
Journal of Intelligent Learning Systems and Applications, 2012, 4, 1-19
http://dx.doi.org/10.4236/jilsa.2012.41001 Published Online February 2012 (http://www.SciRP.org/journal/jilsa)

Copyright © 2012 SciRes. JILSA

1

Differential Evolution Using Opposite Point for Global
Numerical Optimization

Youyun Ao1, Hongqin Chi2

1School of Computer and Information, Anqing Teachers College, Anqing, China; 2College of Information, Mechanical and Electrical
Engineering, Shanghai Normal University, Shanghai, China.
Email: youyun_ao@tom.com

Received September 25th, 2010; revised May 8th, 2011; accepted May 20th, 2011

ABSTRACT

The Differential Evolution (DE) algorithm is arguably one of the most powerful stochastic optimization algorithms,
which has been widely applied in various fields. Global numerical optimization is a very important and extremely dif-
ficult task in optimization domain, and it is also a great need for many practical applications. This paper proposes an
opposition-based DE algorithm for global numerical optimization, which is called GNO2DE. In GNO2DE, firstly, the
opposite point method is employed to utilize the existing search space to improve the convergence speed. Secondly, two
candidate DE strategies “DE/rand/1/bin” and “DE/current to best/2/bin” are randomly chosen to make the most of their
respective advantages to enhance the search ability. In order to reduce the number of control parameters, this algorithm
uses an adaptive crossover rate dynamically tuned during the evolutionary process. Finally, it is validated on a set of
benchmark test functions for global numerical optimization. Compared with several existing algorithms, the perform-
ance of GNO2DE is superior to or not worse than that of these algorithms in terms of final accuracy, convergence speed,
and robustness. In addition, we also especially compare the opposition-based DE algorithm with the DE algorithm
without using the opposite point method, and the DE algorithm using “DE/rand/1/bin” or “DE/current to best/2/bin”,
respectively.

Keywords: Differential Evolution; Evolutionary Algorithm; Global Numerical Optimization; Stochastic Optimization

1. Introduction

Global numerical optimization problems arise in almost
every field such as industry and engineering design, ap-
plied and social science, and statistics and business, etc.
The aim of global numerical optimization is to find glo-
bal optima of a generic objective function. In this paper,
we are most interested in the following global numerical
minimization problem [1,2]:

  min , f  x L x U (1)

where  f x is the objective function to be minimized,
 1 2, , , n

nx x x R x is the real-parameter variable
vector,  1 2, , , nl l l L is the lower bound of the vari-
ables and  1 2, , , nu u u U is the upper bound of the
variables, respectively, such that  ,i i ix l u .

Many real-world global numerical optimization prob-
lems have many objective functions that are non-differ-
entiable, non-continuous, non-linear, noisy, flat, random,
or that have many local minima, multiple dimensions, etc.
However, the major challenge of the global numerical
optimization is that the problems to be optimized have
many local optima and multiple dimensions. Such prob-

lems are extremely difficult to be optimized and find re-
liable global optima [3,4]. Therefore, increasing require-
ments for solving global numerical optimization in vari-
ous application domains have encouraged many research-
ers to find a reliable global numerical optimization algo-
rithm. However, in the last decades, this problem remains
intractable, theoretically at least [5].

In the global numerical optimization, the traditional
methods can be usually classified into two main catego-
ries [5,6]: deterministic and probabilistic global numeri-
cal optimization methods. During the global numerical
optimization process, the first stage is usually to find
specific heuristic information involved in problem. Most
of deterministic methods rely on the heuristic informa-
tion to escape from local minima. On the other hand,
almost probabilistic methods rely on a probability to de-
termine whether or not search should depart from the
neighborhood of a local minimum. Evolutionary algo-
rithms (including genetic algorithm (GA) [7], evolution
strategy (ES) [8], genetic programming (GP) [9], and
evolutionary programming (EP) [10]) are inspired from
the evolution of nature and relatively recent optimization
methods. These algorithms have the potential to over-

Differential Evolution Using Opposite Point for Global Numerical Optimization

Copyright © 2012 SciRes. JILSA

2

come the limitations of traditional global numerical op-
timization methods, mainly in terms of unknown system
parameters, multiple local minima, non-differentiability,
or multiple dimensions, etc. [5,11].

Lately, some new methods for global numerical opti-
mization were gradually introduced. Particle Swarm Op-
timization (PSO) was originally proposed by J. Kennedy
as a simulation of social behavior, and it was initially
introduced as an optimization method in 1995 [12]. PSO
has been a member of the wide category of Swarm Intel-
ligence methods for solving global numerical optimiza-
tion problems [13-15]. Differential Evolution (DE) was
introduced by Storn and Price in 1995, and developed to
optimize real-parameter functions [3,16,17]. DE mainly
uses the distance and direction information from the cur-
rent population to guide its further search, and it mainly
has three advantages: 1) finding the true global minimum
regardless of the initial parameter values; 2) fast conver-
gence; 3) using a few control parameters. In addition, DE
is simple, fast, easy to use, very easily adaptable and use-
ful for optimizing multimodal search spaces [18-22]. Re-
cently, DE has been shown to produce superior perform-
ance, and perform better than GA and PSO over some
global numerical optimization problems [13,14]. There-
fore, DE is very promising in solving global numerical
optimization problems.

This paper proposes an opposition-based DE algorithm
for global numerical optimization (GNO2DE). This algo-
rithm employs the opposite point method to utilize the
existing search spaces to speed the convergence [21-24].
Usually, different problems require different settings for
the control parameters. Generally, adaptation is intro-
duced into an evolutionary algorithm, which can improve
the ability to solve a general class of problems, without
user interaction. In order to improve the adaptation and
reduce the control parameter, GNO2DE uses a dynamic
mechanism to dynamically tune the crossover rate CR
during the evolutionary process. Moreover, GNO2DE can
enhance the search ability by randomly selecting a can-
didate from strategies “DE/rand/1/bin” and “DE/current
to best/2/bin”. Numerical experiments clearly show that
GNO2DE is feasible and effective.

The remainder of this paper is organized as follows.
Section 2 briefly introduces the basic idea of the DE
algorithm. Section 3 describes in detail the proposed
GNO2DE algorithm. Section 4 presents the experimental
setup adopted and provides an analysis of the experi-
mental results obtained from our empirical study. Finally,
our conclusions and some possible paths for the future
research are provided in Section 5.

2. The Classical DE Algorithm

The DE algorithm is a population-based stochastic opti-

mization algorithm like many evolutionary algorithms
such as genetic algorithms using three similar genetic op-
erators: crossover, mutation, and selection [7]. The main
difference in generating better solutions is that genetic
algorithms mainly rely on crossover while DE mainly
relies on mutation operation. The DE algorithm uses
mutation operation as a search mechanism and selection
operation to direct the search toward the prospective re-
gions in the search space. The DE algorithm also uses a
non-uniform crossover that can take child vector para-
meters from one parent more often than it does from oth-
ers. By using the components of the existing population
members to generate trial vectors, the recombination (i.e.,
crossover) operator efficiently shuffles information about
successful combinations, enabling the search for a better
solution space [3,16,17].

A global numerical optimization problem consisting of
n parameters can be represented by a n-dimensional vec-
tor. In DE, a population of NP solution vectors is ran-
domly created at the start, where 4NP  . The popula-
tion is successfully improved by applying mutation, cross-
over, and selection operators [13,25,26].

2.1. Randomly Initializing Population

Like other many evolutionary algorithms, the DE algo-
rithm starts with an initial population, which is randomly
generated when no preliminary knowledge about the so-
lution is available. In DE, let us assume that an individ-
ual  , ,1, ,2, , ,, , ,i G i G i G i n Gx x x x stands for the thi in-
dividual of population GP (population size NP) at the
generation G . The population  0 1,0 2,0 ,0, , , NPP  x x x
is initialized as

 , ,0, : i j j j j ji NP j n x l rand u l        (2)

where NP is the population size, n is the number of
variables, jrand is a uniformly distributed random num-
ber in the range [0,1], and , ,0i jx is the thj variable of
the thi individual at the initial generation, which is ini-
tialized within the thj range ,j jl u   .

2.2. Mutation Operation

In the mutation phase, DE randomly selects three distinct
individuals from the current population. For each target
vector ,i Gx , the thi mutant vector is generated based
on the three selected individuals as follows:

 1 2 3, 1 , , ,i G r G r G r GF    v x x x (3)

where 1,2, ,i NP  , random indexes

1 2 3, , {1,2, , }r r r NP  are randomly chosen integers, mu-
tually different, and they are also chosen to be different
from the running index i , so that NP must be greater
or equal to four to allow for this condition. The scaling

Differential Evolution Using Opposite Point for Global Numerical Optimization

Copyright © 2012 SciRes. JILSA

3

factor F is a control parameter of the DE algorithm,
which controls the amplification of the differential varia-
tion (

2 3, ,r G r Gx x). And the scaling factor F is a real
constant factor in the range [0,2] and is often set to 0.5
in the real applications [27].

