
Journal of Software Engineering and Applications, 2012, 5, 102-108
http://dx.doi.org/10.4236/jsea.2012.52016 Published Online February 2012 (http://www.SciRP.org/journal/jsea)

Combining Public Key Encryption with Schnorr
Digital Signature

Laura Savu

Department of Information Security, Faculty of Mathematics and Computer Science, University of Bucharest, Bucharest, Romania.
Email: laura.savu@microsoft.com

Received December 10th, 2011; revised January 14th, 2012; accepted February 7th, 2012

ABSTRACT

This article presents a new signcryption scheme which is based on the Schnorr digital signature algorithm. The new sche-
me represents my personal contribution to signcryption area. I have implemented the algorithm in a program and here
are provided the steps of the algorithm, the results and some examples. The paper also contains the presentation of the
original Signcryption scheme, based on ElGamal digital signature and discusses the practical applications of Signcryp-
tion in real life. The purpose of the study is to combine the public key encryption with Schnorr digital signature in order
to obtain less computational and communicational costs. Signcryption primitive is a better approach then Encrypt-then-
Sign or Sign-then-Encrypt methods regarding the costs. All these algorithms offer the possibility to transmit a message
over an insecure channel providing both authenticity and confidentiality.

Keywords: Signcryption; Schnorr; Encryption; Digital Signature; Security; Confidentiality; ElGama; RSA; ECC

1. Introduction

Signcryption is the primitive that has been proposed by
Youliang Zheng in 1997 and combines public key en-
cryption with digital signature in a single logical step,
obtaining a less cost for both communication and com-
putation [1].

Data confidentiality and data integrity are two of the
most important functions of modern cryptography. Con-
fidentiality can be achieved using encryption algorithms
or ciphers, whereas integrity can be provided by the use of
authentication techniques. Encryption algorithms fall into
one of two broad groups: private key encryption and pub-
lic key encryption. Likewise, authentication techniques
can be categorized by private key authentication algo-
rithms and public key digital signatures.

While both private key encryption and private key au-
thentication admit very fast computation with minimal
message expansion, public key encryption and digital
signatures generally require heavy computation, such as
exponentiations involving very large integers, together
with message expansion proportional to security pa-
rameters (such as the size of a large composite integer or
the size of a large finite field).

Signcryption has the intention that the primitive should
satisfy “Cost (Signature & Encryption) Cost (Signa-
ture) + Cost (Encryption)” This inequality can be inter-
preted in a number of ways:

 A signcryption scheme should be more computation-

nally efficient than a native combination of public-key
encryption and digital signatures.
 A signcryption scheme should produce a signcryption
“ciphertext” which is shorter than a naive combination of a
public-key encryption ciphertext and a digital signature.
 A signcryption scheme should provide greater security
guarantees and/or greater functionality than a native com-
bination of public-key encryption and digital signatures
[1].

More recently, the significance of signcryption in real-
world applications has gained recognition by experts in
data security. Since 2007, a technical committee within the
International Organization for Standardization (ISO/IEC
JTC 1/SC 27) has been developing an international stan-
dard for signcryption techniques [2].

The shared secret key between the parties makes pos-
sible an unlimited number of applications. Among these
applications, one can first think of the following three:
 Secure and authenticated key establishment,
 Secure multicasting, and
 Authenticated key recovery.

A number of signcryption-based security protocols
have been proposed for aforementioned networks and
similar environments. These include:
 Secure ATM networks,
 Secure routing in mobile ad hoc networks,
 Secure voice over IP (VoIP) solutions,
 Encrypted email authentication by firewalls,

Copyright © 2012 SciRes. JSEA

Combining Public Key Encryption with Schnorr Digital Signature 103

 Secure message transmission by proxy, and
 Secure message transmission by proxy, and
 Mobile grid web services.

There are also various applications of signcryption in
electronic commerce, where its security properties are very
useful. Analyzing this security scheme from an applica-
tion-oriented point of view, can be observed that a great
amount of electronic commerce can take advantage of
signcryption to provide efficient security solutions in the
following areas:
 Electronic payment,
 Electronic toll collection system,
 Authenticated and secured transactions with smart cards,

etc.
My personal contribution to the article is represented

by the Schnorr Signcryption scheme which has been in-
troduced here. Schnorr Signcryption scheme is made up
of a combination between a public key encryption sche-
me and a digital signature scheme. On the base of the
scheme that I present here stands the Schnorr digital sig-
nature. A Schnorr signature is a digital signature produ-
ced by the Schnorr signature algorithm. Its security is
based on the intractability of certain discrete logarithm
problems. It is considered the simplest digital signature
scheme to be provably secure in a random oracle model.
It is efficient and generates short signatures.

