original one ,i Gx  is retained 
in the next generation. For a minimization problem, we 
can use the following selection rule: 

   , 1 , 1 ,
, 1

,

,  if ,

,     otherwise.

i G i G i G
i G

i G

f f 


  


w w x
x

x
    (10) 

where  f   is the fitness function, and , 1i Gx  is the 
offspring of ,i Gx  in the next generation (G + 1). 

2.5. The General Framework of the DE  
Algorithm 

The above operations (i.e., mutation, crossover, and se- 
lection) are repeated NP  (population size) times to ge- 
nerate the next population of the current population. 
These successive generations are generated until the 
predefined termination criterion is satisfied. The main 
steps of the DE algorithm are given in Figure 1. 
 

1: Randomly initialize the starting population 0P . 

2: Evaluate the initial population 0P . 

3: repeat 
4:   for each individual in the current population GP  do 

5:       Perform mutation operation. 
6:       Perform crossover operation. 
7:       Evaluate the new individual. 
8:       Perform selection operation. 
9:   end for 
10: Generate the next generation population 1GP   through 4-9,  

11:      and let 1G G  . 
12: until (the predefined termination criterion is achieved). 

Figure 1. The generic framework of the DE algorithm. 
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3. The Proposed GNO2DE Algorithm 

Similar to all population-based optimization algorithms, 
two main steps are distinguishable for the DE, population 
initialization and producing new generations by evolu- 
tionary operations such as selection, crossover, and mu- 
tation. GNO2DE enhances these two steps using the op- 
posite point method. The opposite point method has been 
proven to be an effective method to evolutionary algo- 
rithms for solving global numerical problems. When 
evaluating a point to a given problem, simultaneously 
computing its opposite point can provide another chance 
for finding a point closer to the global optimum. The 
concept of the opposite point is defined as follows [21- 
24]:  

Definition 1 Let us assume that ,i Gx  is the thi  
point of the population GP  (population size NP ) at the 
generation G  in the n-dimensional space. The opposite 
point  , ,1, ,2, , ,, , ,i G i G i G i n Go o oo   is completely defined 
by its components as follows: 

, , , ,i j G j j i j Go l u x                (11) 

where 1,2, ,i NP  , 1, 2, ,j n  , jl  and ju  are 
the lower and the upper limits of the variable , ,i j Gx , re- 
spectively. 

3.1. Generating the Initial Population Using the  
Opposite Point Method 

Generally, population-based Evolutionary Algorithms ran- 
domly generate the initial population within the bounda- 
ries of parameter variables. In order to improve the qual- 
ity of the initial population, we can obtain fitter starting 
candidate solutions by utilizing opposite points, even 
when there is no a priori knowledge about the solution 
(s). The procedure of generating the initial population 
using the opposite point method is given as follows: 

Step 1: Randomly initialize the starting population 0P  
(population size NP ). 

Step 2: Calculate the opposite population of 0P  using 
the opposite point method, and obtain the opposite popu- 
lation 0OP . 

Step 3: Select the NP fittest individuals from 0 0P OP  
as the initial population 0P . 

3.2. Evolving the Population Using the Opposite  
Point Method 

By applying a similar approach to the current population, 
the evolutionary process can be forced to jump to a new 
solution candidate, which may be fitter than the current 
one. After generating new population by selection, cross- 
over, and mutation, the opposite population is calculated 
and the NP  fittest individuals are selected from the 
union of the current population and the opposite popula- 

tion. Following steps describe the procedure: 
Step 1: The offspring population 1GP   of the current 

population GP  is generated after performing the corre- 
sponding successive DE operations (i.e., mutation, cross- 
over, and selection). 

Step 2: Calculate the opposite population of 1GP   us- 
ing the opposite point method, and obtain the opposite 
population 1GOP  . 

Step 3: Select the NP  fittest individuals from  

1 1G GP OP   as the next generation population 1GP  . 
Step 4: Let 1G G  . 

3.3. Adaptive Crossover Rate CR 

In DE, the aim of crossover is to improve the diversity of 
the population, and there is a control parameter CR  
(i.e., the crossover rate) to control the diversity. The 
smaller diversity is easy to result in the premature con- 
vergence, while the larger diversity reduces the conver- 
gence speed. In conventional DE, the crossover rate CR  
is a constant value in the range [0,1]. Inspired by non- 
uniform mutation, this paper introduces an adaptive 
crossover rate CR , which is defined as follows [28]: 

1
b

t
CR r

T

         
             (12) 

where r  is a uniform random number from [0,1], t  
and T  are the current generation number and the maxi- 
mal generation number, respectively. The parameter b  
is a shape parameter determining the degree of depen- 
dency on the iteration number and usually is set to 2 or 3. 
In this study, b  is set to 3. 

The property of CR  causes the crossover operator to 
search the solution space uniformly initially when t  is 
small, while to search the solution space very locally 
when t  is large. This strategy increases the probability 
of generating a new number close to its successor than a 
random choice. Therefore, at the early stage, GNO2DE 
uses a bigger crossover rate CR  to search the solution 
space to preserve the diversity of solutions and prevent 
premature convergence; at the later stage, GNO2DE em- 
ploys a smaller crossover rate CR  to search the solu- 
tion space to enhance the local search and prevent the 
fitter solutions found from being destroyed. The relation 
of generation vs crossover rate CR  is plotted in Figure 
2. 