The above strategy is called “DE/rand/1/bin”, it is not
the only variant of DE mutation which has been proven
to be useful for real-valued optimization. In order to
classify the variants of DE mutation, the notation:
DE x y z is introduced where 1) x specifies the
vector to be mutated which currently can be “rand” (a
randomly chosen population vector) or “best” (the vector
of lowest cost from the current population); 2) y is the
number of difference vectors used; 3) z denotes the
crossover scheme, there are two crossover schemes often
used, namely, “bin” (i.e., the binomial recombination)
and “exp” (i.e., the exponential recombination). Usually,
there are the following several differential DE schemes
often used in the global optimization [3]:

“DE/best/1/bin”:

 1 2, 1 , ,i G best r G r GF    v x x x (4)

“DE/current to best/2/bin”:

   1 2, 1 , , ,i G i best i G r G r GF F       v x x x x x (5)

“DE/best/2/bin”:

   1 2 3 4, 1 , ,i G best r G r G r rF F       v x x x x x (6)

“DE/rand/2/bin”:

   1 2 3 4 5, 1i G r r r r rF F       v x x x x x (7)

where bestx is the best individual of the current popula-
tion G . The scaling factor F is the control parameter
of the DE algorithm.

2.3. Crossover Operation

In order to increase the diversity of the perturbed pa-
rameter vectors, the crossover operator is introduced. The
new individual is generated by recombining the original
vector  , ,1, ,2, , ,, , ,i G i G i G i n Gx x xx  and the mutant vec-
tor  , 1 ,1, 1 ,2, 1 , , 1, ,...,i G i G i G i n Gv v v   v according to the fol-
lowing formula:

   
, , 1

, , 1

, ,

,

if [0,1] [1,]

, otherwise

i j G

i j G

i j G

v

w rand CR j rand n

x








   



 (8)

where [0,1]rand stands for a uniformly distributed ran-
dom number in the range [0,1], and [1,]rand n is a ran-
domly chosen index from the set {1, 2, , }n to ensure
that at least one of the variables should be changed and

, 1i Gw does not directly duplicate ,i Gx . And the cross-

over rate CR is a real constant in the range [0,1], one of
control parameters of the DE algorithm. After crossover,
if one or more of the variables in the new solution are
outside their boundaries, the following repair rule is ap-
plied [25]:

 

 

, , 1 , , 1

, , 1 , , 1 , , 1

, , 1

1
, if

2
1

, if
2

, otherwise

i j G j i j G j

i j G j i j G j i j G j

i j G

w l w l

w l w u w u

w

 

  



   

    




 (9)

2.4. Selection Operation

After mutation and crossover, the selection operation
selects to decide that the new individual , 1i Gw or the
original individual ,i Gx will survive to be a member of
the next generation. If the fitness value of the new indi-
vidual , 1i Gw is better than that of the original one ,i Gx
then the new individual , 1i Gw is to be an offspring in
the next generation (G + 1) else the new individual

, 1i Gw is discarded and the original one ,i Gx is retained
in the next generation. For a minimization problem, we
can use the following selection rule:

   , 1 , 1 ,
, 1

,

, if ,

, otherwise.

i G i G i G
i G

i G

f f 


  


w w x
x

x
 (10)

where  f  is the fitness function, and , 1i Gx is the
offspring of ,i Gx in the next generation (G + 1).

2.5. The General Framework of the DE
Algorithm

The above operations (i.e., mutation, crossover, and se-
lection) are repeated NP (population size) times to ge-
nerate the next population of the current population.
These successive generations are generated until the
predefined termination criterion is satisfied. The main
steps of the DE algorithm are given in Figure 1.

1: Randomly initialize the starting population 0P .

2: Evaluate the initial population 0P .

3: repeat
4: for each individual in the current population GP do

5: Perform mutation operation.
6: Perform crossover operation.
7: Evaluate the new individual.
8: Perform selection operation.
9: end for
10: Generate the next generation population 1GP  through 4-9,

11: and let 1G G  .
12: until (the predefined termination criterion is achieved).

Figure 1. The generic framework of the DE algorithm.

Differential Evolution Using Opposite Point for Global Numerical Optimization

Copyright © 2012 SciRes. JILSA

4

3. The Proposed GNO2DE Algorithm

Similar to all population-based optimization algorithms,
two main steps are distinguishable for the DE, population
initialization and producing new generations by evolu-
tionary operations such as selection, crossover, and mu-
tation. GNO2DE enhances these two steps using the op-
posite point method. The opposite point method has been
proven to be an effective method to evolutionary algo-
rithms for solving global numerical problems. When
evaluating a point to a given problem, simultaneously
computing its opposite point can provide another chance
for finding a point closer to the global optimum. The
concept of the opposite point is defined as follows [21-
24]:

Definition 1 Let us assume that ,i Gx is the thi
point of the population GP (population size NP) at the
generation G in the n-dimensional space. The opposite
point  , ,1, ,2, , ,, , ,i G i G i G i n Go o oo  is completely defined
by its components as follows:

, , , ,i j G j j i j Go l u x   (11)

where 1,2, ,i NP  , 1, 2, ,j n  , jl and ju are
the lower and the upper limits of the variable , ,i j Gx , re-
spectively.

3.1. Generating the Initial Population Using the
Opposite Point Method

Generally, population-based Evolutionary Algorithms ran-
domly generate the initial population within the bounda-
ries of parameter variables. In order to improve the qual-
ity of the initial population, we can obtain fitter starting
candidate solutions by utilizing opposite points, even
when there is no a priori knowledge about the solution
(s). The procedure of generating the initial population
using the opposite point method is given as follows:

Step 1: Randomly initialize the starting population 0P
(population size NP).

Step 2: Calculate the opposite population of 0P using
the opposite point method, and obtain the opposite popu-
lation 0OP .

Step 3: Select the NP fittest individuals from 0 0P OP
as the initial population 0P .

3.2. Evolving the Population Using the Opposite
Point Method

By applying a similar approach to the current population,
the evolutionary process can be forced to jump to a new
solution candidate, which may be fitter than the current
one. After generating new population by selection, cross-
over, and mutation, the opposite population is calculated
and the NP fittest individuals are selected from the
union of the current population and the opposite popula-

tion. Following steps describe the procedure:
Step 1: The offspring population 1GP  of the current

population GP is generated after performing the corre-
sponding successive DE operations (i.e., mutation, cross-
over, and selection).

Step 2: Calculate the opposite population of 1GP  us-
ing the opposite point method, and obtain the opposite
population 1GOP  .

Step 3: Select the NP fittest individuals from

1 1G GP OP  as the next generation population 1GP  .
Step 4: Let 1G G  .

3.3. Adaptive Crossover Rate CR

In DE, the aim of crossover is to improve the diversity of
the population, and there is a control parameter CR
(i.e., the crossover rate) to control the diversity. The
smaller diversity is easy to result in the premature con-
vergence, while the larger diversity reduces the conver-
gence speed. In conventional DE, the crossover rate CR
is a constant value in the range [0,1]. Inspired by non-
uniform mutation, this paper introduces an adaptive
crossover rate CR , which is defined as follows [28]:

1
b

t
CR r

T

         
 (12)

where r is a uniform random number from [0,1], t
and T are the current generation number and the maxi-
mal generation number, respectively. The parameter b
is a shape parameter determining the degree of depen-
dency on the iteration number and usually is set to 2 or 3.
In this study, b is set to 3.

The property of CR causes the crossover operator to
search the solution space uniformly initially when t is
small, while to search the solution space very locally
when t is large. This strategy increases the probability
of generating a new number close to its successor than a
random choice. Therefore, at the early stage, GNO2DE
uses a bigger crossover rate CR to search the solution
space to preserve the diversity of solutions and prevent
premature convergence; at the later stage, GNO2DE em-
ploys a smaller crossover rate CR to search the solu-
tion space to enhance the local search and prevent the
fitter solutions found from being destroyed. The relation
of generation vs crossover rate CR is plotted in Figure
2.

3.4. Adaptive Mutation Strategies

In subsection 2.2, we have described a few useful muta-
tion schemes, where “DE/rand/1/bin” and “DE/current to
best/2/bin” are the most often used in practical applica-
tions mainly due to their good performance [17,19]. To
overcome their respective disadvantages and utilize their

Differential Evolution Using Opposite Point for Global Numerical Optimization

Copyright © 2012 SciRes. JILSA

5

Figure 2. The graph for generation vs crossover rate CR.

cooperative advantages, GNO2DE randomly chooses a
mutation scheme from two candidates “DE/rand/1/bin”
(i.e., Equation (3)) and “DE/current to best/2/bin” (i.e.,
Equation (5)), and the new mutant vector , 1i Gv is gen-
erated according to the following formula [27]:

, 1

Equation (3), if [0,1] 0.5

Equation (5), otherwisei G

rand



 


v (13)

where [0,1]rand is a uniform random number from the
range [0,1].

