
J. Software Engineering & Applications, 2010, 3: 460-471
doi:10.4236/jsea.2010.35052 Published Online May 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

A Conflicts Detection Approach for Merging
Formal Specification Views

Fathi Taibi1, Fouad Mohammed Abbou2, Md. Jahangir Alam2

1University of Tun Abdul Razak, Malaysia; 2Multimedia University, Malaysia.
Email: 1taibi@unitar.edu.my, {fouad, md.jahangir.alam}@mmu.edu.my

Received April 20th, 2009; revised June 2nd, 2009; accepted June 10th, 2009.

ABSTRACT

Specifying software requirements is an important, complicated and error prone task. It involves the collaboration of
several people specifying requirements that are gathered through several stakeholders. During this process, developers
working in parallel introduce and make modifications to requirements until reaching a specification that satisfies the
stakeholders’ requirements. Merge conflicts are inevitable when integrating the modifications made by different
developers to a shared specification. Thus, detecting and resolving these conflicts is critical to ensure a consistent
resulting specification. A conflicts detection approach for merging Object-Oriented formal specifications is proposed in
this paper. Conflicts are classified, formally defined and detected based on the results of a proposed differencing
algorithm. The proposed approach has been empirically evaluated, and the experimental results are discussed in this
paper.

Keywords: Formal Specification, Object-Oriented, Collaboration, Merge Conflicts, Consistency

1. Introduction

The development of large-scale software systems requires
the collaboration [1] of hundreds of developers working
on different aspects of the same system. Often, this leads
to the creation of different but related documents. These
documents (views) could be in the form of design models,
software specifications, source code, etc. During a par-
ticular collaborative activity, a resulting local view needs
to be merged [2] with the version of the document avail-
able in a shared repository. The latter shared document
encloses all the modifications made locally and checked
(integrated) into the repository at that point in time. A
merging approach must integrate the changes made and
must ensure that the merging result is consistent by de-
tecting and resolving merge conflicts [3].

Specifying software requirements is an important,
complicated and error prone task that involves the col-
laboration of several peopled specifying requirements that
are gathered through several stakeholders. Studies have
shown that most of the problems with software projects
such as not meeting the needs of stakeholders, late deliv-
ery and budget overrun can be traced back to problems
with the requirements [4].

Merging requirements specified informally is unprac-
tical, inefficient, error prone, and time consuming due to

the ambiguous and imprecise nature of natural languages
and most of the graphical notations used. Formal methods
[5] offer a better alternative because of their precise and
accurate nature. Object-Oriented (OO) formal methods,
such as Object-Z [6], combine the strengths of two worlds:
the world of formal languages and the world of OO
methods. When used to specify software requirements,
they produce specifications that are precise, clear, and
highly reusable. Thus, making them suitable to be used
when developing specifications collaboratively why they
can be manipulated systematically.

Conflicts detection requires the calculation of the
delta(s) representing the modifications made locally
compared to a shared view. Analyzing these deltas allows
the detection of conflicts before integrating their content
with the shared view. Rules could be formally defined for
these conflicts to uniformly detect different type of viola-
tions such as those concerned with the loss of update, the
well formedness of the view, the avoidance of all kind of
redundancies, etc.

Efficient merging frameworks support collaboration
and distributed development, and when used at an early
phase of the software development such as when speci-
fying software requirements, they enable detecting con-
flicts that will cost higher to detect and resolve during
later stages of development.

A Conflicts Detection Approach for Merging Formal Specification Views

Copyright © 2010 SciRes. JSEA

461

Employing unique identifiers for the elements of the
merged documents, such as in [7], introduce tool de-
pendency. The latter term refers to approaches that are
dependent on the tools used to create and modify the
documents to be merged. In order to support the tool in-
dependence requirement [8], merging should not rely on
elements’ unique identifiers. Thus, a differencing ap-
proach is needed to produce a list of the created/deleted
and modified elements as well as the created/modified
relationships (or links) between the elements of the
specifications. Differencing two specifications should be
based their computed similarities (matches). The simi-
larities between the elements of two specifications could
be calculated accurately based on syntactic as well as
structural similarity.

Several existing work on model differencing and ver-
sion control such as CVS [9] adopts line-based (textual)
management. Textual merging tools have been used to
some extend in industry, and in [10] it has been reported
that around 90% of the changed file could be merged
without any problem. However, the remaining changes
cannot be merged automatically because there is no con-
sideration to the syntactic or semantic information of the
files. In order to manage the changes of specifications
there is a need to work at the granularity of a logical unit
component such as a class rather than at the granularity of
a line. Moreover, textual merging can only detect very
basic conflicts, as it does not take into account the specific
structure of the processed documents. Furthermore, it
gives rise to unimportant conflicts [11] such as code
comments that have been modified, line breaks, etc. Thus,
transforming specifications into a textual format used by
existing tools cannot solve the problem of merging
specifications.

Most of existing merging approaches process the ma-
nipulated documents as trees, which is restrictive and not
applicable to a large number of documents including
software requirements specifications. Moreover, most of
the surveyed approaches are inadequate for merging
specifications due to their limitations in uniformly defin-
ing conflicts, and accurately detecting and resolving them.
The domain independent approaches surveyed lack ac-
curacy when used to merge specifications, and to our
knowledge, there is no existing merging approach in-
tended specifically for Object-Oriented formal specifica-
tions.

In this paper, an approach is proposed to detect and
resolve conflicts when merging OO formal specifications.
The approach comprises three parts. The first part consists
of comparing specifications to produce deltas differenti-
ating them. The second part consist of integrating
(merging) the deltas into a shared specification and the
third part consists of checking the deltas against defined
consistency rules to detect and resolve any consistency
violations that might arise during merging. Collaborative

formal specification is discussed in the next section. This
is followed by proposing an algorithm for differencing
OO formal specifications. After that, an approach for
detecting and resolving merge conflicts is discussed. Then,
the proposed approach is empirically evaluated. This is
followed by discussing related work and the last section
concludes the paper and discusses future work.