3.4. Adaptive Mutation Strategies 

In subsection 2.2, we have described a few useful muta- 
tion schemes, where “DE/rand/1/bin” and “DE/current to 
best/2/bin” are the most often used in practical applica- 
tions mainly due to their good performance [17,19]. To 
overcome their respective disadvantages and utilize their  
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Figure 2. The graph for generation vs crossover rate CR. 
 
cooperative advantages, GNO2DE randomly chooses a 
mutation scheme from two candidates “DE/rand/1/bin” 
(i.e., Equation (3)) and “DE/current to best/2/bin” (i.e., 
Equation (5)), and the new mutant vector , 1i Gv  is gen- 
erated according to the following formula [27]: 

, 1

Equation (3),   if [0,1] 0.5

Equation (5),   otherwisei G

rand



 


v      (13) 

where [0,1]rand  is a uniform random number from the 
range [0,1]. 

3.5. Approaching of Boundaries 

In the given optimization problem, it has to be ensured 
that some boundary values are not outside their limits. 
Several possibilities exist for this task: 1) The positions 
that beyond the boundaries are newly generated until the 
positions within the boundaries are satisfied; 2) the 
boundary-exceeding values are replaced by random num- 
bers in the feasible region; 3) The boundary is appro- 
ached asymptotically by setting the boundary-offending 
value to the middle between old position and boundary 
[29]:  

 

 

, , 1 , , 1

, , 1 , , 1 , , 1

, , 1

1
,     if 

2
1

,    if 
2

,                   otherwise

j i j G i j G j

i j G i j G j i j G j

i j G

l w w l

w w u w u

w

 

  



   

   




   (14) 

After crossover, if one or more of the variables in the 
new vector , 1i Gw  are outside their boundaries, the vio- 
lated variable value , , 1i j Gw   is either reflected back 
from the violated boundary or set to the corresponding 
boundary value using the repair rule as follows [30]: 

     
   

   
     

   

, , 1 , , 1

, , 1

, , 1 , , 1

, , 1

, , 1 , , 1

, , 1

, , 1

1
,  if 1 3

2

,             if 1 3 2 3

2 ,       if 2 3

1
,if 1 3

2

,             if 1 3 2 3

2 ,   

j i j G i j G j

j i j G j

j i j G i j G j

i j G

i j G j i j G j

j i j G j

j i j G

l w p w l

l p w l

l w p w l
w

w u p w u

u p w u

u w

 



 



 





    

   

   


    

   

    , , 1    if 2 3 i j G jp w u














  
 (15) 

where p  is a probability and a uniformly distributed 
random number in the range [0,1]. 

3.6. The Framework of the GNO2DE Algorithm 

DE creates new candidate solutions by combining the 
parent individual and several other individuals of the 
same population. A candidate replaces the parent only if 
it has better fitness value. The initial population is se- 
lected randomly in a uniform manner between the lower 
and upper bounds defined for each variable. These bounds 
are specified by the user according to the nature of the 
problem. After initialization, DE performs mutation, 
crossover, selection etc., in an evolution process. The ge- 
neral framework of the GNO2DE algorithm is described 
in Figure 3. 

4. Numerical Experiments 

4.1. Benchmark Functions 

In order to test the robustness and effectiveness of 
GNO2DE, we use a well-known test set of 23 benchmark 
functions [1,2,31-33]. This relatively large set is neces- 
sary in order to reduce biases in evaluating algorithms.  
 

1: Generate the initial population 0P  (population size NP )  

2:      using the opposite point method. 
3: Evaluate the initial population 0P . 

4: repeat 
5:   for each individual in the current population GP  do 

6:       Perform mutation operation. 
7:       Perform crossover operation. 
8:       Evaluate the new individual. 
9:       Perform selection operation. 
10:  end for 
11: Generate the next generation population 1GP   through 4-10,  

12:      and calculate the opposite population 1GOP  . 

13:  Select the NP  fittest individuals from 1 1G GP OP   

14:      as the next generation population 1GP  . 

15:  Let 1G G  . 
16: until (the predefined termination criterion is achieved). 

Figure 3. The general framework of GNO2DE. 
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The complete description of all these functions and the 
corresponding parameters involved are described in Ta- 

ble 1 and APPENDX. These functions can be divided 
into three different categories with different complexities:  

 
Table 1. The 23 benchmark test functions - 1 23f f . 

f  n  S  minf  

  2

1 1

n

ii
f x


 x  30/100 [ 5.12,5.12]n  1 0f 0  

 2 1 1

nn

i ii i
f x x

 
  x  30/100 [ 10,10]n   2 0f 0  

   2

3 1 1

n i

ji j
f x

 
  x  30/100 [ 100,100]n   3 0f 0  

   4 max ,1ii
f x i n  x  30/100 [ 100,100]n   4 0f 0  

      21 22

5 11
100 1

n
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1) unimodal functions ( 1 7 - f f ), which are relatively easy 
to be optimized, but the difficulty increases as the di-
mensions of the problems increase (see Figure 4); 2) 
multimodal functions ( 8 13 - f f ), which have many local 
minima, represent the most difficult class of problems for 
many optimization algorithms (see Figure 5); 3) multi- 
modal functions ( 14 23 - f f ), which contain only few local 
optima (see Figure 6). It is interesting to note that some 
functions have unique features: 6f  is a discontinuous 
step function having a single optimum; 7f  is a noisy 
function involving a uniformly distributed random vari- 
able within the range [0,1]. In unimodal functions the 
convergence rate is our main interest, as the optimization 
is not a hard problem. Obviously, for multimodal func- 
tions the quality of the final results is more important 
because it reflects the ability of the designed algorithm to 
escape from local optima. 

4.2. Discussion of Parameter Settings 

In order to setup the parameters, we firstly discuss the 
convergence characteristic of each function of dimen-  
 

 

Figure 4. Graph for one unimodal function. 
 

 

Figure 5. Graph for one multimodal function with many 
local minima.  