3.5. Approaching of Boundaries

In the given optimization problem, it has to be ensured
that some boundary values are not outside their limits.
Several possibilities exist for this task: 1) The positions
that beyond the boundaries are newly generated until the
positions within the boundaries are satisfied; 2) the
boundary-exceeding values are replaced by random num-
bers in the feasible region; 3) The boundary is appro-
ached asymptotically by setting the boundary-offending
value to the middle between old position and boundary
[29]:

 

 

, , 1 , , 1

, , 1 , , 1 , , 1

, , 1

1
, if

2
1

, if
2

, otherwise

j i j G i j G j

i j G i j G j i j G j

i j G

l w w l

w w u w u

w

 

  



   

   




 (14)

After crossover, if one or more of the variables in the
new vector , 1i Gw are outside their boundaries, the vio-
lated variable value , , 1i j Gw  is either reflected back
from the violated boundary or set to the corresponding
boundary value using the repair rule as follows [30]:

     
   

   
     

   

, , 1 , , 1

, , 1

, , 1 , , 1

, , 1

, , 1 , , 1

, , 1

, , 1

1
, if 1 3

2

, if 1 3 2 3

2 , if 2 3

1
,if 1 3

2

, if 1 3 2 3

2 ,

j i j G i j G j

j i j G j

j i j G i j G j

i j G

i j G j i j G j

j i j G j

j i j G

l w p w l

l p w l

l w p w l
w

w u p w u

u p w u

u w

 



 



 





    

   

   


    

   

    , , 1 if 2 3 i j G jp w u














  
 (15)

where p is a probability and a uniformly distributed
random number in the range [0,1].

3.6. The Framework of the GNO2DE Algorithm

DE creates new candidate solutions by combining the
parent individual and several other individuals of the
same population. A candidate replaces the parent only if
it has better fitness value. The initial population is se-
lected randomly in a uniform manner between the lower
and upper bounds defined for each variable. These bounds
are specified by the user according to the nature of the
problem. After initialization, DE performs mutation,
crossover, selection etc., in an evolution process. The ge-
neral framework of the GNO2DE algorithm is described
in Figure 3.

4. Numerical Experiments

4.1. Benchmark Functions

In order to test the robustness and effectiveness of
GNO2DE, we use a well-known test set of 23 benchmark
functions [1,2,31-33]. This relatively large set is neces-
sary in order to reduce biases in evaluating algorithms.

1: Generate the initial population 0P (population size NP)

2: using the opposite point method.
3: Evaluate the initial population 0P .

4: repeat
5: for each individual in the current population GP do

6: Perform mutation operation.
7: Perform crossover operation.
8: Evaluate the new individual.
9: Perform selection operation.
10: end for
11: Generate the next generation population 1GP  through 4-10,

12: and calculate the opposite population 1GOP  .

13: Select the NP fittest individuals from 1 1G GP OP 

14: as the next generation population 1GP  .

15: Let 1G G  .
16: until (the predefined termination criterion is achieved).

Figure 3. The general framework of GNO2DE.

Differential Evolution Using Opposite Point for Global Numerical Optimization

Copyright © 2012 SciRes. JILSA

6

The complete description of all these functions and the
corresponding parameters involved are described in Ta-

ble 1 and APPENDX. These functions can be divided
into three different categories with different complexities:

Table 1. The 23 benchmark test functions - 1 23f f .

f n S minf

  2

1 1

n

ii
f x


 x 30/100 [5.12,5.12]n  1 0f 0

 2 1 1

nn

i ii i
f x x

 
  x 30/100 [10,10]n  2 0f 0

   2

3 1 1

n i

ji j
f x

 
  x 30/100 [100,100]n  3 0f 0

   4 max ,1ii
f x i n  x 30/100 [100,100]n  4 0f 0

      21 22

5 11
100 1

n

i i ii
f x x x




   x 30/100 [30,30]n  5 0f 1

   2

6 1
0.5

n

ii
f x


   x 30/100 [100,100]n  6 0, 0.5 0.5if p   p

  4

7 1
[0,1)

n

ii
f ix rand


 x 30/100 [1.28,1.28]n  7 0f 0

   8 1
sin

n

i ii
f x x


 x 30/100 [500,500]n  8 . 418.9829f n 420 97

    2

9 1
10cos 2π 10

n

i ii
f x x


  x 30/100 [5.12,5.12]n  9 0f 0

   2

10 1 1

1 1
20exp 0.2 exp cos 2π 20 e

n n

i ii i
f x x

n n 

               
 x 30/100 [32,32]n  10 0f 0

  2

11 1 1

1
cos 1

4000

nn i
ii i

x
f x

i 

    
 

 x 30/100 [600,600]n  11 0f 0

          
 

1 2 22 2

12 1 11

1

π
10sin π 1 1 10sin π 1

 ,10,100, 4

n

i i ni

n

ii

f y y y y
n

u x







       







x
 30/100 [50,50]n  12 0f  1

       
      

1 22 2

13 1 11

2 2

1

0.1 sin 3π 1 1 sin 3π

 1 1 sin 2π ,5,100,4

n

i ii

n

n n ii

f x x x

x x u x







     

     




x
 30/100 [50,50]n  13 0f 1

    
1-1625 2

14 1 1
0.002 i ijj i

f j x a


 

     
  x 2 [65.54,65.54]n  14 . 0.998f  31 95

    2
2

11 1 2

15 21
3 4

i i

ii
i i

x b b x
f a

b b x x

 
  

   
x 4 [5,5]n

 15 0.1928,0.1908,0.1231,0.1358

0.0003075

f



  2 4 6 2 41
316 1 1 1 1 2 2 24 2.1 4 4f x x x x x x x     x 2 [5,5]n  16 0.09,0.71 1.0316f   

   
2

2

17 2 1 1 12

5.1 5 1
6 10 1 cos 10

4π π 8π
f x x x x            

   
x 2 [5,15]n  17 9.42, 2.47 0.397887f 

     
   

2 2 2

18 1 2 1 1 2 1 2 2

2 2 2

1 2 1 1 2 1 2 2

1 1 19 14 3 14 6 3

 30 2 3 18 32 12 48 36 27

f x x x x x x x x

x x x x x x x x

          
          

x
2 [2, 2]n  18 0, 1 3f  

   24 3

19 1 1
expi ij j iji j

f c a x p
 

      x 3 [0,1]n
 19 0.114,0.556,0.852

3.86278

f

 

   24 6

20 1 1
expi ij j iji j

f c a x p
 

      x 6 [0,1]n
 20 0.201,0.15,0.477,0.275,0.311,0.657

3.32237

f

 

    
15 T

21 1 i i ii
f x a x a c




      x 4 [0,10]n  21 10.1532f   4

    
17 T

22 1 i i ii
f x a x a c




      x 4 [0,10]n  22 10.402f   4

    
110 T

23 1 i i ii
f x a x a c




      x 4 [0,10]n  23 10.53649f   4

Differential Evolution Using Opposite Point for Global Numerical Optimization

Copyright © 2012 SciRes. JILSA

7

1) unimodal functions (1 7 - f f), which are relatively easy
to be optimized, but the difficulty increases as the di-
mensions of the problems increase (see Figure 4); 2)
multimodal functions (8 13 - f f), which have many local
minima, represent the most difficult class of problems for
many optimization algorithms (see Figure 5); 3) multi-
modal functions (14 23 - f f), which contain only few local
optima (see Figure 6). It is interesting to note that some
functions have unique features: 6f is a discontinuous
step function having a single optimum; 7f is a noisy
function involving a uniformly distributed random vari-
able within the range [0,1]. In unimodal functions the
convergence rate is our main interest, as the optimization
is not a hard problem. Obviously, for multimodal func-
tions the quality of the final results is more important
because it reflects the ability of the designed algorithm to
escape from local optima.

4.2. Discussion of Parameter Settings

In order to setup the parameters, we firstly discuss the
convergence characteristic of each function of dimen-

Figure 4. Graph for one unimodal function.

Figure 5. Graph for one multimodal function with many
local minima.

Figure 6. Graph for one multimodal function containing
only few local optima.

sionality 30 or lower. The parameters used by GNO2DE
are listed in the following: the control parameter 0.5F  ,
the population size 100NP  , the maximal generation
number 500T  for functions 1 4 - f f , 21 23 - f f ,

1500T  for functions 5 20 - f f , respectively. For con-
venience of illustration, we plot the convergence graphs
for benchmark test functions 1 23 - f f in Figures 7-12.

Figures 7-12 clearly show that GNO2DE can achieve
better convergence for each function of 1 4 - f f , 6 7- f f ,

9 20- f f , and 21 23- f f , when evaluated by 100,000 FES
(the number of fitness evaluations). From Figure 8, we
know that function 8f approximately requires 300,000
FES to achieve the convergence, and that the conver-
gence speed of function 5f is relatively slow in the case
of the above parameters. Therefore, in order to investi-
gate the effect of the control parameter F on the con-
vergence. Some experimental results are given in Fig-
ures 13-18. Firstly, the control parameter F is set to
different values 0.4, 0.5, 0.6, 0.7 on functions 1f and

2f , and the convergence curve is presented in Figures
13 and 14. From Figures 13 and 14, we can observe that
GNO2DE can achieve the convergence for each value of
the above control parameter F when the number of fit-
ness evaluations is set to 100,000 FES, while the con-
vergence speed is fastest when the value of the control
parameter F is set to 0.5. For function 5f , we set the
control parameter F to 0.5, 0.6, 0.7, and 0.8, respec-
tively. The convergence graph is given in Figure 15.
From Figure 15, it is clearly shown that the convergence
speed is obviously fastest when the value of the control
parameter F is set to 0.6. In addition, we also present
the convergence graph of each function of 8f , 13f , and

20f in Figures 16-18, respectively. The control parame-
ter F is set to 0.5, 0.6, 0.7, and 0.8. From these figures,
we can institutively find that the convergence speed is
relatively fastest when the value of the control parameter
is set to 0.5.

