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ABSTRACT 

In a cognitive radio network wherein primary and secondary users coexist, an efficient power allocation method repre-
sents one of the most important key aspects. This paper provides a novel approach based on a game theory framework 
to solve this problem in a distributed and fair way. Formulated as an optimization problem, the resource allocation prob-
lem between secondary users and primary users can be modeled and investigated with the Game Theory, and in par-
ticular S-Modular Games, since they provide useful tools for the definition of multi objective distributed algorithms in 
the context of radio communications. This paper provides also a performance comparison among the proposed game 
and two other algorithms, frequently used in this context: Simulated Annealing and Water Filling. 
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1. Introduction 

Cognitive Radio represents a promising paradigm aimed 
to optimize the radio spectrum efficiency. In a cognitive 
radio network, two kind of users can exist: primary (non- 
cognitive) users and secondary (cognitive) users. Even 
though primary and secondary users coexist within the 
same network and sharing the same frequency bands, 
primary users may be unaware of the presence of se- 
condary users. Contrary to primary users, secondary users 
are smart, since they are intelligent and interact with 
selfish network users, choosing best operating parame- 
ters on the base of the sensed spectrum. Due to the 
natural radio environment changes, spectrum sharing sche- 
mes change frequently, accordingly with the users allocated 
resource. In this scenario, a game theoretic framework 
allows to study, model and analyze cognitive radio net- 
works in a distributed way. Such attractive feature allows 
to achieve the flexibility and the efficient adaptation to 
the operative environment that were previously men- 
tioned. Due to the players behavior, noncooperative 
game theory is closely connected to mini/max optimi- 
zation and typically results in the study of various equilibria, 
most notably the Nash equilibrium [1]. Developed cog- 
nitive radio strategy has been formulated according the 
mathematical discipline of Game Theory, with particular 
reference to S-Modular Games [2]. 

Non-cooperative games have been proposed for spec- 
trum sharing in [3], which reports a detailed survey on 

game theoretic approaches for dynamic spectrum sharing 
in cognitive radio networks, by in-depth theoretic ana- 
lysis and an overview of the most recent practical 
implementations. In [4], the authors investigate the issue 
about the spectrum sharing between a decentralized 
cognitive network and a primary system, comparing a 
suboptimal distributed non-cooperative game theoretic 
power control algorithm with the optimal solution power 
control algorithm and the power control algorithm pro- 
posed in [5]. Besides the above referred papers, in [6] 
and [7] it is also discussed the power control problem in 
spectrum sharing model. In [8,9] authors proposed dif- 
ferent game-theoretic approaches to maximize energy 
efficiency of the users within wireless networks, making 
the utility functions being inversely proportional to the 
transmit power. 

This paper extends the above described results pro- 
viding a distributed game-theoretic approach to obtain a 
quasi-optimal power allocation method that maximize 
the energy efficiency of each user, within the coexistence 
of primary and secondary users. The proposed method 
take into account throughput fairness among secondary 
users. 

The paper is organized as follows: in Section 2 the 
proposed system model and applicative scenario are 
presented. The game description and the NE existence 
and uniqueness is discussed in Section 3, while in 
Section 4 the Water-Filling algorithm and a his energy 
efficient modified version is reported. In 5 the results 

Copyright © 2012 SciRes.                                                                                   CN 



E. DEL RE  ET  AL. 2 

from computer simulation are commented. Finally some 
conclusions are expressed in Section 6. 

2. System Model 

In this work we consider a Cognitive Radio context 
inspired by a tactical/military scenario where a primary 
system (owner of the spectrum rights) coexisting with 
one or more secondary systems and sharing the same 
frequency band. This kind of situation is very interesting 
and, at the same time, very frequent, i.e. during coalition 
deployment of forces or in case of coexistence of hu- 
manitarian and military convoys, especially when mo- 
bility is taken into account. It is to be noted that such 
kind of context is a suggested scenario by EDA and 
NATO [10] to provide a better reuse of the frequency 
resource among several nations (coexistence of networks) 
and give a great help to accommodate dynamism of the 
operational deployments. Note that, considering a pri- 
mary system in the network, the proposed scheme 
includes the possibility to existence of more than one 
primary user. 