 

Figure 6. Graph for one multimodal function containing 
only few local optima. 
 
sionality 30 or lower. The parameters used by GNO2DE 
are listed in the following: the control parameter 0.5F  , 
the population size 100NP  , the maximal generation 
number 500T   for functions 1 4 - f f , 21 23 - f f ,  

1500T   for functions 5 20 - f f , respectively. For con- 
venience of illustration, we plot the convergence graphs 
for benchmark test functions 1 23 - f f  in Figures 7-12. 

Figures 7-12 clearly show that GNO2DE can achieve 
better convergence for each function of 1 4 - f f , 6 7- f f , 

9 20- f f , and 21 23- f f , when evaluated by 100,000 FES 
(the number of fitness evaluations). From Figure 8, we 
know that function 8f  approximately requires 300,000 
FES to achieve the convergence, and that the conver- 
gence speed of function 5f  is relatively slow in the case 
of the above parameters. Therefore, in order to investi- 
gate the effect of the control parameter F  on the con- 
vergence. Some experimental results are given in Fig- 
ures 13-18. Firstly, the control parameter F  is set to 
different values 0.4, 0.5, 0.6, 0.7 on functions 1f  and 

2f , and the convergence curve is presented in Figures 
13 and 14. From Figures 13 and 14, we can observe that 
GNO2DE can achieve the convergence for each value of 
the above control parameter F when the number of fit- 
ness evaluations is set to 100,000 FES, while the con- 
vergence speed is fastest when the value of the control 
parameter F  is set to 0.5. For function 5f , we set the 
control parameter F  to 0.5, 0.6, 0.7, and 0.8, respec- 
tively. The convergence graph is given in Figure 15. 
From Figure 15, it is clearly shown that the convergence 
speed is obviously fastest when the value of the control 
parameter F  is set to 0.6. In addition, we also present 
the convergence graph of each function of 8f , 13f , and 

20f  in Figures 16-18, respectively. The control parame- 
ter F  is set to 0.5, 0.6, 0.7, and 0.8. From these figures, 
we can institutively find that the convergence speed is 
relatively fastest when the value of the control parameter 
is set to 0.5. 
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Figure 7. Convergence graph for functions - 1 4f f . 

 

 

Figure 8. Convergence graph for functions - 5 8f f . 

 

 

Figure 9. Convergence graph for functions - 9 12f f . 

 

Figure 10. Convergence graph for functions - 13 16f f . 

 

 

Figure 11. Convergence graph for functions - 17 20f f . 

 

 

Figure 12. Convergence graph for functions - 21 23f f . 
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Figure 13. Convergence curve of f1  for each F value. 

 

 

Figure 14. Convergence curve of f2  for each F value. 

 

 

Figure 15. Convergence curve of f5  for each F value. 

 

Figure 16. Convergence curve of f8  for each F value. 

 

 

Figure 17. Convergence curve of f13  for each F value. 

 

 

Figure 18. Convergence curve of f20  for each F value. 
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Therefore, for the most functions, GNO2DE can show 
good performance when the value of the control parame- 
ter F  is set to 0.5 or 0.6. According to the above dis- 
cussion and analysis, we set up the corresponding ex- 
perimental parameters in Tables 2-4. Table 2 presents 
the parameters used by GNO2DE, GNO2DE-A, and 
GNO2DE-B for functions of dimensionality 30 or lower, 
where GNO2DE-A and GNO2DE-B employ only DE 
schemes “DE/rand/1/bin” or “DE/current to best/2/bin”, 
respectively. Table 3 presents the parameters used by 
GNODE (without using the opposite point method) for 
functions of dimensionality 30 or lower. Table 4 presents 
the parameter settings used by GNO2DE for functions of 
dimensionality 100. 

4.3. Comparison of GNO2DE with GNODE 

In this section, we compare GNO2DE with GNODE in 
terms of some performance indices according to the pa- 
rameter settings presented in Tables 2 and 3. The experi- 
mental results are in detail summarized in Tables 5 and 6, 
and better results are highlighted in boldface. The opti- 
mized objective function values over 30 independent 
runs are arranged in ascending order and the 15th value in 
the list is called the median optimized function value. 

According to Tables 5 and 6, we can find that GNO2DE 
 
Table 2. Parameters used by GNO2DE, GNO2DE-A, and 
GNO2DE-B for functions of dimensionality 30 or lower. 

f  F NP  T  FES 

1 4 - f f , 6f , 7f , 9 23 - f f  0.5 100 500 51 10  

5f  0.6 100 5000 61 10  

8f  0.5 100 1500 53 10  

 
Table 3. Parameters used by GNODE for functions of di- 
mensionality 30 or lower. 

f  F NP  T  FES 

1 4 - f f , 6f , 7f , 9 23 - f f  0.5 100 1000 51 10

5f  0.6 100 10000 61 10

8f  0.5 100 3000 53 10

 
Table 4. Parameters used by GNO2DE for functions of di- 
mensionality 100. 

f  F NP  T  FES 

1 4 - f f , 6f , 7f , 9 23 - f f  0.5 100 2500 55 10

5f  0.6 100 25000 65 10

8f  0.5 100 15000 63 10

can obtain the optima or near optima with certain preci- 
sion for all test functions 1 23 - f f  of dimensionality 30 
or less. For each function of 1 4 - f f , 6f , 7f , 9 11- f f , 

14f , 15f , 17 19- f f , and 21 23 - f f , the performance of 
GNO2DE is superior to or less worse than the perform- 
ance of GNODE in terms of the min value (i.e., the best 
result), the median value (i.e., the median result), the 
max value (i.e., the worst result), the mean value (i.e., the 
mean result), and the std value (i.e., the standard devia- 
tion result), on condition that while the FES of GNO2DE 
is essentially less than that of GNODE, although they are 
apparently set to the same FES 100,000. In addition, the 
global optimum of function 18f  found by GNO2DE is 
f18(x) = 2.99999999999992, the corresponding x = 
(0.00000000061668, −0.99999999932877). 