Differential Evolution Using Opposite Point for Global Numerical Optimization

Copyright © 2012 SciRes. JILSA

8

Figure 7. Convergence graph for functions - 1 4f f .

Figure 8. Convergence graph for functions - 5 8f f .

Figure 9. Convergence graph for functions - 9 12f f .

Figure 10. Convergence graph for functions - 13 16f f .

Figure 11. Convergence graph for functions - 17 20f f .

Figure 12. Convergence graph for functions - 21 23f f .

Differential Evolution Using Opposite Point for Global Numerical Optimization

Copyright © 2012 SciRes. JILSA

9

Figure 13. Convergence curve of f1 for each F value.

Figure 14. Convergence curve of f2 for each F value.

Figure 15. Convergence curve of f5 for each F value.

Figure 16. Convergence curve of f8 for each F value.

Figure 17. Convergence curve of f13 for each F value.

Figure 18. Convergence curve of f20 for each F value.

Differential Evolution Using Opposite Point for Global Numerical Optimization

Copyright © 2012 SciRes. JILSA

10

Therefore, for the most functions, GNO2DE can show
good performance when the value of the control parame-
ter F is set to 0.5 or 0.6. According to the above dis-
cussion and analysis, we set up the corresponding ex-
perimental parameters in Tables 2-4. Table 2 presents
the parameters used by GNO2DE, GNO2DE-A, and
GNO2DE-B for functions of dimensionality 30 or lower,
where GNO2DE-A and GNO2DE-B employ only DE
schemes “DE/rand/1/bin” or “DE/current to best/2/bin”,
respectively. Table 3 presents the parameters used by
GNODE (without using the opposite point method) for
functions of dimensionality 30 or lower. Table 4 presents
the parameter settings used by GNO2DE for functions of
dimensionality 100.

4.3. Comparison of GNO2DE with GNODE

In this section, we compare GNO2DE with GNODE in
terms of some performance indices according to the pa-
rameter settings presented in Tables 2 and 3. The experi-
mental results are in detail summarized in Tables 5 and 6,
and better results are highlighted in boldface. The opti-
mized objective function values over 30 independent
runs are arranged in ascending order and the 15th value in
the list is called the median optimized function value.

According to Tables 5 and 6, we can find that GNO2DE

Table 2. Parameters used by GNO2DE, GNO2DE-A, and
GNO2DE-B for functions of dimensionality 30 or lower.

f F NP T FES

1 4 - f f , 6f , 7f , 9 23 - f f 0.5 100 500 51 10

5f 0.6 100 5000 61 10

8f 0.5 100 1500 53 10

Table 3. Parameters used by GNODE for functions of di-
mensionality 30 or lower.

f F NP T FES

1 4 - f f , 6f , 7f , 9 23 - f f 0.5 100 1000 51 10

5f 0.6 100 10000 61 10

8f 0.5 100 3000 53 10

Table 4. Parameters used by GNO2DE for functions of di-
mensionality 100.

f F NP T FES

1 4 - f f , 6f , 7f , 9 23 - f f 0.5 100 2500 55 10

5f 0.6 100 25000 65 10

8f 0.5 100 15000 63 10

can obtain the optima or near optima with certain preci-
sion for all test functions 1 23 - f f of dimensionality 30
or less. For each function of 1 4 - f f , 6f , 7f , 9 11- f f ,

14f , 15f , 17 19- f f , and 21 23 - f f , the performance of
GNO2DE is superior to or less worse than the perform-
ance of GNODE in terms of the min value (i.e., the best
result), the median value (i.e., the median result), the
max value (i.e., the worst result), the mean value (i.e., the
mean result), and the std value (i.e., the standard devia-
tion result), on condition that while the FES of GNO2DE
is essentially less than that of GNODE, although they are
apparently set to the same FES 100,000. In addition, the
global optimum of function 18f found by GNO2DE is
f18(x) = 2.99999999999992, the corresponding x =
(0.00000000061668, −0.99999999932877).

According to Table 5, for 5f , the performance of
GNO2DE is obviously better than that of GNODE in
terms of the max, mean, and std values, while the per-
formance of GNODE is slightly better than that of
GNO2DE in terms of the min, median values. For 8f ,
the median, max, mean, and std values of GNODE are
better than those of GNO2DE, while the min value of
GNODE is approximate to that of GNO2DE. For 12f ,
the min, median, max, and mean values of GNO2DE are
better than those of GNODE, while the std value of
GNO2DE is worse than that of GNODE. The reason is
that GNO2DE can’t find the optimal solution in very few
runs of 30 runs. For function 13f , the min, median, max,
mean, and std values of GNO2DE are slightly worse than
those of GNODE.

As shown in Table 6, for 16f , the min, median values
of GNO2DE are similar to those of GNODE, while the
max, mean, and std values of GNO2DE are worse than
those of GNODE to some extent. This is because that
GNO2DE can’t obtain the min value in one or two runs
of 30 runs. For 20f , the min, and max values obtained
by GNO2DE are the same to those by GNODE, while the
median value obtained by GNO2DE is worse than that
obtained by GNODE. Accordingly, it also decides that
the mean, and std values of GNO2DE are worse than
those of GNODE. GNO2DE and GNODE all have a
tendency to getting stuck in the local optima. The global
optima of function 20f found by GNO2DE is f20(x) =
−3.33539215295525, the corresponding
x = (0.20085810809731, 0.15013171771783,
0.47865329178970, 0.27652528463205,
0.31191293322300, 0.65702016661775).

In conclusion, the performance of GNO2DE is rela-
tively stable and obviously better than or not worse than
that of GNODE. The reason is that GNO2DE uses the
opposite point method to provide another chance for
finding a solution more close to the global numerical
optimum, without increasing much time.

Differential Evolution Using Opposite Point for Global Numerical Optimization

Copyright © 2012 SciRes. JILSA

11

Table 5. Comparison between GNO2DE, and GNODE on functions - 1 13f f of dimensionality 30.

f minf method min median max mean std

GNO2DE 0 0 5.9825755800e−52 2.5518554212e−53 1.096785e−52
1f 0

GNODE 7.54155067179e−30 5.399029026467e−29 5.2374789498e−28 1.0300737442e−28 1.256367e−28

GNO2DE 0 0 0 0 0
2f 0

GNODE 6.4413392103e−14 1.311376646166e−13 3.18424035936e−13 1.483498934045e−13 6.397059e−14

GNO2DE 0 0 0 0 0
3f 0

GNODE 0.92997781533084 3.84094195096149 7.55970302545084 4.10611784328047 1.8274011203

GNO2DE 0 0 1.16657303078e−23 3.888576769266e−25 2.129861e−24
4f 0

GNODE 4.02934458353e−3 1.1827251953012e−1 1.41424788000055 2.1194941395447e−1 2.878915e−1

GNO2DE 1.47821832439e−16 4.935106365033e−15 9.64243063489e−14 1.26582991612e−14 2.134871e−14
5f 0

GNODE 0 0 3.98662385430093 0.26577492362006 1.0114388899

GNO2DE 0 0 0 0 0
6f 0

GNODE 0 0 0 0 0

GNO2DE 1.27769804370e−4 1.30652285810e−3 2.96374746091e−3 1.31349553757e−3 7.341583e−4
7f 0

GNODE 2.82761792847e−3 5.21770209218e−3 9.26910954128e−3 5.51405735988e−3 1.348797e−3

GNO2DE −1.256948661814e+4 −1.256948605445e+4 −1.256926191933e+4 −1.256946879174e+4 5.11364128e−2
8f −12569.487

GNODE −1.256948661817e+4 −1.256948661817e+4 −1.256948661817e+4 −1.256948661817e+4 1.8500855e−12

GNO2DE 0 0 0 0 0
9f 0

GNODE 16.94654083083428 23.79300366957455 29.35614772393047 23.59480273338819 2.8085602265

GNO2DE 8.881784197e−16 8.881784197e−16 8.881784197e−16 8.881784197e−16 0
10f 0

GNODE 3.28626015289e−14 6.128431095931e−14 1.572075802869e−13 6.708707663468e−14 3.018161e−14

GNO2DE 0 0 0 0 0
11f 0

GNODE 0 0 1.477977675483e−2 1.06777005656e−3 3.404385e−3

GNO2DE 5.000000000000e−14 3.480000000000e−12 1.0421500297161e−1 1.064608725538e−2 3.161382e−2
12f 0

GNODE 15.7868982918711 15.7868982918711 15.7868982918711 15.7868982918711 1.271143e−14

GNO2DE 2.916333541909e−13 1.549222503733e−12 6.434821403064e−12 2.175719010455e−12 1.6271296e−12
13f 0

GNODE 1.328113253296e−27 6.739922873415e−27 3.55322475119e−26 1.06114283139e−26 9.0125651e−27

4.4. Comparison of GNO2DE with GNO2DE-A,

and GNO2DE-B

In this section, we compare GNO2DE (“DE/rand/1/bin”
and “DE/current to best/2/bin”) with GNO2DE-A (“DE/
rand/1/bin”), and GNO2DE-B (“DE/current to best/2/
bin”) in terms of the best result (i.e., the min value), the
mean result (i.e., the mean value), and the standard de-
viation result (i.e., the std value). The parameter settings
of GNO2DE, GNO2DE-A, and GNO2DE-B are given in

Table 2. The experimental results are in detail summa-
rized in Tables 7 and 8, and better results are highlighted
in boldface. The optimized objective function values
over 30 independent runs are arranged in ascending order
and the 15th value in the list is called the median opti-
mized function value.