2. Collaborative Development of Formal
Specifications

Software development is a collaborative activity as it
involves several people working on different aspects of
the same software project. Most often, collaboration is the
key to the success of a software project. During the
specification of software requirements, developers work-
ing in parallel add, remove, and modify requirements until
reaching a description of the system (or subsystem) that
satisfies the stakeholders’ requirements. This collabora-
tive nature raises the needs for frameworks to support the
merging of software specifications.

Asynchronous collaboration allows members of a
group to modify copies of a shared specification in isola-
tion, working in parallel and afterwards synchronizing
their copies to reestablish a common view. This gives a
great deal of flexibility, and matches the needs of col-
laborative requirements specification. In such environ-
ments, three basic operations are applied on a shared
repository of specifications: check-out, modify, and
check-in. The check-out operation consists of importing a
copy of the latest version (for example at time t0) of a
shared specification (SBase) from the repository in order to
perform some modifications on it. These modifications
represent new requirements that have yet to be specified
or different views on the requirements that have already
been specified. The modifications made lead to the crea-
tion of a new version SLocal of the shared specification SBase.
Check-out is not applicable to the first developer creating
the first version of a given specification and checking it
into the repository. However, later on, he/she can perform
a check-out operation to make any new changes if needed.
In case at time t1 (t1> t0), the shared specification has
evolved into a new version SRep after undergoing some
changes made by a different developer. The check-in
operation consists of merging the local and shared ver-
sions of the specification in case of two-way merging. In
case of three-way merging, the modifications made lo-
cally need to be adjusted according to those who have
already been integrated in SRep, i.e. using two specifica-
tions (SLocal and SRep) and their ancestor (SBase) in the
merge. Integrating all the modifications made with the
base specification is possible after that. The following
figure illustrates the basic operations of this collaborative
environment:

A developer ‘X’ imports (check-out) a shared specifi-
cation (SBase) from a Specification repository. He/she

A Conflicts Detection Approach for Merging Formal Specification Views

Copyright © 2010 SciRes. JSEA

462

Figure 1. The operations supporting collaboration

performs some modifications on it locally. These modi-
fications lead to the creation of a new version (SLocal) of
the specification. For X to check-in SLocal into the speci-
fication repository, there is a need to discover the exact
modifications (delta) made. The operations contained in
this delta allow detecting the conflicts that might arise
during the merge. In case of three-way merging, there is
a need to identify the exact modifications made locally
and those that have evolved SBase into SRep because of
some parallel modifications made and integrated by a
different developer ‘Y’. In addition to the latest version
of the shared specification, a history of all the deltas ap-
plied to it is also stored in the repository. Thus,
re-obtaining SBase from which SRep originates is achieved
by reversing the effect of the last integrated delta. Using
SBase and the two deltas, a three-way merging could take
place where conflicts caused by the parallel modifica-
tions need to be detected and resolved before integrating
them.

The proposed framework incorporates three approa-
ches to perform the required tasks. The first approach
“Differentiate” is intended to differentiate between the
to-be-merged specifications. The differentiation process
involves the production of deltas containing the exact
modifications (operations) made. The latter deltas are
obtained using the computed similarities that exist be-
tween the specifications’ elements. Merging based on
differencing is referred to as operation-based merging
[11] and is efficient in case of large models as the num-
ber of operations that transform a version into another
one is statistically smaller than the number of model
elements. Furthermore, it provides a better platform for
conflicts detection and resolution. The second approach
“Merge” is intended to merge the modifications made

with the shared specification. The specification obtained
through this process must be consistent. Thus, the third
approach “Verify” is intended to detect and resolve
merge conflicts. The differencing and verifying ap-
proaches are discussed in detail in sections 3 and 4.

3. Differencing Object-Oriented Formal
Specifications

Given a basic set S of all the specifications, differencing
between two specifications S1 and S2 is the process of
identifying the exact set of operations (transformations)
that allow obtaining S2 from S1. As a motivation example,
consider the following classes representing a shared
specification, and two versions representing some paral-
lel modifications made to it by two different developers.
Object-Z notation has been used to specify the three ver-
sions.

The class Professor includes two operations New and
Affiliate that are the only elements visible outside the
class. The operation New is used to assign values to the
state attributes Id, Name and Expertise, which represents
a professor’s personal data. The operation Affiliate is
used to assign a value to the state attribute Faculty. The
classes Academician and TeachingStaff are the result of
some parallel modifications made to the class Professor
by two different developers. In the class Academician, in
addition to the class name that has been changed, the
operation Affiliate has been removed and its functionality
has been delegated to the operation New that is the only
class’ element visible. In the class TeachingStaff, in addi-
tion to the class name that has been modified, the attrib-
ute Expertise has been removed while the operations
New and Affiliate have been renamed as Add and Join
respectively. In addition, the operation New has been

A Conflicts Detection Approach for Merging Formal Specification Views

Copyright © 2010 SciRes. JSEA

463

Figure 2. Three versions of an Object-Z class

modified by removing the part dealing with the deleted
attribute Expertise.

The systematic identification of the exact differences
that exist between the class Professor and the classes
Academician and TeachingStaff respectively requires a
formal definition of the change undergone by a specifica-
tion. An algorithm to precisely compute this change can
then be developed. Table 1 shows the proposed opera-
tions defining a difference between any two given speci-
fications.

In addition to the precise and accurate representation
of a difference between two given specifications, the
above operations could also be used to represent specifi-
cations’ creation process itself. Moreover, the effect of a

delta’s operations can be inversed to obtain the old ver-
sion of a specification. This is enabled by keeping track
of old and new values (e.g. Rename and Modify), and the
complementarity that exists between insertion and dele-
tion operations, i.e. to revert the insertion of an element,
we only need to delete it and vise versa.

The insertion of a node is concerned about four major
meta-classes: Class, Variable, Operation and Predicate.
In case of OO formal specifications, the Variable meta-
class has three sub-classes. They are the Attribute (global
and state attributes) of a class, the Input and the Output
of an operation. Moreover, the Predicate meta- class has
four sub-classes. They are Invariant, Initialization, Pre-
condition and Postcondition.