According to Table 5, for 5f , the performance of 
GNO2DE is obviously better than that of GNODE in 
terms of the max, mean, and std values, while the per- 
formance of GNODE is slightly better than that of 
GNO2DE in terms of the min, median values. For 8f , 
the median, max, mean, and std values of GNODE are 
better than those of GNO2DE, while the min value of 
GNODE is approximate to that of GNO2DE. For 12f , 
the min, median, max, and mean values of GNO2DE are 
better than those of GNODE, while the std value of 
GNO2DE is worse than that of GNODE. The reason is 
that GNO2DE can’t find the optimal solution in very few 
runs of 30 runs. For function 13f , the min, median, max, 
mean, and std values of GNO2DE are slightly worse than 
those of GNODE. 

As shown in Table 6, for 16f , the min, median values 
of GNO2DE are similar to those of GNODE, while the 
max, mean, and std values of GNO2DE are worse than 
those of GNODE to some extent. This is because that 
GNO2DE can’t obtain the min value in one or two runs 
of 30 runs. For 20f , the min, and max values obtained 
by GNO2DE are the same to those by GNODE, while the 
median value obtained by GNO2DE is worse than that 
obtained by GNODE. Accordingly, it also decides that 
the mean, and std values of GNO2DE are worse than 
those of GNODE. GNO2DE and GNODE all have a 
tendency to getting stuck in the local optima. The global 
optima of function 20f  found by GNO2DE is f20(x) = 
−3.33539215295525, the corresponding  
x = (0.20085810809731, 0.15013171771783,  
0.47865329178970, 0.27652528463205,  
0.31191293322300, 0.65702016661775). 

In conclusion, the performance of GNO2DE is rela- 
tively stable and obviously better than or not worse than 
that of GNODE. The reason is that GNO2DE uses the 
opposite point method to provide another chance for 
finding a solution more close to the global numerical 
optimum, without increasing much time. 
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Table 5. Comparison between GNO2DE, and GNODE on functions - 1 13f f  of dimensionality 30. 

f  minf  method min median max mean std 

GNO2DE 0 0 5.9825755800e−52 2.5518554212e−53 1.096785e−52
1f  0 

GNODE 7.54155067179e−30 5.399029026467e−29 5.2374789498e−28 1.0300737442e−28 1.256367e−28

GNO2DE 0 0 0 0 0 
2f  0 

GNODE 6.4413392103e−14 1.311376646166e−13 3.18424035936e−13 1.483498934045e−13 6.397059e−14

GNO2DE 0 0 0 0 0 
3f  0 

GNODE 0.92997781533084 3.84094195096149 7.55970302545084 4.10611784328047 1.8274011203

GNO2DE 0 0 1.16657303078e−23 3.888576769266e−25 2.129861e−24
4f  0 

GNODE 4.02934458353e−3 1.1827251953012e−1 1.41424788000055 2.1194941395447e−1 2.878915e−1

GNO2DE 1.47821832439e−16 4.935106365033e−15 9.64243063489e−14 1.26582991612e−14 2.134871e−14
5f  0 

GNODE 0 0 3.98662385430093 0.26577492362006 1.0114388899

GNO2DE 0 0 0 0 0 
6f  0 

GNODE 0 0 0 0 0 

GNO2DE 1.27769804370e−4 1.30652285810e−3 2.96374746091e−3 1.31349553757e−3 7.341583e−4
7f  0 

GNODE 2.82761792847e−3 5.21770209218e−3 9.26910954128e−3 5.51405735988e−3 1.348797e−3

GNO2DE −1.256948661814e+4 −1.256948605445e+4 −1.256926191933e+4 −1.256946879174e+4 5.11364128e−2
8f  −12569.487 

GNODE −1.256948661817e+4 −1.256948661817e+4 −1.256948661817e+4 −1.256948661817e+4 1.8500855e−12

GNO2DE 0 0 0 0 0 
9f  0 

GNODE 16.94654083083428 23.79300366957455 29.35614772393047 23.59480273338819 2.8085602265

GNO2DE 8.881784197e−16 8.881784197e−16 8.881784197e−16 8.881784197e−16 0 
10f  0 

GNODE 3.28626015289e−14 6.128431095931e−14 1.572075802869e−13 6.708707663468e−14 3.018161e−14

GNO2DE 0 0 0 0 0 
11f  0 

GNODE 0 0 1.477977675483e−2 1.06777005656e−3 3.404385e−3

GNO2DE 5.000000000000e−14 3.480000000000e−12 1.0421500297161e−1 1.064608725538e−2 3.161382e−2
12f  0 

GNODE 15.7868982918711 15.7868982918711 15.7868982918711 15.7868982918711 1.271143e−14

GNO2DE 2.916333541909e−13 1.549222503733e−12 6.434821403064e−12 2.175719010455e−12 1.6271296e−12
13f  0 

GNODE 1.328113253296e−27 6.739922873415e−27 3.55322475119e−26 1.06114283139e−26 9.0125651e−27

 
4.4. Comparison of GNO2DE with GNO2DE-A,  

and GNO2DE-B 

In this section, we compare GNO2DE (“DE/rand/1/bin” 
and “DE/current to best/2/bin”) with GNO2DE-A (“DE/ 
rand/1/bin”), and GNO2DE-B (“DE/current to best/2/ 
bin”) in terms of the best result (i.e., the min value), the 
mean result (i.e., the mean value), and the standard de- 
viation result (i.e., the std value). The parameter settings 
of GNO2DE, GNO2DE-A, and GNO2DE-B are given in  

Table 2. The experimental results are in detail summa- 
rized in Tables 7 and 8, and better results are highlighted 
in boldface. The optimized objective function values 
over 30 independent runs are arranged in ascending order 
and the 15th value in the list is called the median opti-
mized function value. 