From Tables 7 and 8, it is clearly shown that for each
function of 6f , 9 11- f f , 14f , 17 23 - f f , the min, mean,
and std values of GNO2DE are similar to those of

Differential Evolution Using Opposite Point for Global Numerical Optimization

Copyright © 2012 SciRes. JILSA

12

Table 6. Comparison between GNO2DE, and GNODE on functions - 14 23f f .

f minf method min median max mean std

GNO2DE 0.99800383779445 0.99800383779445 0.99800383779445 0.99800383779445 1.749353e−16
14f 0.998

GNODE 0.99800383779445 0.99800383779445 0.99800383779445 0.99800383779445 1.129203e−16

GNO2DE 3.074859878056e−4 3.074859878056e−4 3.074859878056e−4 3.074859878056e−4 1.318374e−18
15f 3.075e−4

GNODE 3.074859878056e−4 3.074859878056e−4 3.074859878056e−4 3.074859878056e−4 1.055790e−19

GNO2DE −1.03162845348988 −1.03162845348988 −1.03162683969173 −1.03162838522757 3.024594e−7
16f −1.0316

GNODE −1.03162845348988 −1.03162845348988 −1.03162845348988 −1.03162845348988 6.775215e−16

GNO2DE 0.39788735772974 0.39788735772974 0.39788735772974 0.39788735772974 0
17f 0.397887

GNODE 0.39788735772974 0.39788735772974 0.39788735772974 0.39788735772974 0

GNO2DE 2.99999999999992 2.99999999999992 2.99999999999992 2.99999999999992 1.953227e−15
18f 3

GNODE 2.99999999999992 2.99999999999992 2.99999999999992 2.99999999999992 1.989449e−15

GNO2DE −3.86277751253760 −3.86277751253760 −3.86277751253760 −3.86277751253760 2.258405e−15
19f −3.86278

GNODE −3.86277751253760 −3.86277751253760 −3.86277751253760 −3.86277751253760 2.258405e−15

GNO2DE −3.33539215295525 −3.20321215577107 −3.20321215577107 −3.25167815473861 6.478571e−2
20f −3.32237

GNODE −3.33539215295525 −3.33539215295525 −3.20321215577107 −3.27811415417544 6.661963e−2

GNO2DE −10.15319967905823 −10.15319967905823 −10.15319967905823 −10.15319967905822 7.226896e−15
21f −10.1532

GNODE −10.15319967905823 −10.15319967905823 −5.10077214033199 −9.81637117647648 1.281841951

GNO2DE −10.40294056681867 −10.40294056681867 −10.40294056681866 −10.40294056681866 1.615983e−15
22f −10.4029

GNODE −10.40294056681867 −10.40294056681867 −10.40294056681866 −10.40294056681866 1.714009e−15

GNO2DE −10.53640981669205 −10.53640981669205 −10.53640981669205 −10.53640981669205 1.776357e−15
23f −10.5364

GNODE −10.53640981669205 −10.53640981669205 −10.53640981669205 −10.53640981669205 1.806724e−15

GNO2DE-A, and GNO2DE-B, and three algorithms all
can find the optimal solution.

Table 7 shows that for each function of 1 4- f f , the
optimal solution can be found by GNO2DE, GNO2DE-A,
and GNO2DE-B, while the mean, std values of GNO2DE
are slightly different from those of GNO2DE-A, and
GNO2DE-B. For 5f , the mean, and std values of
GNO2DE are obviously better than those of GNO2DE-A,
and GNO2DE-B, while the min value of GNO2DE-A is
worst among three algorithms. For 7f , the min value of
GNO2DE-A is best among three algorithms, while its
mean, and std values are worse or not better than those of
GNO2DE, and GNO2DE-B. For 8f , the min, mean, and
std values of GNO2DE-B are obviously worse than those
of GNO2DE, and GNO2DE-A, while GNO2DE-A can
obtained better mean, and std values than GNO2DE. For

12f , the min value of GNO2DE-A is worst among three
algorithms, while the std value of GNO2DE is best
among three algorithms. For 13f , the min value of
GNO2DE-A is worst among three algorithms, while the
mean, and std values of GNO2DE are best among three

algorithms.
Table 8 shows that for 15f , the min, and mean values

are approximate among three algorithms, while the std
value of GNO2DE is best, that of GNO2DE-B is better,
and that of GNO2DE-A is good. For 16f , the min, and
mean values are similar among three algorithms, while
the std value of GNO2DE-B is best, that of GNO2DE is
better, and that of GNO2DE-A is good.

Therefore, from the above analysis, we know that the
performance of GNO2DE is more stable than that of
GNO2DE-A, and that of GNO2DE-B. This is because
that GNO2DE employs two schemes “DE/bin/1/bin” and
“DE/current to best/2/bin” to search the solution space.
On the whole, GNO2DE can improve the search ability.

4.5. Comparison of GNO2DE with Some
State-of-the-Art Algorithms

In this section, we compare GNO2DE with DE [3],
ODE/2 [2], SOA [31], FEP [32], opt-IA [1], and CLPSO
[15] in terms of the mean result (i.e., the mean value), the
standard deviation result (i.e., the std value), and the

Differential Evolution Using Opposite Point for Global Numerical Optimization

Copyright © 2012 SciRes. JILSA

13

Table 7. Comparison between GNO2DE, GNO2DE-A, and GNO2DE-B on functions - 1 14f f of dimensionality 30.

GNO2DE GNO2DE-A GNO2DE-B
f minf

min mean ± std min mean ± std min mean ± std

1f 0 0 2.55e−53 ± 1.1e−52 0 0 ± 0 0 4.2e−59 ± 1.6e−58

2f 0 0 0 ± 0 0 0 ± 0 0 2.1e−34 ± 1.2e−33

3f 0 0 0 ± 0 0 0 ± 0 0 2.8e−54 ± 1.5e−53

4f 0 0 3.89e−25 ± 2.13e−24 0 0 ± 0 0 1.3e−23 ± 3.26e−23

5f 0 1.4782e−16 1.2658e−14 ± 2.1e−14 4.3857 5.414 ± 4.4e−1 0.0000 4.6295 ± 5.0103

6f 0 0 0 ± 0 0 0 ± 0 0 0 ± 0

7f 0 1.2777e−4 1.3135e−3 ± 7.3e−4 5.3502e−5 1.3537e−3 ± 1.2e−3 1.3892e−4 9.3933e−4 ± 4.2e−4

8f −12569.487 −12569.487 −12569.469 ± 5.2e−2 −12569.487 −12569.487 ± 2.3e−5 −12230.228 −11423.429 ± 3.7e+2

9f 0 0 0 ± 0 0 0 ± 0 0 0 ± 0

10f 0 8.8818e−16 8.8818e−16 ± 0 8.8818e−16 8.8818e−16 ± 0 8.8818e−16 8.8818e−16 ± 0

11f 0 0 0 ± 0 0 0 ± 0 0 0 ± 0

12f 0 5.0000e−14 1.0646e−2 ± 3.16e−2 1.9663e−5 8.4895e−2 ± 1.25e−1 0 2.0875e−2 ± 1.13e−1

13f 0 2.9163e−13 2.1757e−12 ± 1.6e−12 1.8552e−5 9.3345e−4 ± 5.87e−4 0 1.7522e−3 ± 4.8e−3

Table 8. Comparison between GNO2DE, GNO2DE-A, and GNO2DE-B on functions - 14 23f f .