Table 1. Operations for differencing specifications

Operation Effect
insertNode(e, t) Inserts a new node e where t is the node’s type. t={Class, Variable, Operation, Predicate}.

setNodeProperty(e, p, v) Assigns for the 1st time a value v to the property p of the element e.

insertLink(k, e1, e2 , t)
Creates and inserts a new link k between the elements e1 and e2 where t is the link type,

t={aggregated_by, derived_from, associated_with, declared_in, used_by}.

deleteLink(k) Removes the link k.

deleteAllLink(e) Removes all links and references associated with the element e.

deleteNode(e) Removes the node e.

Rename(e, oldname ,newname)
Renames the element e (named oldname) with newname and updates (with newname) all

references made to e in the specification.

Modify(e, p, v1, v2)
Modifies the content of e by changing the values of a set of properties p (excluding the

name) whose values are in v1 with a set of new values v2.

A Conflicts Detection Approach for Merging Formal Specification Views

Copyright © 2010 SciRes. JSEA

464

Renaming a specification’s element requires updating
all references made to it with its new name. For example,
if a variable has been renamed, this name change is
propagated to all elements that refer to this variable such
as initialization, invariant, and pre (post) condition predi-
cates. The same rule is applied when renaming classes
and operations. Removing a specification’s element re-
quires removing its associated links, and all the refer-
ences made to it as well (deleteAllLink operation). Fur-
thermore, the operation Modify applies to both specifica-
tions’ elements and links where a link’s type (p) could be
changed from v1 to v2. This reduces the number of opera-
tions in a delta by avoiding the removal of a link typed v1

and the insertion of a link typed v2. Table 2 highlights
the different attributes of the meta-classes representing
specifications’ elements:

Most of the attributes of Table 2 are self-explanatory.
However, there is a need to highlight the attributes visi-
bility and changes. Visibility is similar to public; it ap-
plies to operations, some variables as well as some
predicates. In case the visibility attribute is not applicable,
the proposed value used is “n/a”, such as in the case of
inputs and outputs as well pre and post conditions. If an
element needs to be visible outside the class the value
“yes” is used otherwise “no” is used. The default visibil-
ity in Object-Z is “no”, i.e. anything that needs to be
visible outside the class has to be explicitly included in
the visibility list. The changes attribute contains a set of
variables that are changed by an operation. In case of a
query operation, i.e. an operation that does not change
the value(s) of the class variables it manipulates, the
changes attribute is “empty”.

Differencing is concerned about three classes of
change. The insertion of elements/links, the modification
of elements’ contents, the modification of links’ types,
and the deletion of elements/links. We propose a differ-
encing algorithm that is not based on elements’ identifi-
ers but rather on matching results. Using accurate
matching results, differences between specifications can
be precisely computed. Matched elements with different
content are updates, matched elements with different
links shows adding/removal of links and unmatched ele-

ments show adding/removal of elements.
The similarities that exist between specifications’ ele-

ments are stored in a matching function:

Match : ELEMENT × ELEMENT × TYPE → R

The returned value of Match is a real number (between
0 and 1) representing the exact similarity that exist be-
tween the two compared elements. The similarity scor-
ings are added to Match if they are greater than or equal
to a chosen threshold. The latter is a real number between
0 and 1 that defines the strictness of the matching process
[12].

Each input specification is treated as a graph whose
nodes are the specification’s elements. Each link has a
source and a target element as well as a type. For exam-
ple in case of an operation O defined in a class A, a link
is created to represent this relation. The link’s source and
target are O and A respectively, and its type is “de-
clared_in” as in defined in Table 1. The difference be-
tween two given specifications is produced using the
following algorithm. Given two specifications S1 and S2

representing by sets of nodes (N1 and N2) and sets of
links (L1 and L2), the algorithm generates the exact set of
transformation operations (delta) that allow obtaining S2

from S1. The algorithm starts by analyzing the un-
matched elements of the two specifications. The un-
matched elements of S1 are added to delta as being de-
leted (lines 2-4). In this case, the nodes as well as their
associated links are deleted. The unmatched elements of
S2 are added to delta as being newly inserted elements.
Thus, all their associated properties and links are also
added to delta (lines 5-7). The matched elements with
different names are added to delta as renames (lines
9-11). For these elements, if they are not exact matches
(i.e. similarity scoring < 1) then there is a possibility that
their contents (other than names) have been modified,
new links have been attached to them or that some of
their links have been removed. The algorithm addresses
this by detecting the changed properties other than names
and adding them to delta (line 13). It also detects any
new inserted links to them (line 14) and any removed
links (line 15) and adds the changes to delta.

Table 2. The attributes of specifications’ elements

Element Attributes
Class - name: the class’ name

Variable
- name: the variable’s name
- data_type: is in the types supported by the formal language including class names.
- visibility is in {yes, no, n/a}

Operation
- name: the operation’s name
- changes: is in {{some variable}, empty-set}
- visibility is in {yes, no}

Predicate
- value: the predicate content is a set of String
- visibility is in {yes, no, n/a}

Link - type: the link’s type is in {aggregated_by, derived_from, associated_with, declared_in, used_by}

A Conflicts Detection Approach for Merging Formal Specification Views

Copyright © 2010 SciRes. JSEA

465

 1. delta=Ø
2. for all nodes n in N1 that are not in the domain of Match do
3. add “delete” operation to delta removing the node n and all the links associated with it
4. end for
5. for all nodes m in N2 that are not in the domain of Match do
6. add “insert” operation to delta inserting the node m, setting its properties, and inserting the links associated with it
7. end for
8. for all x=(e1,e2,type) in domain of Match do
9. if (e1.name≠e2.name) then
10. add“rename” operation to delta renaming e1 with e2.name
11. end if
12. if Match(x) < 1 then
13. select the properties (other than name) of e2 with values different from e1, add “modify” operations to delta
14. select all links to/from e2 with no matching link to/from e1, add “insert” operations to delta
15. select all links to/from e1 with no matching link to/from e2, add “delete” operations to delta
16. end if
17. end for
18. return delta

Figure 3. Differentiate algorithm

Low similarity thresholds lead to a high rate of false
matches while being able to detect most of the correct
matches. High thresholds lead to few or no false matches
while producing a high rate of missed matches. In [12],
empirical results have shown that a reasonable threshold
value (around 0.7) produces the most balanced results,
which leads to a more precise delta calculation.