From Tables 7 and 8, it is clearly shown that for each 
function of 6f , 9 11- f f , 14f , 17 23 - f f , the min, mean, 
and std values of GNO2DE are similar to those of      
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Table 6. Comparison between GNO2DE, and GNODE on functions  - 14 23f f . 

f  minf  method min median max mean std 

GNO2DE 0.99800383779445 0.99800383779445 0.99800383779445 0.99800383779445 1.749353e−16
14f  0.998 

GNODE 0.99800383779445 0.99800383779445 0.99800383779445 0.99800383779445 1.129203e−16

GNO2DE 3.074859878056e−4 3.074859878056e−4 3.074859878056e−4 3.074859878056e−4 1.318374e−18
15f  3.075e−4 

GNODE 3.074859878056e−4 3.074859878056e−4 3.074859878056e−4 3.074859878056e−4 1.055790e−19

GNO2DE −1.03162845348988 −1.03162845348988 −1.03162683969173 −1.03162838522757 3.024594e−7
16f  −1.0316 

GNODE −1.03162845348988 −1.03162845348988 −1.03162845348988 −1.03162845348988 6.775215e−16

GNO2DE 0.39788735772974 0.39788735772974 0.39788735772974 0.39788735772974 0 
17f  0.397887 

GNODE 0.39788735772974 0.39788735772974 0.39788735772974 0.39788735772974 0 

GNO2DE 2.99999999999992 2.99999999999992 2.99999999999992 2.99999999999992 1.953227e−15
18f  3 

GNODE 2.99999999999992 2.99999999999992 2.99999999999992 2.99999999999992 1.989449e−15

GNO2DE −3.86277751253760 −3.86277751253760 −3.86277751253760 −3.86277751253760 2.258405e−15
19f  −3.86278 

GNODE −3.86277751253760 −3.86277751253760 −3.86277751253760 −3.86277751253760 2.258405e−15

GNO2DE −3.33539215295525 −3.20321215577107 −3.20321215577107 −3.25167815473861 6.478571e−2
20f  −3.32237 

GNODE −3.33539215295525 −3.33539215295525 −3.20321215577107 −3.27811415417544 6.661963e−2

GNO2DE −10.15319967905823 −10.15319967905823 −10.15319967905823 −10.15319967905822 7.226896e−15
21f  −10.1532 

GNODE −10.15319967905823 −10.15319967905823 −5.10077214033199 −9.81637117647648 1.281841951

GNO2DE −10.40294056681867 −10.40294056681867 −10.40294056681866 −10.40294056681866 1.615983e−15
22f  −10.4029 

GNODE −10.40294056681867 −10.40294056681867 −10.40294056681866 −10.40294056681866 1.714009e−15

GNO2DE −10.53640981669205 −10.53640981669205 −10.53640981669205 −10.53640981669205 1.776357e−15
23f  −10.5364 

GNODE −10.53640981669205 −10.53640981669205 −10.53640981669205 −10.53640981669205 1.806724e−15

 
GNO2DE-A, and GNO2DE-B, and three algorithms all 
can find the optimal solution.  

Table 7 shows that for each function of 1 4- f f , the 
optimal solution can be found by GNO2DE, GNO2DE-A, 
and GNO2DE-B, while the mean, std values of GNO2DE 
are slightly different from those of GNO2DE-A, and 
GNO2DE-B. For 5f , the mean, and std values of 
GNO2DE are obviously better than those of GNO2DE-A, 
and GNO2DE-B, while the min value of GNO2DE-A is 
worst among three algorithms. For 7f , the min value of 
GNO2DE-A is best among three algorithms, while its 
mean, and std values are worse or not better than those of 
GNO2DE, and GNO2DE-B. For 8f , the min, mean, and 
std values of GNO2DE-B are obviously worse than those 
of GNO2DE, and GNO2DE-A, while GNO2DE-A can 
obtained better mean, and std values than GNO2DE. For 

12f , the min value of GNO2DE-A is worst among three 
algorithms, while the std value of GNO2DE is best 
among three algorithms. For 13f , the min value of 
GNO2DE-A is worst among three algorithms, while the 
mean, and std values of GNO2DE are best among three 

algorithms. 
Table 8 shows that for 15f , the min, and mean values 

are approximate among three algorithms, while the std 
value of GNO2DE is best, that of GNO2DE-B is better, 
and that of GNO2DE-A is good. For 16f , the min, and 
mean values are similar among three algorithms, while 
the std value of GNO2DE-B is best, that of GNO2DE is 
better, and that of GNO2DE-A is good.  

Therefore, from the above analysis, we know that the 
performance of GNO2DE is more stable than that of 
GNO2DE-A, and that of GNO2DE-B. This is because 
that GNO2DE employs two schemes “DE/bin/1/bin” and 
“DE/current to best/2/bin” to search the solution space. 
On the whole, GNO2DE can improve the search ability. 

4.5. Comparison of GNO2DE with Some  
State-of-the-Art Algorithms 

In this section, we compare GNO2DE with DE [3], 
ODE/2 [2], SOA [31], FEP [32], opt-IA [1], and CLPSO 
[15] in terms of the mean result (i.e., the mean value), the 
standard deviation result (i.e., the std value), and the    
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Table 7. Comparison between GNO2DE, GNO2DE-A, and GNO2DE-B on functions - 1 14f f  of dimensionality 30. 