GNO2DE GNO2DE-A GNO2DE-B
f minf

min mean ± std min mean ± std min mean ± std

14f 0.998 0.9980038 0.9980038 ± 1.7e−16 0.9980038 0.9980038 ± 2.0e−16 0.9980038 0.9980038 ± 1.6e−16

15f 3.075e−4 3.07486e−4 3.07486e−4 ± 1.3e−18 3.07486e−4 3.07486e−4 ± 1.3e−10 3.07486e−4 3.07486e−4 ± 2.5e−16

16f −1.0316 −1.031628 −1.031628 ± 3.0e−7 −1.031628 −1.031626 ± 9.9e−6 −1.031628 −1.031628 ± 5.1e−16

17f 0.397887 0.397887 0.397887 ± 0 0.397887 0.397887 ± 0 0.397887 0.397887 ± 0

18f 3 3.0000 3.0000 ± 1.95e−15 3.0000 3.0000 ± 1.7e−15 3.0000 3.0000 ± 2.03e−15

19f −3.86278 −3.862778 −3.862778 ± 2.3e−15 −3.862778 −3.862778 ± 2.3e−15 −3.862778 −3.862778 ± 2.3e−15

20f −3.32237 −3.33539 −3.25168 ± 6.48e−2 −3.33539 −3.23846 ± 5.945e−2 −3.33539 −3.29029 ± 6.28e−2

21f −10.1532 −10.1532 −10.1532 ± 7.2e−15 −10.1532 −10.1532 ± 7.2e−15 −10.1532 −10.1532 ± 7.2e−15

22f −10.4029 −10.4029 −10.4029 ± 1.6e−15 −10.4029 −10.4029 ± 1.04e−15 −10.4029 −10.4029 ± 1.6e−15

23f −10.5364 −10.5364 −10.5364 ± 1.8e−15 −10.5364 −10.5364 ± 1.8e−15 −10.5364 −10.5364 ± 1.8e−15

number of fitness evaluations (i.e., the FES value). The
statistical results are summarized in Tables 9 and 10, and
better results are highlighted in boldface. The experi-
mental results of DE, SOA, and CLPSO are taken from
[31], and the experimental results of ODE/2, FEP are
taken from [2]. The optimized objective function values
of 30 runs are arranged in ascending order and the 15th

value in the list is called the median optimized function
value. Table 9 clearly shows that the mean, std values of
GNO2DE are obviously superior to those of DE, ODE/2,
SOA, FEP, opt-IA, and CLPSO on 2f , 3f , 9 11- f f ,
while GNO2DE uses the least FES 100,000 among these
methods, that the mean, std values of SOA are slightly
better than those of GNO2DE, ODE/2, DE, etc. on 1f ,

Differential Evolution Using Opposite Point for Global Numerical Optimization

Copyright © 2012 SciRes. JILSA

14

Table 9. Comparison between GNO2DE, DE, ODE/2, SOA, FEP, opt-IA, and CLPSO on functions - 1 14f f of dimensiona-

lity 30.

opt-IA

f item GNO2DE DE ODE/2 SOA FEP
 * fe  

 1 fe


 
  
 

CLPSO

mean 2.5519e−53 3.74e−13 2.06e−23 1.02e−76 5.7e−4 9.23e−12 1.7e−8 2.73e−12

std 1.0968e−52 3.94e−13 1.83e−23 6.51e−76 1.3e−4 2.44e−11 3.5e−15 1.68e−12 1f

FES 100,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000

mean 0 3.74e−9 1.43e−18 4.22e−63 8.1e−3 0.0 7.1e−8 3.82e−9

std 0 2.20e−9 8.11e−19 8.25e−63 7.7e−4 0.0 0.0 1.73e−9 2f

FES 100,000 200,000 200, 000 200,000 200,000 200,000 200,000 200,000

mean 0 1.85e−10 5.25e−27 4.26e−25 1.6e−2 0.0 1.9e−10 4.20e−1

std 0 1.49e−10 9.66e−27 2.15e−24 1.4e−2 0.0 2.63e−10 3.62e−1 3f

FES 100,000 500,000 500,000 500,000 500,000 500,000 500,000 500,000

mean 3.8886e−25 3.10e−2 2.72e−15 1.02e−48 0.3 1.0e−2 4.1e−2 2.05e−3

std 2.1299e−24 8.70e−2 9.30e−15 2.46e−48 0.5 5.3e−3 5.3e−2 1.25e−3 4f

FES 100,000 500,000 500,000 500,000 500,000 500,000 500,000 500,000

mean 1.2658e−14 3.47e−31 0 2.54e+1 5.06 3.02 28.4 3.63e+1

std 2.1349e−14 2.45e−30 0 7.87e−1 5.87 12.2 0.42 3.12e+1 5f

FES 1000,000 2000,000 428,776 2000,000 2000,000 2000,000 2000,000 2000,000

mean 0 0 0 0 0 0,2 0.0 0

std 0 0 0 0 0 0.44 0.0 0 6f

FES 100,000 150,000 22,640 150,000 150,000 150,000 150,000 150,000

mean 1.3135e−3 4.66e−3 1.45e−3 1.08e−4 7.6e−3 3.0e−3 3.9e−3 2.98e−3

std 7.3416e−4 1.30e−3 4.20e−4 6.44e−5 2.6e−3 1.2e−3 1.3e−3 9.72e−4 7f

FES 100,000 300,000 300,000 300,000 300,000 300,000 300,000 300,000

mean −12569.4688 −11234 −12569.4866 −10126 −12554.5 −12508.38 −12568.27 −12271

std 5.1136e−2 455.5 0 669.5 52.6 155.54 0.23 177.8 8f

FES 300,000 900,000 90, 381 900,000 900,000 900,000 900,000 900,000

mean 0 8.10e+1 0 0 4.6e−2 19.98 2.66 1.34e−9

std 0 3.23e+1 0 0 1.2e−2 7.66 2.39 8.57e−10 9f

FES 100,000 500,000 127,666 500,000 500,000 500,000 500,000 500,000

mean 8.8818e−16 1.71e−7 4.67e−13 −4.44e−15 1.8e−2 18.98 1.1e−4 6.81e−6

std 0 7.66e−8 1.86e−13 0 2.1e−3 0.35 3.1e−5 1.94e−6 10f

FES 100,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000

mean 0 4.44e−4 0 0 1.6e−2 7.7e−2 4.55e−2 2.96e−4

std 0 1.77e−3 0 0 2.2e−2 8.63e−2 4.46e−2 1.46e−3 11f

FES 100,000 200,000 109, 853 200,000 200,000 200,000 200,000 200,000

mean 1.0646e−2 3.67e−14 6.73e−26 1.28e−2 9.2e−6 0.137 3.1e−2 4.80e−11

std 3.1614e−2 4.07e−14 9.27e−26 7.62e−3 3.6e−6 0.23 5.7e−2 3.96e−11 21f
FES 100,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000

mean 2.1757e−12 2.91e−13 4.37e−24 1.89e−1 1.6e−4 1.51 3.20 6.42e−10

std 1.6271e−12 2.88e−13 3.67e−24 1.30e−1 7.3e−5 0.10 0.13 4.46e−10 31f
FES 100, 000 150,000 150,000 150,000 150,000 150,000 150,000 150,000

Differential Evolution Using Opposite Point for Global Numerical Optimization

Copyright © 2012 SciRes. JILSA

15

Table 10. Comparison between GNO2DE, DE, ODE/2, SOA, FEP, opt-IA, and CLPSO on functions - 14 23f f .

opt-IA

f item GNO2DE DE ODE/2 SOA FEP
 * fe  

 1 fe


 
  
 

CLPSO

mean 0.9980038 0.998 0.998 1.199 1.22 1.02 1.21 0.998

std 1.7494e−16 2.88e−16 0 5.30e−1 0.56 7.1e-2 0.54 5.63e−10 14f

FES 100,000 10,000 9552 10,000 10,000 10,000 10,000 10,000

mean 3.07486e−4 4.7231e−2 3.08e−4 3.0749e−4 5.0e−4 7.1e−4 7.7e−3 5.3715e−4

std 1.3184e−18 3.55e−4 0 1.58e−9 3.2e−4 1.3e−4 1.4e−2 6.99e−5 15f

FES 100, 000 400, 000 32,430 400, 000 400, 000 400, 000 400, 000 400, 000

mean −1.031628 −1.0316 −1.03163 −1.0316 −1.031 −1.03158 −1.02 −1.0316

std 3.0246e−7 6.77e−13 0 6.73e−6 4.9e−7 1.5e−4 1.1e−2 8.50e−14 16f

FES 100,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000

mean 0.397887 0.39789 0.39789 0.39838 0.398 0.398 0.450 0.39789

std 0 1.14e−8 2.01e−10 5.14e−4 1.5e−7 2.0e−4 0.21 1.08e−13 17f

FES 100,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000

mean 3.0000 3 3.00 3.0001 3.02 3.0 3.0 3

std 1.9532e−15 3.31e−15 0 1.17e−4 0.11 0.0 0.0 5.54e−13 18f

FES 100,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000

mean −3.8627775 −3.8628 −3.86278 −3.8621 −3.86 −3.72 −3.72 −3.8628

std 2.2584e−15 1.97e−15 2.68e−15 6.69e−4 1.4e−5 1.1e−4 1.1e−2 6.07e−12 19f

FES 100,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000

mean −3.251678 −3.215 −3.322 −3.298 −3.27 −3.31 −3.31 −3.274

std 6.4786e−2 3.6e−2 1.13e−12 4.5e−2 5.9e−2 7.4e−2 5.9e−3 5.9e−2 20f

FES 100, 000 20, 000 20,000 20, 000 20,000 20,000 20,000 20,000

mean −10.1531997 −10.15 −10.1532 −9.67 −5.52 −9.11 −5.36 −9.57

std 7.2269e−15 4.67e−6 1.04e−6 4.96e−1 1.59 1.82 2.20 4.28e−1 21f

FES 100,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000

mean −10.40294 −10.40 −10.40294 −9.79 −5.52 −9.86 −5.34 −9.40

std 1.61598e−15 2.07e−7 2.49e−8 4.48e−1 2.12 1.88 2.11 1.12 22f

FES 100,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000

mean −10.5364098 −10.54 −10.53641 −9.72 −6.57 −9.96 −6.03 −9.47

std 1.7764e−15 3.21e−6 2.35e−8 4.72e−1 3.14 1.46 2.66 1.25 23f

FES 100,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000

4f , 7f , while the 100,000 FES of GNO2DE is least
among these methods, and that the mean, std, FES values
of GNO2DE are better than DE, ODE/2, FEP, opt-IA,
and CLPSO. For 5f , 6f , 8f , the mean, std, and FES