4. Detection and Resolution of Merge
Conflicts

Detection and resolution of conflicts are treated as two
separated phases. This is to allow each one of them to be
fined-tuned without an influence on the other one. Con-
flicts detection should be systematic while conflict reso-
lution might require some user interaction. Given two
deltas (delta1 and delta2) and a base specification from

which both originate, conflicts detection in concerned
about discovering conflicts that might arise when the
modifications contained in the deltas are integrated with
the base specification. The goal of the approach is to
produce a conflict-free delta whose operations are the
unification of delta1 and delta2. The operations contained
in this delta are then applied to the base specification to
perform the merge.

4.1 A Formal Definition of Conflicts

The goal of merging is to combine the modifications
made and preserve their intensions. Conflicts should be
resolved accordingly. Tables 3 and 4 show a classifica-
tion and a formal definition of the most frequent conflicts
observed and their causes. In these tables, p refers to a
property or a list of properties, v (vi) refers to a value or

Table 3. Lost update conflicts

Conflict rule How the confilict happens?

Rule 1:
modify-deleted-element

 e, p, v1≠v2: Modify(e, p, v1,v2) and deleteNode(e)
An element e is modified in one delta while it is deleted in the other one.

Rule 2:
modify-deleted-link

 k, p=“type”, v1≠v2: Modify(k, p, v1,v2) and deleteLink(k)
The type of a link k is modified in one delta while it is deleted in the other one.

Rule 3:
rename-deleted-element

 e, v1≠v2: Rename(e, v1,v2) and deleteNode(e)
An element e is renamed in one delta while it is deleted in the other one.

Rule 4:
concurrent-update

 e, p, v1≠v2≠v3: Modify(e, p, v1,v2) and Modify (e, p, v1,v3)
An element e undergoes different modifications in the two deltas.

Rule 5:
concurrent -renaming

 e, v1≠v2≠v3: Rename(e, v1,v2) and Rename (e, v1,v3)
An element e undergoes different renaming in the two deltas.

Rule 6:
modify-moved-element

 e, p, v1≠v2: Modify(e, p, v1,v2) and Move(e)
An element e is modified in one delta while it is moved in the other one.

Rule 7:
rename-moved-element

 e, v1≠v2: Rename(e, v1,v2) and Move(e)
An element e is renamed in one delta while it is moved in the other one.

Rule 8:
concurrent-moving

 e, e1≠e2≠e3: Move(e)=(e1 , e2) and Move(e)=(e1, e2)
An element e undergoes different moving in the two deltas.

Rule 9:
move-deleted-element

 e: Move(e) and deleteNode(e)
An element e is moved in one delta while it is deleted in the other one..

A Conflicts Detection Approach for Merging Formal Specification Views

Copyright © 2010 SciRes. JSEA

466

Table 4. Structural conflicts

Conflict rule How the confilict happens?

Rule 10:
modify-source-class

A, A1, p, v1≠v2, k, v: Modify(A, p, v1,v2) and insertLink(k, A, A1, v)
An class A is modified in one delta while it is the source of a new link in the other one.

Rule 11:
modify-target-class

A, A1, p, v1≠v2, k, v: Modify(A, p, v1,v2) and insertLink(k, A, A1, v)
An class A is modified in one delta while it is the target of a new link in the other one.

Rule 12:
link-without-source

 e, e1, k, v: deleteNode(e) and insertLink(k, e, e1, v)
An element e is removed in one delta while it is the source of a new link in the other one.

Rule 13:
link-without-target

 e, e1, k, v: deleteNode(e) and insertLink(k, e, e1, v)
An element e is removed in one delta while it is the target of a new link in the other one.

Rule 14:
double-containment

 k, e, e1, v= “declared_in”:insertLink (k, e, e1, v) and ( k1:k1.source=k.source ∧ k1.target≠
k.target ∧ k1.type=k.type)
An element e is linked through a “declared_in” relation with an element e1, in one of the deltas
while it is linked through the same type of relation with another element in the base specification.

Rule 15:
symmetric-link

 k, e, e1,v in {“derived_from”, “declared_in”, “used_by”}: insertLink(k, e, e1,v) and( k1:
k1.source=k.target ∧ k1.target=k.source ∧ k1.type=k.type)
An element e is linked through a “derived_from”, “declared_in” or “used_by” relation with an
element e1, in one of the deltas while e1 is linked to e through the same type of relation in the base
specification.

Rule 16:
cyclic-class-link

A, A1, k, v: insertLink(k, A1, A, v) and ( TransitiveClosurev(A, A1))
An new link between two classes A1 and A is inserted in one of the deltas while there a transitive
closure between A and A1 in the base specification.

Rule 17:
redundant-link

A, A1, k, v: insertLink(k, A, A1, v) and ( TransitiveClosurev (A, A1))
An new link between two classes A and A1 is inserted in one of the deltas while there a transitive
closure between those classes in the base specification.

Rule 18:
unwanted-reachability

 k, k1, e, e1, e2, v: insertLink(k, e, e1, v) and insertLink(k, e1, e2, v)
An new link between two elements e and e1 is inserted in one delta while a new link of the same
type is inserted in the other one conneting e1 to an elememt e2 leading to a transitive reachability
between e and e2.

Rule 19:
redundant-element

 k, e, e1, e2, v= “declared_in”: insertLink(k, e2, e, v) and ( k1: k1.source=e1 ∧ k1.target=k.target
∧ k1.type=k.type ∧ e2 name=e1.name)
An element e2 is linked through a “declared_in”relation with an element e in one of the deltas
while there is an elememt e1, with the same name as e2 that is linked with e through the same type
of relation in the base specification.