In the proposed system, each user is characterized by a 
dedicated sender and receiver, thus each communicating 
couple consists of a transmitter site i  and a receiver 
site i , as shown in Figure 1. In the most general 
context, in this work we consider the transmitters and the 
receivers positions completely independent the ones from 
the others. Moreover, we use a discrete-time model, 
based on iterations (which we ahead refer as ). Indeed, 
for every single iteration, all users act only once and until  

TX
RX

t

 

 

Figure 1. Scenario with one primary users pair (represented 
by circles) and 5 secondary users pairs; shaded colors re- 
present the path loss component of the channel. 

the next iteration they can’t do anything else. Each user 
broadcast a pilot signals at the first iteration of the 
algorithm in order estimate the channel gain coefficients, 
that are assumed not changing during the execution of 
the algorithm. 

Since in the above described scenario primary users 
may be unaware of the presence of secondary users, in 
the proposed system there can’t be a “direct” cooperation 
among primary and secondary users. However, by de- 
finition, primary users should not undergo a degradation 
of the required QoS due to the presence of secondary 
users. For this reason, we propose the following the 
solution: the primary AP selects and broadcasts perio- 
dically on the shared channel a reasonable interference 
cap on the total interference it willing to tolerate. Toge- 
ther with the interference cap, the value of the total 
interference received by the primary receiver is trans- 
mitted. Thanks to this solution, we introduce a sort of 
“indirect” unaware cooperation among the two kind of 
users. The direct result of the introduction of a chosen 
interference cap is a limitation of the total transmit power 
of the secondary users on the shared channel. Thanks to 
the introduction of the interference cap, for the simplicity 
of exposition, hereinafter we will consider only one pri- 
mary transmitter-receiver pair, since the proposed sche- 
me can be easily extended to include more than one 
primary user. 

Viewed from the perspective of secondary users, each 
of them will choose the more suitable transmission 
power in order to achieve the best transmission quality, 
respecting the interference cap (broadcasted by primary 
AP) and ensuring low interference to other secondary 
users. Due to the consistent decisions made by primary 
and secondary users, game theory represents an inbred 
framework to study, analyze and predict the behavior of 
this system. For simplicity of exposition, we will con- 
sider a fixed primary interference cap and therefore a 
fixed maximum transmission power for the secondary 
users; this assumption can be made without altering the 
validity of the system, since variations of this value are 
relatively slow compared with the time of convergence 
of the algorithm. In case of wireless networks with high 
primary mobility and/or more strict delay needs, a delay 
efficient approach should be followed, see [11]. 

3. The Proposed Game 

3.1. Game Description 

The non-cooperative game proposed in this paper can be 
modeled as game with  secondary users, namely the 
players of the game, operating on one radio resource. 
This game can be easily extended considering 

N

M  radio 
resources (i.e. subcarriers of the same multi-carrier chan- 
nel or different channels) following the approach pro- 
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posed in [12], where subcarrier allocation is based on the 
normalized channel gain. Formally, the proposed non- 
cooperative game can be modeled as follows:   
 Set of Players: ,3, , NN   where i = 1,2 N  is 

the i -th secondary user.  
 Set of Strategies: , P .   = ,Pmin max

 Utility function:  iu p  where iN  is the i -th 
secondary user.  

S

Following the approach proposed by [8,13], we take 
into account the energy efficiency problem at the phy- 
sical layer, considering an utility function expressed in 
bit/Joule as performance measure of the model. Each 
player tries to maximize the following utility function: 

      
      1 ip t p t 

p
W

i i
 

, 1 = i i
i i

i

R f
u p t p t W

p t


   (1) 

where  is the complete set of strategies of all secon- 
dary users,  is the ratio between the number of infor- 
mation bits per packet and the number of bits per packet, 

 is the transmission rate of the th user in bits/sec, 

i

R
f   is the is the efficiency function (depending on 

the considered modulation), that represents a stochastic 
modeling of the number of bits that are successfully 
received for each unit of energy drained from the battery 
for the transmission. 