values of ODE/2 are not worse than or better than those
of other methods. For 5f , compared with DE, GNO2DE
is slightly worse in terms of the mean, std values of,
while the 200,000 FES of DE is twice of that of

Differential Evolution Using Opposite Point for Global Numerical Optimization

Copyright © 2012 SciRes. JILSA

16

GNO2DE, and the performance of GNO2DE is clearly
better than that of SOA, FEP, opt-IA, and CLPSO. For

6f , the mean, std values of GNO2DE are similar to those
of DE, SOA, FEP, opt-IA, and CLPSO, while the
100,000 FES used by GNO2DE is least among these
methods. For 8f , the mean, std, FES values of
GNO2DE are obviously better than those of DE, SOA,
FEP, opt-IA, and CLPSO. For 12f , 13f , the min, std
values of ODE/2 are better than those of other methods,
while the 100,000 FES used by GNO2DE is least among
these methods.

As shown in Table 10, the mean value of GNO2DE
and SOA on 15f is approximate and are better than oth-
er methods, while ODE/2 has the least std, and FES val-
ues. For 16 18 - f f , all methods have the similar per- for-
mance. For 19f , GNO2DE, DE, ODE/2, SOA, CLPSO
have the similar performance and are better than FEP.
For 20f , the performance of ODE/2 and FEP is better
than other methods. For 21 23- f f , the perform- ance of
GNO2DE, DE, and ODE/2 is approximate and are better
than other methods.

In sum, the mean and standard deviation results of
GNO2DE are not worse than or superior to DE, ODE/2,
SOA, FEP, opt-IA, and CLPSO on a test set of bench-
mark functions. GNO2DE uses the opposite point me-
thod, employs two DE schemes “DE/rand/1/bin” and “DE/
current to best/2/bin”, and introduces non-uniform cross-
over rate. These techniques are beneficial to enhancing
the performance of GNO2DE.

4.6. Experimental Results of 100-Dimensional
Functions

In this section, the statistical results of GNO2DE on 100-
dimensional functions are given in Table 11. The pa-
rameter setup is used in Table 4. The optimized object-
tive function values over 30 independent runs are ar-
ranged in ascending order and the 15th value in the list is
called the median optimized function value. Table 11
clearly shows that GNO2DE can find the optimum or near
optimum of each 100-dimensional function of 1 13- f f ,
and that GNO2DE can obtain the stable performance of
each function of 1 7- f f , 9 11 - f f , while it performs
slightly worse on 8f , 12f , 13f . Therefore, when used
for solving high dimensional global numerical optimiza-
tion problems, NGO2DE also performs well.

5. Conclusion and Future Work

This paper introduces an opposition-based DE algorithm
for global numerical optimization (GNO2DE). GNO2DE
uses the method of opposition-based learning to utilize
the existing search spaces to improve the convergence
speed, employs adaptive DE schemes and non-uniform
crossover to enhance the adaptive search ability. Nume-
rical results show that GNO2DE outperforms some state-
of-the-art algorithms. However, there are still some pos-
sible things to do in the future: 1) further, to improve the
self-adaptation of the control parameters such as the
scaling factor F; 2) to test higher dimensional global nu-

Table 11. Experimental Results of 100-dimensional functions - 1 13f f .

f minf min median max mean std FES

1f 0 0 0 0 0 0 55 10

2f 0 0 0 0 0 0 55 10

3f 0 0 0 0 0 0 55 10

4f 0 0 0 0 0 0 55 10

5f 0 3.497698e−19 7.195169e−18 5.756444e−15 4.662977e−16 1.318697e−15 65 10

6f 0 0 0 0 0 0 55 10

7f 0 0 0 0 0 0 55 10

8f −41898.29 −41898.288727 −41898.288727 −41779.850393 −41882.496949 40.949569 63 10

9f 0 0 0 0 0 0 55 10

10f 0 8.881784197e−16 8.881784197e−16 8.881784197e−16 8.881784197e−16 0 55 10

11f 0 0 0 0 0 0 55 10

12f 0 0.000000000000 7.334999e−2 3.530528e−1 1.226082e−1 1.371314e−1 55 10

13f 0 0.000000000000 1.098737e−2 9.888265e−2 2.072484e−2 2.975114e−2 55 10

Differential Evolution Using Opposite Point for Global Numerical Optimization

Copyright © 2012 SciRes. JILSA

17

merical optimization problems; 3) to introduce some lo-
cal search and heuristic techniques to speed up the con-
vergence and escape from the local optima, etc.

REFERENCES
[1] V. Cutello, G. Narzisi, G. Nicosia and M. Pavone, “An

Immunological Algorithm for Global Numerical Optimi-
zation,” Artificial Evolution: 7th International Confer-
ence, Evolution Artificielle, Lecture Notes in Computer
Science Vol. 3871, 2006, pp. 284-295.
doi:10.1007/11740698_25

[2] W. Gong, Z. Cai and L. Jiang, “Enhancing the Perform-
ance of Differential Evolution Using Orthogonal Design
Method,” Applied Mathematics and Computation, Vol.
206, No. 1, 2008, pp. 56-69.
doi:10.1016/j.amc.2008.08.053

[3] R. Storn and K. Price, “Differential Evolution—A Simple
and Efficient Heuristic for Global Optimization over
Continuous Spaces,” Journal of Global Optimization, Vol.
11, No. 4, 1997, pp. 341-359.
doi:10.1023/A:1008202821328

[4] J. Sun, Q. Zhang and E. P. K. Tsang, “DE/EDA: A New
Evolutionary Algorithm for Global Optimization,” Infor-
mation Sciences, Vol. 169, No. 3-4, 2005, pp. 249-262.

[5] M. M. Ali, C. Storey and A. Torn, “Application of Some
Recent Stochastic Global Optimization Algorithms to
Practical Problems,” TUCS Technical Report No. 47, Tur-
ku Centre for Computer Science, Turku, 1996.

[6] H. P. Schwefel, “Numerical Optimization of Computer
Models,” John Wiley & Sons, Chichester, 1981.

[7] J. H. Holland, “Adaptation in Natural and Artificial Sys-
tems,” University of Michigan Press, Ann Arbor, 1975.

[8] I. Rechenberg, “Evolution Strategy: Optimization of Tec-
hnical Systems by Means of Biological Evolution,” Fro-
mman-Holzboog, Stuttgart, 1973.

[9] J. R. Koza, “Genetic Programming: On the Programming
of Computers by Means of Natural Selection,” The MIT
Press, Cambridge, 1992.

[10] D. B. Fogel, “Applying Evolutionary Programming to Se-
lected Traveling Salesman Problems,” Cybernetics and
Systems, Vol. 24, No. 1, 1993, pp. 27-36.
doi:10.1080/01969729308961697

[11] K. E. Parsopoulos and M. N. Vrahatis, “Recent Ap-
proaches to Global Optimization Problems through Parti-
cle Swarm Optimization,” Natural Computing, Vol. 1, No.
2-3, 2002, pp. 235-306.
doi:10.1023/A:1016568309421

[12] J. Kennedy and R. C. Eberhart, “Particle Swarm Opti-
mization,” Proceedings of the 1995 IEEE International
Conference on Neural Networks, Vol. 4, Perth, 27 No-
vember-1 December 1995, pp. 1942-1948.
doi:10.1109/ICNN.1995.488968

[13] D. Karaboğa and S. Ŏkdem, “A Simple and Global Opti-
mization Algorithm for Engineering Problems: Differen-
tial Evolution Algorithm,” Turk Journal of Electrical En-
gineering, Vol. 12, No. 1, 2004, pp. 53-60.

[14] J. Vesterstrom and R. Thomsen, “A Comparative Study
of Differential Evolution, Particle Swarm Optimization,
and Evolutionary Algorithms on Numerical Benchmark
Problems,” 2004 IEEE Congress on Evolutionary Com-
putation, Vol. 2, Portland, 19-23 June 2004, pp. 1980-
1987.