Rule 20
double-definition

 e1, v1≠v2:Rename(e1, v2,v1) and ( e:e.name=v1)
An element e1 is renamed in one of the deltas while the name is already being used in the base
specification for a different element e.

to a list of values, e (ei) refers to specifications’ elements,
A (Ai) refers to classes, and k (ki) refers to links between
elements.

The conflicts have been classified under two catego-
ries.The first category is concerned about lost updates,
which happens when the effect of the modifications
made in one delta forbid those in the other one. Nine
rules have been formally defined to allow the precise
detection of this type of conflicts. The second category is
concerned about the structural consistency of the speci-
fication obtained after integrating the modifications made
in the delta(s), where eleven rules were formally defined.
Structural consistency is a prerequisite to ensuring other
forms of consistency such as those related to specifica-
tions’ semantics. In fact, consistency checking, such as
model checking in case of formal specifications, pro-
duces meaningful results only when applied to specifica-

tions that are well formed.
Several conflicts under the lost update category origi-

nate because of moving elements, thus, it is important to
have a mechanism that detects moved elements based on
the modifications made in a delta. A potential moved
element is a Variable, an Operation or a Class. A Vari-
able or an Operation is moved if a new added link k2 of
type “declared_in” connects it to a new class B and a link
k1 of the same type with an old class A is removed. A
Class is moved if a new added link k2 of type “de-
rived_from”, “aggregated_by” or “associated_with”
connects it to a new class B and a link k1 of the same type
with an old class A is removed. An operation Move is
used to perform the above verification; it accepts a delta
containing a list of operations and a specification element
E as parameters and returns an object containing the two
elements representing the old and new link ends or a

A Conflicts Detection Approach for Merging Formal Specification Views

Copyright © 2010 SciRes. JSEA

467

“null” object if no moving has taken place. Formally, this
verification can be written as:

 k1, k2, E, A, B, t in {declared_in, derived_from, aggregated_
by, associated_with},{insertLink(k2, E, B, t), deleteLink(k1)}∈
delta: k2.type= k1.type∧ k2.source= k1.source=E∧ k2.targe≠k1.
target

Finally, in order to detect some structural conflicts
such as cyclic-class-link and redundant-link, an operation
TransitiveClosurev is used. Given any two classes A1 and
A2, the operation is used to verify the existence (True or
False) of a path (of more than two links) between A1 and
A2 whose links are all of type v. This can be formally
written as:

 ki: i in [1…n] where n>=2 and i : ki.type=v,  Bj:j in
[1…m] where m=n-1: (k1.source=A1∧ k1.target=B1∧ k2.source=
B1∧ k2.target= B2∧ …∧ kn.source=Bn-1∧ kn.target=A2)

4.2 Conflicts Detection

The proposed approach accepts as input a base specifica-
tion (SBase) and two deltas (delta1 and delta2) representing
the parallel modifications made. Based on the formal
definitions proposed previously, the approach generates a
list C containing the details of all the conflicts discovered.
Figure 4 shows the algorithm used to discover these con-
flicts.

The elements of delta1 and delta2 are traversed to dis-
cover conflicting operations according to pre-defined
rules (e.g. rules 1 to 20 of Tables 3 and 4). In case such
operations are found, an object containing the indexes of
the operations causing the conflict in delta1 and delta2,
the type of conflict, and a conflict resolution (if any) is
added to the conflict list C (line 9). Unlike lost updates,
which are caused by two operations, structural conflicts
may originate because of one operation only (from one of
the deltas) or two operations (from both deltas). Thus, the
conflict object added to C in this case may include only
one index identifying the operation causing the conflict

and a “null” value is assigned for the second index (lines
2-3 and lines 6-7). At the end of this process, the conflict
list C will be storing the details of all discovered con-
flicts.

It is important to note that the most frequent structural
conflicts originate mainly because of the creation of new
links and modifying (including renaming) the elements
of a base specification, and that it is possible to reduce
the number of conflicts detected by enforcing conflict
rules only to a specific high-level granularity such as the
Class level.

4.3 Resolving Conflicts

A Conflict resolution is a set of transformation applied to
the delta(s) so that a conflict is resolved. For example in
case of a visibility attribute undergoes different modifica-
tions, a resolution is to keep the most restrictive one.
Most often, a resolution consists of dropping or altering
one of the conflicting operations. Manual conflict resolu-
tion is a tedious, error prone and time-consuming process
especially for large specifications. Moreover, the inter-
pretation of conflicts can differ from one developer to
another one. Thus, there is a need for an approach to
support the systematic resolution of as many conflicts as
possible. Interacting with developers only when several
(or no) resolutions are possible and a choice need to be
made.

Let Nx be a reference to every specification elements
named x and Ki (i=1...n) the new links inserted (if any).
Table 5 shows the deltas and the conflict list C associ-
ated with the classes of Figure 2.

Four lost update conflicts were discovered through the
application of the proposed conflicts detection approach.
The first conflict is a concurrent-renaming originating
because of two different renaming of the class Professor.
A resolution to this conflict consists of dropping the re-
naming operation of delta2. The second conflict is a rename

Input: A base specification SBase and two deltas delta1 and delta2

Output: A conflict list C
1. for all operations op1 in delta1 {
2. if (effect of op1 on SBase causes a conflict) then
3. C=C ∪ {New Conflict(indexOf(op1),0, getConflictType(),getResolution())}
4. if delta2 ≠Ø then {
5. for all operations op2 in delta2 {
6. if (effect of op2 on SBase causes a conflict) then
7. C=C ∪{New Conflict(O, indexOf(op2), getConflictType(),getResolution())}
8. if (combined effect of op1 and op2 on SBase causes a conflict) then
9. C=C ∪{New Conflict(indexOf(op1), indexOf(op2), getConflictType(),getResolution())}
10. }
11. }
12.}
13. return C