Thanks to the efficiency function, the utility function 
each user tries to maximize is related to its instantaneous 
signal to noise plus interference ratio (SINR), defined as: 

   
  

,

1 ,
i i i

i i

g p t
, = 10logi c r

t
I p t P

 
   

p
p i p

i

         (2) 

where with the notation i  we refer to all components 
of  not belonging to user , i  is the power 
allocated from the secondary transmitter ( iTX ), ,j ig  is 
the path gain from jTX  to i , 12,iRX g  is the inter- 
ference channel from the primary to the secondary 
receiver i ,  is the primary transmitted power, 
while 

RX P
2  is the AWGN component at . i

i i

RX
  1 , rI p t  P  represents the total interference re- 

ceived by the th user and it can be wrote as:  i
2

12,i    ,1 , = 1r
i i k i k

k i

I p t P g p t


  g P  

 

  (3) 

The path gain can be written as [14]:  

 
, =i j

i j

K
g

x x 
2 2 d

i jy y   

K = 4d

 p

 p
p

  
 

  

          (4) 

where  and . = 0.097
The adopted channel model is composed by a small 

scale fading and a path-loss component. In particular, the 
path-loss model is the Okomura-Hata model, while the 
small scale fading is modeled as a Rayleigh process. 

Since the above defined utility function depends on the 
path gains, each secondary user need to know it. In order 
to solve this problem that could have a strong impact on 
the signalling process, we assume that each receiver 
periodically send out a beacon, thanks to which trans- 
mitters can measure path gains. 

In order to make the NE of the game as efficient as 
possible (moving it to the Pareto Optimum), we consider 
the adaptive pricing function ,i i i  that generates 
pricing values basing on the interference generated by 
network users. Thus, users that cause high interference 
transmitting at high power will obtain high value of 
pricing, due to the fact that  is strictly increasing 
with . The pricing function is written as follows: 

,
=1,

1

1 = exp
1 ,

N

i k i
i k i

i r
i i

p t g

p t
I p t P

   



  
    
 
 
 


  (5) 

where:  
 > 1  is the maximum pricing value,  
 > 1  is the price weight of the generated inter- 

ference,  
 > 1  is the sensitivity of the users to interference.  

These three parameters are very useful to adapt the 
pricing function to the considered wireless network re- 
quirements; i.e. we can make the algorithm converge 
faster decreasing the value of   or force all secondary 
users to transmit at lower power levels increasing their 
sensitivity to the interference [13]. 

3.2. Existence and Uniqueness of NE 

A Nash Equilibrium [15] offers a stable outcome and it 
can be guaranteed to exist, under certain conditions, but 
does not necessarily mean the best payoff for all the 
players involved, especially in presence of pricing tech- 
niques. In the literature there are lots of mathematical 
methods to demonstrate the existence and uniqueness of 
NE, like graphical [13,16], quasi-concavity curve [17] 
and super-modularity [8,18]. 

Supermodular Games are an interesting class of games 
that exhibits strategic complementarity. There are several 
compelling reasons like existence of pure strategy Nash 
equilibrium, dominance resolvability, identical bounds 
on joint strategy space etc. that make them a strong 
candidate for resource allocation modeling. Supermo- 
dular games are based on the concept of “supermodu- 
larity”, which is used in the social sciences to analyze 
how one agent’s decision affects the incentives of others. 