A signcryption scheme typically consists of five algo-
rithms, Setup, KeyGenS, KeyGenR, Signcrypt, Unsign-
crypt:
 Setup-takes as input a security parameter 1^ k and out-

puts any common parameters param required by the
signcryption schemes. This may include the security pa-
rameter 1^ k, the description of a group G and a gene-
rator g for that group, choices for hash functions or
symmetric encryption schemes, etc.

 Key Generation S(Gen) generates a pair of keys for the
sender.

 Key Generation R(Gen) generates a pair of keys for the
receiver.

 Signcryption (SC) is a probabilistic algorithm.
 Unsigncryption (USC) is a deterministic algorithm.

A signcryption scheme is a combination between a
public key encryption algorithm and a digital signature
scheme.

A public key encryption scheme consists of three poly-
nomial-time algorithms (EncKeyGen, Encrypt, Decrypt).

EncKeyGen—Key generation is a probabilistic algori-
thm that takes as input a security parameter 1^ k and out-
puts a key pair (skenc, pkenc), written (skenc, pkenc)R←
EncKeyGen (1^ k). The public encryption key pkenc is
widely distributed, while the private decryption key ske-
bnc should be kept secret. The public key defines a mes-
sage m ∈ M and a ciphertext ∈ C.

Encrypt—Encryption is a probabilistic algorithm that

takes a message m ∈ M and the public key pkenc as in-
put and outputs a ciphertext C ∈ C, written C ← En-
crypt (pkenc, m).

Decrypt—Decryption is a deterministic algorithm that
takes a ciphertext C ∈ C and the private key skenc as
input and outputs either a message m ∈ M or the failu-
re symbol ⊥, written m ← Decrypt (skenc, C).

The article is structured in seven parts, as follows. Sig-
ncryption and its properties definitions are contained in
the first part. Also here, in introduction, are presented the
practical applications of Signcryption in real life. In the
second part is exposed the original signcryption primitive
introduced by Youliang Zheng, which combines public key
encryption and a derivation of ElGamal digital signature
algorithm. Part three contains the presentation of the new
sygncryption scheme, Schnorr Signcryption, as a result
of the combination of public key encryption and Schnorr
digital signature algorithm. The step-by-step implement-
tation of the Schnorr Signcryption scheme in a source
code program is reflected in the fourth part. Strating with
the fifth part begins the analyze of the security models on
Schnorr Signcryption. The two-users security model is pre-
sented in the sixth part and multi-user security model is
presented in the seventh part. In each of this models there
is exposed another classification for security, the insider
security and the outsider security.

2. Related Work

2.1. Elgamal Signcryption

The original signcryption scheme that has been intro-
duced by Youliang Zheng in 1997 is created on a deriva-
tion of ElGamal digital signature standard, combined
with a public key encryption scheme.

Based on discrete algorithm problem, ElGamal Sign-
cryption cost is:

58% less in average computation time;
70% less in message expansion.
Here is the detailed presentation of the fifth algorithms

that make up the ElGamal signcryption scheme.
1) Setup
Signcryption parameters:
p = a large prime number, public to all;
q = a large prime factor of p − 1, public to all;
g = an integer with order q modulo p, in [1, , p − 1],

public to all;

hash = a one-way hash function;
KH = a keyed one-way hash function = KHk(m) =

hash (k, m);
(E, D) = the algorithms which are used for encryption

and decryption of a private key cipher.
Alice sends a message to Bob.
2) KeyGen sender
Alice has the pair of keys (Xa, Ya):

Copyright © 2012 SciRes. JSEA

http://en.wikipedia.org/wiki/Digital_signature
http://en.wikipedia.org/wiki/Discrete_logarithm
http://en.wikipedia.org/wiki/Random_oracle

Combining Public Key Encryption with Schnorr Digital Signature 104

Xa = Alice’s private key, chosen randomly from [1,
, q − 1]
Ya = Alice’s public key = mod p. xag
3) KeyGen receiver
Bob has the pair of keys (Xb, Yb):
Xb = Bob’s private key, chosen randomly from [1, ,

q − 1]