GNO2DE GNO2DE-A GNO2DE-B 
f  minf  

min mean ± std min mean ± std min mean ± std 

1f  0 0 2.55e−53 ± 1.1e−52 0 0 ± 0 0 4.2e−59 ± 1.6e−58 

2f  0 0 0 ± 0 0 0 ± 0 0 2.1e−34 ± 1.2e−33 

3f  0 0 0 ± 0 0 0 ± 0 0 2.8e−54 ± 1.5e−53 

4f  0 0 3.89e−25 ± 2.13e−24 0 0 ± 0 0 1.3e−23 ± 3.26e−23 

5f  0 1.4782e−16 1.2658e−14 ± 2.1e−14 4.3857 5.414 ± 4.4e−1 0.0000 4.6295 ± 5.0103 

6f  0 0 0 ± 0 0 0 ± 0 0 0 ± 0 

7f  0 1.2777e−4 1.3135e−3 ± 7.3e−4 5.3502e−5 1.3537e−3 ± 1.2e−3 1.3892e−4 9.3933e−4 ± 4.2e−4 

8f  −12569.487 −12569.487 −12569.469 ± 5.2e−2 −12569.487 −12569.487 ± 2.3e−5 −12230.228 −11423.429 ± 3.7e+2

9f  0 0 0 ± 0 0 0 ± 0 0 0 ± 0 

10f  0 8.8818e−16 8.8818e−16 ± 0 8.8818e−16 8.8818e−16 ± 0 8.8818e−16 8.8818e−16 ± 0 

11f  0 0 0 ± 0 0 0 ± 0 0 0 ± 0 

12f  0 5.0000e−14 1.0646e−2 ± 3.16e−2 1.9663e−5 8.4895e−2 ± 1.25e−1 0 2.0875e−2 ± 1.13e−1

13f  0 2.9163e−13 2.1757e−12 ± 1.6e−12 1.8552e−5 9.3345e−4 ± 5.87e−4 0 1.7522e−3 ± 4.8e−3 

 
Table 8. Comparison between GNO2DE, GNO2DE-A, and GNO2DE-B on functions  - 14 23f f . 

GNO2DE GNO2DE-A GNO2DE-B 
f  minf  

min mean ± std min mean ± std min mean ± std 

14f  0.998 0.9980038 0.9980038 ± 1.7e−16 0.9980038 0.9980038 ± 2.0e−16 0.9980038 0.9980038 ± 1.6e−16

15f  3.075e−4 3.07486e−4 3.07486e−4 ± 1.3e−18 3.07486e−4 3.07486e−4 ± 1.3e−10 3.07486e−4 3.07486e−4 ± 2.5e−16

16f  −1.0316 −1.031628 −1.031628 ± 3.0e−7 −1.031628 −1.031626 ± 9.9e−6 −1.031628 −1.031628 ± 5.1e−16

17f  0.397887 0.397887 0.397887 ± 0 0.397887 0.397887 ± 0 0.397887 0.397887 ± 0 

18f  3 3.0000 3.0000 ± 1.95e−15 3.0000 3.0000 ± 1.7e−15 3.0000 3.0000 ± 2.03e−15 

19f  −3.86278 −3.862778 −3.862778 ± 2.3e−15 −3.862778 −3.862778 ± 2.3e−15 −3.862778 −3.862778 ± 2.3e−15

20f  −3.32237 −3.33539 −3.25168 ± 6.48e−2 −3.33539 −3.23846 ± 5.945e−2 −3.33539 −3.29029 ± 6.28e−2 

21f  −10.1532 −10.1532 −10.1532 ± 7.2e−15 −10.1532 −10.1532 ± 7.2e−15 −10.1532 −10.1532 ± 7.2e−15 

22f  −10.4029 −10.4029 −10.4029 ± 1.6e−15 −10.4029 −10.4029 ± 1.04e−15 −10.4029 −10.4029 ± 1.6e−15 

23f  −10.5364 −10.5364 −10.5364 ± 1.8e−15 −10.5364 −10.5364 ± 1.8e−15 −10.5364 −10.5364 ± 1.8e−15 

 
number of fitness evaluations (i.e., the FES value). The 
statistical results are summarized in Tables 9 and 10, and 
better results are highlighted in boldface. The experi- 
mental results of DE, SOA, and CLPSO are taken from 
[31], and the experimental results of ODE/2, FEP are 
taken from [2]. The optimized objective function values 
of 30 runs are arranged in ascending order and the 15th 

value in the list is called the median optimized function 
value. Table 9 clearly shows that the mean, std values of 
GNO2DE are obviously superior to those of DE, ODE/2, 
SOA, FEP, opt-IA, and CLPSO on 2f , 3f , 9 11- f f , 
while GNO2DE uses the least FES 100,000 among these 
methods, that the mean, std values of SOA are slightly 
better than those of GNO2DE, ODE/2, DE, etc. on 1f ,    
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Table 9. Comparison between GNO2DE, DE, ODE/2, SOA, FEP, opt-IA, and CLPSO on functions  - 1 14f f  of dimensiona- 

lity 30. 

opt-IA 

f  item GNO2DE DE ODE/2 SOA FEP 
 * fe    

 1 fe


 
  
 