 S-Games are normal form games = , ,N S f
N S

i  
where  is the set of users,  the strategy space, if  
the set of utility functions and  these conditions 
are satified:  

i N 
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1) The strategy space  of user i  is a complete 
lattice.  

i

i

S

f  is supermodular in 2) is .  
s .  f3) i  presents increasing differences in 

The proposed utility function in Equation (1) can be 
easily demonstrated to be supermodular, since: 

1) The strategy space P is a complete lattice;  

2) 
 2

0i

i j

u p

p p




 

P j

 

                           (6) 

for all  and i .  p
3) The utility function has the increasing difference 

property.  
For the details of proofs we refer to [8], under the 

proposed conditions. Uniqueness of the NE can be also 
demonstrated following the same approach, since we use 
a Best Response rule. Even if our proposed pricing 
function is more complicated, in comparison with the 
above-cited work, the demonstration procedure does not 
change. Indeed, the pricing function   , 1p t p t   
can be considered linear in  p t , since the coefficient of 

 at time t  is a constant.  p t

4. Energy Efficient Iterative Water-Filling  
Algorithm 

Water filling is a frequently used algorithm in power 
allocation methods. This algorithm starts from the idea 
that a vase can be filled by a quantity of water equal to 
the empty volume of the vase. It is well-known in the 
literature that power allocation in parallel uncoupled 
channels can follow the water filling principle in order to 
maximize data-rate. A channel can be filled by an 
amount of power depending on the existing noise level. 
A multiuser scenario cannot be modeled as the parallel 
uncoupled channels case, but it has to be modeled 
following the approach of an interference channels. 

On the base of these considerations, an iterative water 
filling procedure can be obtained; each user updates its 
transmission power level as follows:  

     
 max=t t i

i
i

t
P P

p t


 , = 1i N


 


 



tP i
t P

= m
 
 

        (7) 

where 
i  is the power level assigned at the user  in 

the iteration  and max  is maximum power that can 
be transmitted in the channel (the water level). Because  

of , if  ax 0,a a
max> Pi

i

t

p t

   = 0t
iP

i

maxP

( )t tSINR SINR

, then  is  

assigned to the user . 
Iterative Water-Filling gets excellent performances in 

presence of low interference environments and/or limited 
number of users. However for increasing values of inter- 
ference, the algorithm get worst; indeed, users experi- 

menting the best channel conditions will transmit at high 
power levels, while users experimenting bad channel 
conditions (i.e. being the receiver close to another 
transmitter) will receive high interference values and 
then they will be inactivated. For this reason, EEIWF 
turns out to be unfair. 

For a fixed target data-rate, we can identify a mi- 
nimum target value for the SINR. In this case, Iterative 
Water-Filling is energy inefficient, due to the fact that 
the algorithm tries to maximize the total transmission 
power, achieving SINR values that are greater than the 
target value. For this reason, we propose the following 
energy efficient modified version of the algorithm, called 
Energy Efficient Iterative Water-Filling (EEIWF). For 
each iteration,  is updated as follows: 

 If ( 1) 0  , 
( 1)

( )
max

t
t P

P
k



( )t tSINR SINR P
> 1k

= 2k

< 8N
P

8N 
maxP

p p

max=  

 If ( 1) < 0 , ( ) ( 1)=t tP    max max

where  represents the reduction factor and it con- 
trols the convergence speed of the algorithm. Note that 
for  the algorithm becomes the bisection method. 

Such approach allows us to maintain the fixed data- 
rate, using the lowest total transmission power level, 
taking into account its trend in Figure 2. 

In the case of  number of user, the SINR trend 
for decreasing values of max  is a monotonous de- 
creasing function. Otherwise, when , a reduction 
of  should also improve SINR final value. 

5. Simulation Results 

In this paragraph we show the results of the simulations 
that we run in order to verify the behavior of a cognitive 
network based on the our proposed game-theoretical 
framework. In the subsection 5.1 the convergence of the 
algorithm is shown, while in subsection 5.2 a comparison 
between proposed game and heuristic power allocations 
will be presented. 

5.1. Convergence of the Algorithm 

The operating context is a terrain square area of 1 km 
edge, with a suburban path-loss profile. Primary trans- 
mitter and receiver positions are fixed; secondary trans- 
mitters are independently located in the area, while the 
secondary receivers positions are placed randomly in a 
200 m diameter circle around the respective transmitters. 
Each secondary user transmits isotropically with  

maxi  , where max  on the base of a fixed 
interference cap. Moreover, we consider a noise power 

, frequency , 

= 1 dBmp

2 = 10 dBm  = 1 Ghzf = 4 5W
4= 10  bit/siR 4= 10 4= 10

2= 10

, a 
common rate , ,  and 

 .      
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Figure 2. SINR trends for increasing values of maximum transmission power for different number of users. 
 