[15] J. J. Liang, A. K. Qin, P. N. Suganthan and S. Baskar,
“Comprehensive Learning Particle Swarm Optimizer for
Global Optimization of Multi-Modal Functions,” IEEE
Transactions on Evolutionary Computation, Vol. 10, No.
3, 2006, pp. 281-295. doi:10.1109/TEVC.2005.857610

[16] R. Storn and K. Price, “Differential Evolution—A Simple
and Efficient Adaptive Scheme for Global Optimization
over Continuous Spaces,” Technical Report TR-95-012,
International Computer Science Institute, Berkeley, 1995.

[17] K. Price, R. Storn and J. Lampinen, “Differential Evolu-
tion: A Practical Approach to Global Optimization,”
Springer-Verlag, Berlin, 2005.

[18] J. Brest, S. Greiner, B. Boskovic, M. Mernik and V. Zu-
mer, “Self-Adapting Control Parameters in Differential
Evolution: A Comparative Study on Numerical Bench-
mark Problems,” IEEE Transactions on Evolutionary Com-
putation, Vol. 10, No. 6, 2006, pp. 646-657.
doi:10.1109/TEVC.2006.872133

[19] A. K. Qin and P. N. Suganthan, “Self-Adaptive Differen-
tial Evolution Algorithm for Numerical Optimization,”
Proceedings of the 2005 IEEE Congress on Evolutionary
Computation, Vol. 2, 2005, pp. 1785-1791.
doi:10.1109/CEC.2005.1554904

[20] S. Das, A. Abraham, U. K. Chakraborty and A. Konar,
“Differential Evolution Using a Neighborhood-Based Mu-
tation Operator,” IEEE Transactions on Evolutionary Com-
putation, Vol. 13, No. 3, 2009, pp. 526-553.
doi:10.1109/TEVC.2008.2009457

[21] S. Rahnamayan and G. G. Wang, “Solving Large Scale
Optimization Problems by Opposition-Based Differential
Evolution (ODE),” WSEAS Transactions on Computers,
Vol. 7, No. 10, 2008, pp. 1792-1804.

[22] S. Rahnamayan, H. R. Tizhoosh and M. M. A. Salama,
“Opposition-Based Differential Evolution,” IEEE Trans-
actions on Evolutionary Computation, Vol. 12, No. 1, 2008,
pp. 64-79. doi:10.1109/TEVC.2007.894200

[23] S. Rahnamayan, H. R. Tizhoosh and M. M. A. Salama,
“Opposition versus Randomness in Soft Computing Tech-
niques,” Elsevier Journal on Applied Soft Computing, Vol.
8, No. 2, 2008, pp. 906-918.
doi:10.1016/j.asoc.2007.07.010

[24] H. R. Tizhoosh, “Opposition-Based Reinforcement Learn-
ing,” Journal of Advanced Computational Intelligence
and Intelligent Informatics, Vol. 10, No. 4, 2006, pp. 578-
585.

[25] H. A. Abbass, R. Sarker and C. Newton, “PDE: A Pareto-
frontier Differential Evolution Approach for Multi-Ob-
jective Optimization Problems,” 2001 IEEE Congress on
Evolutionary Computation, Vol. 2, Seoul, 27-30 May 2001,
pp. 971- 978.

[26] M. Ali, M. Pant and V. P. Singh, “Two Modified Differ-
ential Evolution Algorithms and Their Applications to

http://dx.doi.org/10.1007/11740698_25�
http://dx.doi.org/10.1016/j.amc.2008.08.053�
http://dx.doi.org/10.1023/A:1008202821328�
http://dx.doi.org/10.1080/01969729308961697�
http://dx.doi.org/10.1023/A:1016568309421�
http://dx.doi.org/10.1109/ICNN.1995.488968�
http://dx.doi.org/10.1109/TEVC.2005.857610�
http://dx.doi.org/10.1109/TEVC.2006.872133�
http://dx.doi.org/10.1109/CEC.2005.1554904�
http://dx.doi.org/10.1109/TEVC.2008.2009457�
http://dx.doi.org/10.1109/TEVC.2007.894200�
http://dx.doi.org/10.1016/j.asoc.2007.07.010�

Differential Evolution Using Opposite Point for Global Numerical Optimization

Copyright © 2012 SciRes. JILSA

18

Engineering Design Problems,” World Journal of Model-
ling and Simulation, Vol. 6, No. 1, 2010, pp.72-80.

[27] Z. Y. Yang, K. Tang and X. Yao, “Self-Adaptive Differ-
ential Evolution with Neighborhood Search,” 2008 Con-
gress on Evolutionary Computation, Hong Kong, 1-6
June 2008, pp. 1110-1116.

[28] Z. Michalewicz, “Genetic Algorithms + Data Structures =
Evolution Programs,” 3rd Edition, Springer, Berlin, 1996.

[29] K. Zielinski, P. Weitkemper, R. Laur and K.-D. Kam-
meyer, “Examination of Stopping Criteria for Differential
Evolution Based on a Power Allocation Problem,” Pro-
ceedings of the 10th International Conference on Opti-
mization of Electrical and Electronic Equipment, Vol. 3,
Brasov, 18-19 May 2006, pp. 149-156.

[30] Y. Ao and H. Chi, “An Adaptive Differential Evolution
Algorithm to Solve Constrained Optimization Problems

in Engineering Design,” Engineering, Vol. 2, No. 1, 2010,
pp. 65-77. doi:10.4236/eng.2010.21009

[31] C. Dai, W. Chen, Y. Song and Y. Zhu, “Seeker Optimiza-
tion Algorithm: A Novel Stochastic Search Algorithm for
Global Numerical Optimization,” Journal of Systems En-
gineering and Electronics, Vol. 21, No. 2, 2010, pp. 300-
311.

[32] X. Yao, Y. Liu and G. Lin, “Evolutionary Programming
Made Faster,” IEEE Transactions on Evolutionary Com-
putation, Vol. 3, No. 2, 1999, pp. 82-102.
doi:10.1109/4235.771163

[33] A.-R. Hedar and M. Fukushima, “Directed Evolutionary
Programming: Towards an Improved Performance of Evo-
lutionary Programming,” 2006 IEEE Congress on Evolu-
tionary Computation, Vancouver, 11 September 2006, pp.
1521-1528.

Appendix

 12

1
: 1 1

4i if y x   ,  
 

 
12 13

, ;

: , , , 0, ;

, .

m

i i

i i

m

i i

k x a x a

f f u x a k m a x a

k x a x a

  
    


   

14

32 32

16 32

0 32

16 32

32 32

32 16

16 16

0 16

16 16

32 16

32 0

16 0

: 0 0

16 0

32 0

32 16

16 16

0 16

16 16

32 16

32 32

16 32

0 32

16 32

32 32

T

f a

  
   
 
 

 
 
 
  
   

 
  
 
 
 
 
 

  
 
 
 
  
 
 
 
 
 
 
  
 
 
 
 
 
  

,

15

4

2

1

10.1957
20.1947
1

0.1735
4

0.1600
1

0.0844 6
: ,0.0627 1

0.0456 8
0.0342 1

100.0323
10.0235

120.0246
1

14
1

16

T

T

f a b

 
 
 
 
 
  
  
  
  
  
  
  
  

    
  
  
  
  
  
  
  

   
 
 
 
 
  

http://dx.doi.org/10.4236/eng.2010.21009�
http://dx.doi.org/10.1109/4235.771163�

Differential Evolution Using Opposite Point for Global Numerical Optimization

Copyright © 2012 SciRes. JILSA

19

4
19

3.0 10 30 6890 1170 2673

0.1 10 35 4699 4387 7470
: , 10 , [1,1.2,3,3.2]

3.0 10 30 1091 8732 5547

0.1 10 35 381 5743 8828

Tf a p c

   
   
     
   
   
   

4
20

10 3 17 3.05 1.7 8 1 1312 1696 5569 124 8283 5886

0.05 10 17 0.1 8 14 1.2 2329 4135 8307 3736 1004 9991
: , , 10

3 3.5 1.7 10 17 8 3 2348 1451 3522 2883 3047 6650

17 8 0.05 10 0.1 14 3.2 4047 8828 8732 5743 1091 381

f a c p 

    
    
      
    
   
    






 


21 23

4.0 4.0 4.0 4.0 0.1

1.0 1.0 1.0 1.0 0.2

8.0 8.0 8.0 8.0 0.2

6.0 6.0 6.0 6.0 0.4

3.0 7.0 3.0 7.0 0.4
: ,

2.0 9.0 2.0 9.0 0.6

5.0 5.0 3.0 3.0 0.3

8.0 1.0 8.0 1.0 0.7

6.0 2.0 6.0 2.0 0.5

7.0 3.6 7.0 3.6 0.5

f f a c

  
  
  
  
 
 
 
   
 
 
 
 
 
 
   

T





 
 
 
 
 
 
 
 
 
 
 