 
CLPSO 

mean 2.5519e−53 3.74e−13 2.06e−23 1.02e−76 5.7e−4 9.23e−12 1.7e−8 2.73e−12 

std 1.0968e−52 3.94e−13 1.83e−23 6.51e−76 1.3e−4 2.44e−11 3.5e−15 1.68e−12 1f  

FES 100,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000 

mean 0 3.74e−9 1.43e−18 4.22e−63 8.1e−3 0.0 7.1e−8 3.82e−9 

std 0 2.20e−9 8.11e−19 8.25e−63 7.7e−4 0.0 0.0 1.73e−9 2f  

FES 100,000 200,000 200, 000 200,000 200,000 200,000 200,000 200,000 

mean 0 1.85e−10 5.25e−27 4.26e−25 1.6e−2 0.0 1.9e−10 4.20e−1 

std 0 1.49e−10 9.66e−27 2.15e−24 1.4e−2 0.0 2.63e−10 3.62e−1 3f  

FES 100,000 500,000 500,000 500,000 500,000 500,000 500,000 500,000 

mean 3.8886e−25 3.10e−2 2.72e−15 1.02e−48 0.3 1.0e−2 4.1e−2 2.05e−3 

std 2.1299e−24 8.70e−2 9.30e−15 2.46e−48 0.5 5.3e−3 5.3e−2 1.25e−3 4f  

FES 100,000 500,000 500,000 500,000 500,000 500,000 500,000 500,000 

mean 1.2658e−14 3.47e−31 0 2.54e+1 5.06 3.02 28.4 3.63e+1 

std 2.1349e−14 2.45e−30 0 7.87e−1 5.87 12.2 0.42 3.12e+1 5f  

FES 1000,000 2000,000 428,776 2000,000 2000,000 2000,000 2000,000 2000,000 

mean 0 0 0 0 0 0,2 0.0 0 

std 0 0 0 0 0 0.44 0.0 0 6f  

FES 100,000 150,000 22,640 150,000 150,000 150,000 150,000 150,000 

mean 1.3135e−3 4.66e−3 1.45e−3 1.08e−4 7.6e−3 3.0e−3 3.9e−3 2.98e−3 

std 7.3416e−4 1.30e−3 4.20e−4 6.44e−5 2.6e−3 1.2e−3 1.3e−3 9.72e−4 7f  

FES 100,000 300,000 300,000 300,000 300,000 300,000 300,000 300,000 

mean −12569.4688 −11234 −12569.4866 −10126 −12554.5 −12508.38 −12568.27 −12271 

std 5.1136e−2 455.5 0 669.5 52.6 155.54 0.23 177.8 8f  

FES 300,000 900,000 90, 381 900,000 900,000 900,000 900,000 900,000 

mean 0 8.10e+1 0 0 4.6e−2 19.98 2.66 1.34e−9 

std 0 3.23e+1 0 0 1.2e−2 7.66 2.39 8.57e−10 9f  

FES 100,000 500,000 127,666 500,000 500,000 500,000 500,000 500,000 

mean 8.8818e−16 1.71e−7 4.67e−13 −4.44e−15 1.8e−2 18.98 1.1e−4 6.81e−6 

std 0 7.66e−8 1.86e−13 0 2.1e−3 0.35 3.1e−5 1.94e−6 10f  

FES 100,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000 

mean 0 4.44e−4 0 0 1.6e−2 7.7e−2 4.55e−2 2.96e−4 

std 0 1.77e−3 0 0 2.2e−2 8.63e−2 4.46e−2 1.46e−3 11f  

FES 100,000 200,000 109, 853 200,000 200,000 200,000 200,000 200,000 

mean 1.0646e−2 3.67e−14 6.73e−26 1.28e−2 9.2e−6 0.137 3.1e−2 4.80e−11 

std 3.1614e−2 4.07e−14 9.27e−26 7.62e−3 3.6e−6 0.23 5.7e−2 3.96e−11 21f  
FES 100,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000 

mean 2.1757e−12 2.91e−13 4.37e−24 1.89e−1 1.6e−4 1.51 3.20 6.42e−10 

std 1.6271e−12 2.88e−13 3.67e−24 1.30e−1 7.3e−5 0.10 0.13 4.46e−10 31f  
FES 100, 000 150,000 150,000 150,000 150,000 150,000 150,000 150,000 
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Table 10. Comparison between GNO2DE, DE, ODE/2, SOA, FEP, opt-IA, and CLPSO on functions  - 14 23f f . 

opt-IA 

f  item GNO2DE DE ODE/2 SOA FEP 
 * fe    

 1 fe


 
  
 