Figure 4. Verify algorithm

A Conflicts Detection Approach for Merging Formal Specification Views

Copyright © 2010 SciRes. JSEA

468

Table 5. A conflict list of two deltas

delta1

0) Rename(NProfessor, “Professor”, “Academician”)
1) deleteAllLink(NAffiliate)
2) deleteNode(NAffiliate)
3) Modify(NNew, changes, “{Id,Name,Expertise}”, “{Id,Name,Expertise,Faculty}”)
4) insertLink(K1, NFaculty , NNew, “used_by”)
5) insertLink(K2, Nf? , NNew, “declared_in”)
6) Modify(NpostNew, value,“{Id’=i?, Name’=n?, Expertise’=e?}”, “{Id’=i?, Name’=n?, Expertise’=e?,

Faculty’=f?}”)

delta2

0) Rename(NProfessor, “Professor”, “TeachingStaff”)
1) deleteAllLink(NExpertise)
2) deleteNode(NExpertise)
3) Rename(NNew, “New”, “Add”)
4) Modify(NNew, changes, “{Id,Name,Expertise}”, “{Id,Name}”)
5) deleteAllLink(Ne?)
6) deleteNode(Ne?)
7) Modify(NpostNew, value, “{Id’=i?, Name’=n?, Expertise’=e?}”, “{Id’=i?, Name’=n?}”)
8) Rename(NAffiliate, “Affiliate”, “Join”)

Conflicts

C1:{0,0, concurrent-renaming}
C2:{2,8, rename-deleted-element}
C3:{3,4, concurrent-update}
C4:{6,7, concurrent-update}

-deleted-element originating because the operation Affili-
ate has been removed in delta1 while it has been renamed
in delta2. A resolution to this conflict could be to remove
Affiliate (i.e. the renaming operation of delta2 is dropped)
as the task associated with it has been delegated to the
operation New through the modifications made in delta1.
Clearly, this resolution requires user intervention. An-
other possible resolution to this conflict consists of drop-
ping the delete operation of delta1 that is causing the
conflict. The third conflict is a concurrent-update origi-
nating because of concurrent modifications of the attrib-
ute changes of the operation New. Since the modified
attribute is a set, it is possible to resolve this kind of con-
flicts by checking if one of the values is a subset of the
other one, which is the case in this example. Dropping
the update operation of delta2 resolves this conflict. The
last conflict is a concurrent-update originating because
of concurrent modifications of the attribute value of the
post-condition of the operation New. If a predicate is
written as a conjunction of clauses, then it is possible to
treat it as a set containing these clauses. Consequently,
we could resolve this conflict by verifying if one of the
values is a subset of the other, which is the case here.
Dropping the update operation of delta2 resolves this
conflict.

Systematic conflicts resolutions based on operations’
priorities could be applied. These priorities are chosen by
users, which allow resolving a large number of conflicts.
For example, in case of conflicts originating because of
removals (e.g. modify-deleted-element, modify-deleted-
link, rename-deleted-element, move-deleted-element,link-
without-source, and link-without-target), a removal could
be considered as an operation with less priority compared

to an insertion, a modification or a renaming. Conse-
quently, a resolution to all these conflicts is drop the de-
lete operations causing them. The same heuristic could
be used with other conflicts such as rename-moved-ele-
ment and modify-moved-element if a moving operation is
given a higher priority compared to a renaming or modi-
fication operation.

4.4 Merging

Merging is a direct process that consists of integrating (or
applying) the changes made in the delta(s) after all con-
flicts have been discovered and resolved. Thus, merging
is only possible when there is a resolution attached to
every conflict discovered. These resolutions may require
some user-interaction. Moreover, the order of operations
in a delta is important to allow some changes to take
place. For example, a rename operation involving an
element e should always take place after any other modi-
fications involving e. Merging consists of applying the
operations contained in a unified and conflict-free delta
to a specification. This delta is obtained through a proc-
ess that involves combining the operations contained in
two deltas while resolving the conflicts associated with
them. Figure 5 shows a possible result of merging the
modifications made to the class Professor of Figure 2.

The above merge class integrates the modifications
made after adopting specific conflict resolutions. The
removal of the attribute Expertise does not satisfy the
intension of the modifications made in one delta while
the removal of the operation Affiliate does not satisfy the
intension of the modifications made in the other delta.
However, they have to be done to resolve the conflicts
associated with these elements. Systematic conflict reso

A Conflicts Detection Approach for Merging Formal Specification Views

Copyright © 2010 SciRes. JSEA

469

Figure 5. The result of merging two classes

lution saves time and effort and to some extend can pre-
serve intensions. On the other hand, manual resolution
provide a better platform for preserving intensions but
they are time (and effort) consuming and are based on
particular interpretations, which may lead to new incon-
sistencies in the merge results. Techniques to minimize
conflicts could be used based on the idea of restricting
the type of modifications a particular group of developers
can make. Such as restricting modifications to addition
only, creation of links only, etc. Thus, leading either to a
reduction in the number of conflicts or to classes of con-
flicts that can be resolved easily and systematically.

5. Empirical Evaluation

A Java tool has been developed to evaluate and validate
the proposed approach. It incorporates three major com-
ponents. The first component processes a given OO for-
mal specification and parses it into a graph. Currently,
only Object-Z specifications are supported. The second
component differentiates between two specifications
represented as graphs after computing their similarities to
produce a set of operations representing their delta. The
third component integrates the edit operations contained
in a unified delta to a base specification. This unified
delta is obtained after combining the operations con-
tained in two deltas according to the resolutions of the
detected conflicts.

Merging is concerned about obtaining a consistent
specification after the modifications contained in the
delta(s) are integrated. Thus, it is critical to be able to
detect and resolve as many conflicts as possible. Con-
flicts detection is dependent on the differencing algo-
rithm used and the later is dependent on the accuracy of
the similarity detection approach adopted. The proposed
approach has been tested with three major case studies.
They include a university management system, a hotel
management system and an online purchase system. Ta-
ble 6 summarizes the details of the base version (V) of
each specification as well as the modifications made to it
(V1 and V2) and the actual number of conflicts arising

because of the modifications made to the base specifica-
tions. Two different domain experts were in charge of
modifying the base specifications according to require-
ments they think should be taken into consideration. The
modifications made produced the specifications V1 and
V2 respectively.