Results of a simulation with a primary user and 
 secondary users show a fast convergence of the 

transmitted power levels and SINR experimented by 
secondary users. For increasing numbers of secondary 
users in the networks, the algorithm still maintains a very 
short time of convergence, see Figure 3; in the particular 
case of very bad location of secondary users (i.e. users 
concentrated in a small area), a possible growth of the 
time convergence may be avoided decreasing the value 
of 

= 5N

  parameter. 

5.2. Performance Comparison 

In order to obtain a qualitative evaluation of the proposed 
game, we decide to compare its performance with both 
EEIWF and an optimal centralized heuristic power allo- 
cation system, like Simulated Annealing (SA) [19]. The 
mean value of the SINR (experimented by secondary 
users) has been chosen as the performance index for the 
three optimization methods. We run the simulations for  
 

 

Figure 3. SINR convergence in a 15-user simulation with 
. 4= 10

3 dB

increasing number of secondary users, while all the other 
parameters of the system remain the same of the previous 
shown configuration. The simulation results illustrated in 
Figure 4 show clearly that the SA and the proposed 
game have quite the same performance, since the maxi- 
mum difference between the mean value of the SINR 
obtained by the SA and the game is . On the other 
hand, Water-Filling obtains lower mean SINR levels and 
performance worsens for increasing number of users in 
the network. 

In addition to the SINR, the energy efficiency of the 
three considered methods is an another important key 
feature that we need to investigate. If the SINR per- 
formance are quite the same for the proposed game and 
the SA, on the contrary we can observe a great difference 
in terms of power allocations. Indeed, Figure 5 shows 
that, for a 15-user simulation, SA allocation uses appro- 
ximately 80% of power more than game allocation. For 
what concern the EEIWF, while some users are switched 
off, the others transmit at highest levels, compared with 
the other two proposed allocations. In Figure 5 the 
power allocation of the proposed game is shown in pur- 
ple, in yellow is reported the additional power allocated 
by SA (with respect to game) and in blue the excess 
additional power allocated by EEIWF (with respect to 
SA). 

6. Concluding Remarks 

In this paper we provide an energy efficient game 
theoretic framework to solve the resource allocation 
problem in a cognitive network, wherein primary and 
secondary users coexist. The power allocation problem is 
solved thanks to the application of S-Modular Games. 
Transmission power of secondary users is upper bounded 
by the interference cap, defi ed as the total interference  n   
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Figure 4. Trends of SINR mean values for increasing number of secondary users in the network; SA in red, Game in blue, 
EEIWF in green. 
 

 

Figure 5. Example of power allocation for a 15 users net- 
work; SA in yellow, Game in purple, Water-Filling in blue. 
 
that primary users willing to tolerate, without loosing 
their required QoS. Moreover, secondary users are dis- 
couraged to transmit at high power levels, since they are 
charged on the base of the interference they generate, 
thanks to the introduction of a pricing function inside of 
the utility function. Tuning utility function parameters, 
the proposed game is able to adapt his performance (in 
terms of time of convergence) to every kind of network 
configuration. Indeed, simulation results show a fast con- 
vergence of the algorithm for any number of considered 
users in the cognitive network. 

In this work, a performance comparison among the 
proposed game, an optimal centralized resource allo- 
cation method (Simulated Annealing) and an Energy 
Efficient version of the Water Filling is also included. 
Simulation results show clearly that game theory obtains 

better performance than water filling and the proposed 
game converges to the same SINR values obtained from 
the heuristic optimization method. However, unlike these, 
the proposed game results to be the most energy efficient, 
also for a large number of considered users. Further 
investigations will be made in order to quantify and 
analyze the signaling process among secondary users. 
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