 
CLPSO 

mean 0.9980038 0.998 0.998 1.199 1.22 1.02 1.21 0.998 

std 1.7494e−16 2.88e−16 0 5.30e−1 0.56 7.1e-2 0.54 5.63e−10 14f  

FES 100,000 10,000 9552 10,000 10,000 10,000 10,000 10,000 

mean 3.07486e−4 4.7231e−2 3.08e−4 3.0749e−4 5.0e−4 7.1e−4 7.7e−3 5.3715e−4 

std 1.3184e−18 3.55e−4 0 1.58e−9 3.2e−4 1.3e−4 1.4e−2 6.99e−5 15f  

FES 100, 000 400, 000 32,430 400, 000 400, 000 400, 000 400, 000 400, 000 

mean −1.031628 −1.0316 −1.03163 −1.0316 −1.031 −1.03158 −1.02 −1.0316 

std 3.0246e−7 6.77e−13 0 6.73e−6 4.9e−7 1.5e−4 1.1e−2 8.50e−14 16f  

FES 100,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 

mean 0.397887 0.39789 0.39789 0.39838 0.398 0.398 0.450 0.39789 

std 0 1.14e−8 2.01e−10 5.14e−4 1.5e−7 2.0e−4 0.21 1.08e−13 17f  

FES 100,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 

mean 3.0000 3 3.00 3.0001 3.02 3.0 3.0 3 

std 1.9532e−15 3.31e−15 0 1.17e−4 0.11 0.0 0.0 5.54e−13 18f  

FES 100,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 

mean −3.8627775 −3.8628 −3.86278 −3.8621 −3.86 −3.72 −3.72 −3.8628 

std 2.2584e−15 1.97e−15 2.68e−15 6.69e−4 1.4e−5 1.1e−4 1.1e−2 6.07e−12 19f  

FES 100,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 

mean −3.251678 −3.215 −3.322 −3.298 −3.27 −3.31 −3.31 −3.274 

std 6.4786e−2 3.6e−2 1.13e−12 4.5e−2 5.9e−2 7.4e−2 5.9e−3 5.9e−2 20f  

FES 100, 000 20, 000 20,000 20, 000 20,000 20,000 20,000 20,000 

mean −10.1531997 −10.15 −10.1532 −9.67 −5.52 −9.11 −5.36 −9.57 

std 7.2269e−15 4.67e−6 1.04e−6 4.96e−1 1.59 1.82 2.20 4.28e−1 21f  

FES 100,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 

mean −10.40294 −10.40 −10.40294 −9.79 −5.52 −9.86 −5.34 −9.40 

std 1.61598e−15 2.07e−7 2.49e−8 4.48e−1 2.12 1.88 2.11 1.12 22f  

FES 100,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 

mean −10.5364098 −10.54 −10.53641 −9.72 −6.57 −9.96 −6.03 −9.47 

std 1.7764e−15 3.21e−6 2.35e−8 4.72e−1 3.14 1.46 2.66 1.25 23f  

FES 100,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 

 

4f , 7f , while the 100,000 FES of GNO2DE is least 
among these methods, and that the mean, std, FES values 
of GNO2DE are better than DE, ODE/2, FEP, opt-IA, 
and CLPSO. For 5f , 6f , 8f , the mean, std, and FES 

values of ODE/2 are not worse than or better than those 
of other methods. For 5f , compared with DE, GNO2DE 
is slightly worse in terms of the mean, std values of, 
while the 200,000 FES of DE is twice of that of 
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GNO2DE, and the performance of GNO2DE is clearly 
better than that of SOA, FEP, opt-IA, and CLPSO. For 

6f , the mean, std values of GNO2DE are similar to those 
of DE, SOA, FEP, opt-IA, and CLPSO, while the 
100,000 FES used by GNO2DE is least among these 
methods. For 8f , the mean, std, FES values of 
GNO2DE are obviously better than those of DE, SOA, 
FEP, opt-IA, and CLPSO. For 12f , 13f , the min, std 
values of ODE/2 are better than those of other methods, 
while the 100,000 FES used by GNO2DE is least among 
these methods.  

As shown in Table 10, the mean value of GNO2DE 
and SOA on 15f  is approximate and are better than oth-
er methods, while ODE/2 has the least std, and FES val-
ues. For 16 18 - f f , all methods have the similar per- for-
mance. For 19f , GNO2DE, DE, ODE/2, SOA, CLPSO 
have the similar performance and are better than FEP. 
For 20f , the performance of ODE/2 and FEP is better 
than other methods. For 21 23- f f , the perform- ance of 
GNO2DE, DE, and ODE/2 is approximate and are better 
than other methods. 

In sum, the mean and standard deviation results of 
GNO2DE are not worse than or superior to DE, ODE/2, 
SOA, FEP, opt-IA, and CLPSO on a test set of bench- 
mark functions. GNO2DE uses the opposite point me- 
thod, employs two DE schemes “DE/rand/1/bin” and “DE/ 
current to best/2/bin”, and introduces non-uniform cross- 
over rate. These techniques are beneficial to enhancing 
the performance of GNO2DE. 

4.6. Experimental Results of 100-Dimensional  
Functions 

In this section, the statistical results of GNO2DE on 100- 
dimensional functions are given in Table 11. The pa- 
rameter setup is used in Table 4. The optimized object- 
tive function values over 30 independent runs are ar- 
ranged in ascending order and the 15th value in the list is 
called the median optimized function value. Table 11 
clearly shows that GNO2DE can find the optimum or near 
optimum of each 100-dimensional function of 1 13- f f , 
and that GNO2DE can obtain the stable performance of 
each function of 1 7- f f , 9 11 - f f , while it performs 
slightly worse on 8f , 12f , 13f . Therefore, when used 
for solving high dimensional global numerical optimiza- 
tion problems, NGO2DE also performs well. 

5. Conclusion and Future Work 

This paper introduces an opposition-based DE algorithm 
for global numerical optimization (GNO2DE). GNO2DE 
uses the method of opposition-based learning to utilize 
the existing search spaces to improve the convergence 
speed, employs adaptive DE schemes and non-uniform 
crossover to enhance the adaptive search ability. Nume- 
rical results show that GNO2DE outperforms some state- 
of-the-art algorithms. However, there are still some pos- 
sible things to do in the future: 1) further, to improve the 
self-adaptation of the control parameters such as the 
scaling factor F; 2) to test higher dimensional global nu-  

 
Table 11. Experimental Results of 100-dimensional functions - 1 13f f . 

f  minf  min median max mean std FES 

1f  0 0 0 0 0 0 55 10  

2f  0 0 0 0 0 0 55 10  

3f  0 0 0 0 0 0 55 10  

4f  0 0 0 0 0 0 55 10  

5f  0 3.497698e−19 7.195169e−18 5.756444e−15 4.662977e−16 1.318697e−15 65 10  

6f  0 0 0 0 0 0 55 10  

7f  0 0 0 0 0 0 55 10  

8f  −41898.29 −41898.288727 −41898.288727 −41779.850393 −41882.496949 40.949569 63 10  

9f  0 0 0 0 0 0 55 10  

10f  0 8.881784197e−16 8.881784197e−16 8.881784197e−16 8.881784197e−16 0 55 10  

11f  0 0 0 0 0 0 55 10  

12f  0 0.000000000000 7.334999e−2 3.530528e−1 1.226082e−1 1.371314e−1 55 10  

13f  0 0.000000000000 1.098737e−2 9.888265e−2 2.072484e−2 2.975114e−2 55 10  
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merical optimization problems; 3) to introduce some lo- 
cal search and heuristic techniques to speed up the con-
vergence and escape from the local optima, etc. 
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