Yb = Bob’s public key = mod p. xbg
4) Signcryption
In order to signcrypt a message m to Bob, Alice has to

accomplish the following operations:
Calculate

 xk = hash Yb mod p
Split k in k1 and k2 of appropriate length.
Calculate r = KHk2(m) = hash(k2, m)
Calculate s = x/(r + Xa) mod q, if SDSS1 is used
Calculate s = x/(1 + Xa · r) mod q, if SDSS2 is used
Calculate c = Ek1(m) = the encryption of the message

m with the key k1.
Alice sends to Bob the values (r, s, c).
5) Unsigncryption
In order to unsigncrypt a message from Alice, Bob has

to accomplish the following operations:
Calculate k using r, s, g, p, Ya and Xb

 s xbrhash Ya g mod p

 , if is used SDSS1;

 s xbrhash g Ya mod p

 , if is used SDSS2;

Split k in k1 and k2 of appropriate length.
Calculate m using the decryption algorithm m = Dk1(c).
Accept m as a valid message only if KHk2(m) = r.
Using the two schemes SDSS1 and SDSS2, two sign-

cryption schemes have been created, SCS1 and SCS2, re-
spectively. The two signcryption schemes share the same
communication overhead, (|hash(*)| + |q|). SCS1 involves
one less modular multiplication in signcryption then
SCS2, both have a similar computational cost for unsi-
gncryption [1].

2.2. Rsa Signcryption

Rivest introduced for the first time in 1978 the public-
key encryption scheme and digital signature scheme [3].

The RSA transform has been the basis of dozens of
public-key encryption schemes and digital signature
schemes, which have proven to be very successful and
have been very widely deployed in industry. They are widely
used in the design of public-key encryption and digital
signature schemes.

The RSA transform was introduced by Rivest, Shamir,
and Adleman in 1978 [3]. The exact definition of the pro-
blem depends upon the distribution from which the two
prime numbers p and q are drawn. For our purposes, this
is defined by a probabilistic, polynomial-time RSA para-
meter generation algorithm RSAGen, which takes as in-

put a security parameter 1^ k and outputs two primes (p,
q) with the property that N = pq is a k-bit integer [4].

Signcrypt (1, ,fS fR m)

Bind pkS||pkR

r | |
0,1

d m

c H (bind, m||r)
d m||r
w c
s G (bind, c) ○ d

C fR (1fS (w||s))

Return C

Unsigncrypt (1, ,fS fR C)

Bind pkS||pkR

(w||s) fS (1,fR C)

m||r G (bind, w) © s
If H (bind, m||r) = w, return m
Else return ⊥

2.3. Elliptic Curve Cryptography Signcryption

The first signcryption scheme was introduced by Yuliang
Zheng in 1997 [1]. Zheng also proposed an elliptic curve-
based signcryption scheme that saves 58% of computa-
tional and 40% of communication costs when it is com-
pared with the traditional elliptic curve-based signature-
then-encryption schemes [5].

Here is presented the scheme for an elliptic curve ba-
sed signcryption algorithm introduced by Mohsen Too-
rani and Ali Asghar Beheshti Shirazi in [6].
Signcryption (Alice)
Choosing r in [1, n − 1]
R = rG = (xR, yR)
K = rU = (xK, yK)

s = 1r (H (M) + xRdA) (mod n)
e = H (M||s)
C = (M||e) © xK
Unsigncryption (Bob)
K = dB R = (xK, yK)
(M||e’) = C © xK
e’ = H(M||s)
If e <> e’ then rejects M’
Else

u = 1s H(M)

v = 1s xR
uG + vU = (x’R, y’R)
Signature verification: Is xR = x’R ?

The elliptic curve-based schemes are usually based on
difficulty of Elliptic Curve Discrete Logarithm Problem
(ECDLP) that is computationally infeasible under certain
circumstances [7]. The elliptic curve-based systems can
attain to a desired security level with significantly smaller
keys than those of required by their exponential-based

Copyright © 2012 SciRes. JSEA

http://en.wikipedia.org/wiki/Yuliang_Zheng
http://en.wikipedia.org/wiki/Yuliang_Zheng
http://en.wikipedia.org/wiki/Signcryption#cite_note-0
http://en.wikipedia.org/wiki/Elliptic_curve
http://en.wikipedia.org/wiki/Signcryption#cite_note-1

Combining Public Key Encryption with Schnorr Digital Signature 105

counterparts. This can enhance the speed and leads to
efficient use of power, bandwidth, and storage that are
the basic limitations of resource-constrained devices [8].

Throughout the years, there have been proposed many
other signcryption schemes, each with its own problems
and limitations, while offering different level of security
services and computational costs.

3. Implementation of the New
Signcryption Scheme

A Schnorr signature is a digital signature produced by the
Schnorr signature algorithm. Its security is based on the
intractability of certain discrete logarithm problems. It is
considered the simplest digital signature scheme to be
provably secure in a random oracle model [9].

Choosing parameters
All users of the signature scheme agree on a group G

with generator g of prime order q in which the discrete
log problem is hard.