The combined base specifications contain a total
number of 247 elements and links. The first versions of
the specifications were obtained after performing 67
delta operations and the second versions were obtained
through 82 delta operations made to the base specifica-
tions respectively. These modifications led to a total of
58 different conflicts.

The conflict detection and resolution approach was
validated through the number of correct conflicts de-
tected (positives), the number of all conflicts detected
(positives and false positive) and the actual number of
conflict that arise as a result of the modifications made
(58 in the experiments made). Precision and recall met-
rics were used in the evaluation. Precision measures
quality and is the ratio of the number of correct conflicts
detected and resolved to the total number of conflicts
detected. Recall measures coverage and is the ratio of the
correct conflicts detected and resolved to the total num-
ber of correct conflicts. Figure 6 shows the results ob-
tained based on similarity threshold ranging from 0.5 to
0.9.

Perfect recall (100%) combined with a good precision
(87%-98%) were obtained for thresholds raging from 0.5
to 0.7. Moreover, perfect recall (100%) combined with
perfect precision (100%) were obtained for threshold
ranging from 0.75 to 0.8. Furthermore, average to good
recall (53%-86%) combined with perfect precision
(100%) were obtained for thresholds ranging from 0.85
to 0.9. Out of 58 actual conflicts, only 8 conflicts were
not detected for a high threshold of 0.85. These unidenti-
fied conflicts originate because of too many concurrent
modifications and moving made to two classes namely
transactionInfo and shoppingCart (and their elements),
which led to many concurrent-update (4 cases), concur-
rent-renaming (2 case), modify-moved-element (1 case),
and concurrent-moving (1 case) conflicts not being de-
tected. For a threshold equals to 0.9, only 31 conflicts

0%
10%

20%
30%

40%
50%

60%
70%

80%
90%

100%

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Recall

Precision

Figure 6. Experimental results

A Conflicts Detection Approach for Merging Formal Specification Views

Copyright © 2010 SciRes. JSEA

470

Table 6. Details of the experiments

 V V1 V2

 #Element #Link #Insertion #Deletion #Modification #Insertion #Deletion #Modification

Case 1 28 27 13 0 3 15 2 7

Case 2 32 29 0 6 10 22 1 6

Case 3 71 60 4 22 9 4 22 3

Total 247 67 82

#Conflicts - 58

were identified out of the actual 58 cases, which is indi-
cated by the sharp drop of the recall. Consequently, if a
high rate of positives is preferred while tolerating some
negatives, a threshold value of 0.7 provides the best re-
sults.

The employed approach scales up well in terms of ef-
ficiency (performance and memory usage) as the size of
the specifications increases. This is due to three main
reasons. Firstly, the approach used to detect the similari-
ties between specifications has an acceptable complexity
bounded by O(nm) where n and m are the number of
elements of the specifications. In addition, only compati-
ble elements are compared, i.e. classes with classes,
variables with variables, etc. Thus, the actual number of
comparison is far smaller than n*m. Secondly, during
delta calculation only the difference between the specifi-
cations is calculated and stored, which leads to a more
efficient memory usage. Finally, the proposed approach
is operation-based which leads to a better performance
because conflicts detection compares the operations con-
tained in the deltas rather than comparing the input
specifications themselves. Knowing that the number of
operations a delta can have is statistically smaller than
the number of specifications’ elements.

6. Related Work

In [13], an approach is proposed to detect the changes to
XML documents. The proposed approach uses a delta
that includes insertions, deletions and updates. Moving
and renaming were not considered in the delta definition,
thus, leading to the detection of conflicts that originate
only because of deletions and updates. Moreover, the
proposed approach is based on tree representation of the
analyzed documents, which restricts its applicability to
documents that can be represented as trees.

In [14], model merging was used to check the struc-
tural consistency of homogenous conceptual models de-
scribed as graphs. The proposed approach constructs a
merge model using given mapping information that
equates the correspondences between the elements of the
two graphs to be merged. Then, verifies it against some
consistency constraints of interest. Consistency checking
rules were described using the Relational Manipulation

Language (RML). The consistency diagnostics obtained
over the merge are projected back to the original models
and their relationships. Lost update conflicts were not
considered as structural conflicts were the main focus of
the work. The presented work did not include experi-
mental data on the rate of the discovered inconsistencies
in terms of precision and recall.

In [15], structural and methodological model inconsis-
tency is verified. The proposed approach does not sup-
port model merging but rather defines a model as a set of
elementary construction operations, and consistency
rules are defined and verified based on the type of opera-
tion involved and the effect an operation has on the
model. Inconsistency rules were translated to Prolog
queries and model construction operations to Prolog facts.
The approach is tool supported were an XMI file con-
taining a model is parsed into a sequence of model con-
struction operations then a check engine is responsible of
detecting elementary operations violating consistency
rules within the sequence. The validation process used
employed large UML models, and the results provided
are mainly about time factors, i.e. efficiency and scal-
ability.

In [16], a differencing algorithm is proposed to detect
the structural changes between the designs of subsequent
versions of OO software. The algorithm reports the dif-
ferences between them in terms of additions / removals,
moves, and renaming of program elements such as
packages and classes. The differencing algorithm com-
putes an overall similarity based on name and structure
similarity metrics. The proposed algorithm assumes that
enough design entities remain the “same” between the
two consecutive versions of the system. The latter as-
sumption is weak as there is no guarantee that the devel-
opers of the new version of the system do not make too
many modifications. The experimental results obtained
reported limitations in detecting moved fields and meth-
ods. Moreover, any mistakenly identified renaming or
moving of an entity is propagated to the class or the in-
terface that contains it, and the latter will be reported as
changed as well.

In [17] an algorithm is proposed to detect changes in
XML documents. As a mean to improve change results,
unordered tree representation of the analyzed models

A Conflicts Detection Approach for Merging Formal Specification Views

Copyright © 2010 SciRes. JSEA

471

were used. The matching part of the approach uses nodes
signatures and prevents matching child nodes with dif-
ferent ancestors. This restriction affects the change de-
tection by limiting the recognition of moved nodes. The
experimental results obtained showed a slow running
time while improving the accuracy of the change detec-
tion compared to the algorithm proposed in [18]. Finally,
similar differencing algorithms were proposed in [19-21]
to deal with different kind of software documents.

7. Conclusions and Future Work

An approach is proposed in this paper to detect and re-
solve conflicts that may occur when merging OO formal
specifications. The differences between specifications are
precisely calculated before a merge could take place. The
difference is defined using primitive operations, acting
on one element at a time, and containing traceability in-
formation enabling the reversal of their effects. The pro-
posed approach deals with two major groups of conflicts:
lost update and structural conflicts. Conflicts have been
classified and formally defined as rules and a systematic
approach is used to verify the calculated differences
against these rules to detect any conflicts that may occur
when integrating the changes made to a base specifica-
tion. For every identified conflict a resolution is either
derived systematically (pre-defined resolutions), or
through user interaction (e.g. choosing among possible
resolutions, etc). The experimental results obtained have
validated the correctness and efficiency of the proposed
approach as the majority of the conflicts contained in the
studied specifications were systematically and cheaply
(time and space) discovered. As an improvement to the
proposed approach, optimizing the delta calculation and
providing means to compress its content could be ex-
plored as it leads to a better efficiency. Finally, it is im-
portant to run more experiments using larger specifica-
tions.

REFERENCES
[1] P. Sriplakich, X. Blanc and M. P. Gervais, “Supporting

Collaborative Development in an Open MDA Envir-
onment,” Proceedings of 22nd IEEE International Con-
ference on Software Maintenance, Los Alamitos, 2006, pp.
244-253.

[2] A. Boronat, J. A. Carsi, I. Ramos and P. Letelier, “Formal
Model Merging Applied to Class Diagram Integration,”
Electronic Notes in Theoretical Computer Science, Vol.
166, No. 1, 2007, pp. 5-26.

[3] C. L. Ignat and M. C. Norrie, “Flexible Definition and
Resolution of Conflicts through Multi-level Editing,”
Proceedings of IEEE 2nd International Conference on
Collaborative Computing, Atlanta, 2006, pp. 10-19.

[4] G. Kontonya and I. Sommerville, “Requirements Engin-
eering Process and Techniques,” John Wiley, UK, 2002.

[5] M. G. Hinchey, “Industrial-Strength Formal Methods in
Practice,” Springer, 2008.

[6] G. Smith, “The Object-Z Specification Language,” Klu-
wer Academic Publishers, 2000.

[7] A. Mehra, J. Grundy and J. A Hosking, “Generic App-
roach to Supporting Diagram Differencing and Merging
for Collaborative Design,” Proceedings of ACM/IEEE
International Conference on Automated Software Engi-
neering, Long Beach, 2005, pp 204-213.

[8] S. Fortsch and B. Westfechtel, “Differencing and Merging
of Software Diagrams-State of the Art and Challenges,”
Proceedings of International Conference on Software and
Data Technologies, Barcelona, 2007, pp. 90-99.

[9] K. Fogel and M. Bar, “Open Source Development with
CVS,” 3rd Edition, Paraglyph Press, 2003.

[10] D. E. Perry, H. P. Siy and L. G. Votta, “Parallel Changes
in Large Scale Software Development: An Observational
Case Study,” Proceedings of International Conference on
Software Engineering, Kyoto, 1998, pp. 251-260.

[11] T. A Mens, “State of the Art Survey on Software
Merging,” IEEE Transactions on Software Engineering,
Vol. 28, No. 5, 2002, pp. 449-462.

[12] F. Taibi, F. M. Abbou and M. D. Alam, “A Matching
Approach for Object-Oriented Formal Specifications,”
Journal of Object Technology, Vol. 7, No. 8, 2008, pp.
139-153.

[13] S. Ronnau, C. Pauli and U. M. Borghoff, “Merging Chan-
ges in XML Documents Using Reliable Context Finger-
prints,” Proceedings of 8th ACM symposium on Document
Engineering, Sao Paulo, 2008, pp. 52-61.

[14] M. Sabetzadeh, S. Nejati, S. Liaskos, S. Easterbrook and
M. Chechik, “Consistency Checking of Conceptual
Models Via Model Merging,” Proceedings of 15th IEEE
International Requirements Engineering Conference, New
Delhi, 2007, pp. 221-230.

[15] X. Blanc, I. Mounier, A. Mougenot and T. Mens, “Detec-
ting Model Inconsistency through Operation-Based Model
Construction,” Proceedings of International Conference
on Software Engineering, Leipzig, 2008, pp. 511-519.

[16] Z. Xing and E. Stroulia, “Differencing logical UML
models,” Journal of Automated Software Engineering, Vol.
14, No. 2, 2007, pp.215-259.

[17] Y. Wang, “X-Diff: An Efficient Change Detection
Algorithm for XML Documents,” Proceeding of 19th
International Conference on Data Engineering, Bangalore,
2003, pp. 519-530.

[18] A. Marian, “Detecting Changes in XML Documents,”
Proceedings of 18th International Conference on Data
Engineering, San Jose, 2002, pp. 41-52.

[19] P. Apiwattanapong, N. Orso and M. J. Harrold, “A Diff-
erencing Algorithm for Object-Oriented Programs,” Proc-
eedings of 19th International Conference on Automated
Software Engineering, Linz, 2007, pp. 2-13.

[20] U. Kelter, J. Wehren and J. Niere, “A Generic Difference
Algorithm for UML Models,” Proceedings of Software
Engineering Conference, Brisbane, 2005, pp. 105-116.

[21] T. Oda and M. Saeki, “Generative Technique for Version
Control Systems for Software Diagrams,” Proceedings of
International Conference on Software Maintenance,
Budapest, 2005, pp. 515-524.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.66667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.66667
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 807.874]
>> setpagedevice