Key generation
Choose a private signing key x.
The public verification key is y = gx.
Signing
To sign a message M:
Choose a random k.
Let r = gk
Let e = H (M | | r), where || denotes concatenation and r

is represented as a bit string. H is a cryptographic hash
function . H : 0,1 * q

Let s = (k – xe).
The signature is the pair (s, e).
Verifying
Let rv = gsye
Let ev = H (M | | rv)
If ev = e then the signature is verified.
Demonstration of correctness
It can be observed that ev = e if the signed message

equals the verified message:
s e k xe xe k

vr g y g g g r , and hence ev = H (M | | rv)
= H(M | | r) = e.

It has been considered that k < q and the assumption
that the hash function is collision-resistant.

Public elements: G, g, q, y, s, e, r.
Private elements: k, x. [10]
A Schnorr Signcryption scheme is based on Schnorr

digital signature algorithm.
Here is the detailed presentation of the fifth algorithms

that make up the Schnorr signcryption scheme.
1) Setup
Schnorr Signcryption parameters:
p = a large prime number, public to all;
q = a large prime factor of p-1, public to all;
g = an integer with order q modulo p, in [1, , p − 1],

public to all;

hash = a one-way hash function;
KH = a keyed one-way hash function = KHk (m) =

hash (k, m);
(E, D) = the algorithms which are used for encryption

and decryption of a private key cipher.
Alice sends a message to Bob.
2) KeyGen sender
Alice has the pair of keys (Xa, Ya):
Xa = Alice’s private key, chosen randomly from [1, ,

q − 1]
Ya = Alice’s public key = mod p. xag-

3) KeyGen receiver
Bob has the pair of keys (Xb, Yb):
Xb = Bob’s private key, chosen randomly from [1, ,

q − 1];
Yb = Bob’s public key = mod p. xbg-

4) Signcryption
In order to signcrypt a message m to Bob, Alice has to

accomplish the following operations:
Calculate

 xk hash Yb mod p ;

Split k in k1 and k2 of appropriate length.
Calculate r = KHk2(m) = hash (h2, m);
Calculate s = x + (r* Xa) mod q;
Calculate c = Ek1(m) = the encryption of the message

m with the key k1.
Alice sends to Bob the values (r, s, c).
5) Unsigncryption
In order to unsigncrypt a message from Alice, Bob has

to accomplish the following operations:
Calculate k using r, s, g, p, Ya and Xb

 Xbs rk hash g Ya mod p

Split k in k1 and k2 of appropriate length.
Calculate m using the decryption algorithm m = Dk1 (c).
Accept m as a valid message only if KHk2 (m) = r.
Analyzing the two presented signcryption schemes, it

can be observed that in case of Shnorr signcryption the
computation of s, which is s = x + (r* Xa) mod q, is less
consuming comparing with the formula used in ElGamal
algorithm, where s is s = x/(r+Xa) mod q.

Another difference is on the level of unsigncryption step
as k is computing differently, using this formula for Sch-

rr and this formula for El-

mal

 Xbs rk hash g Ya mod p

 s Xbrk hash g Ya mod p

 .

4. Security Models for Schnorr
Signcryption Scheme

The first attempt to produce security models for signcr-
tion was given by Steinfeld and Zheng [11].

A family of security models for signcryption in both
two-user and multi-user settings was presented by An [12]

Copyright © 2012 SciRes. JSEA

http://en.wikipedia.org/wiki/Digital_signature
http://en.wikipedia.org/wiki/Discrete_logarithm
http://en.wikipedia.org/wiki/Random_oracle
http://en.wikipedia.org/wiki/Group_(mathematics)
http://en.wikipedia.org/wiki/Discrete_log
http://en.wikipedia.org/wiki/Discrete_log

Combining Public Key Encryption with Schnorr Digital Signature 106

in their work on signcryption schemes built from black-
box signature and encryption schemes.

Defining the security of signcryption in the public-key
setting is more involved than the corresponding task in
the symmetric setting [13] due to the asymmetric nature
of the former. The asymmetry of keys makes a difference
in the notions of both authenticity and privacy on two
major fronts which are addressed in this chapter.

The first difference for Schnorr signcryption is that the
security of the signcryption needs to be defined in the
multi-user setting, where issues with users’ identities need
to be addressed. On the other hand, authenticated encryp-
tion in the symmetric setting can be fully defined in a
much simpler two-user setting.

The case of Schnorr settings not only makes a differ-
ence in the multiuser and two-user settings but also
makes a difference in the adversary’s position depending
on its knowledge of the keys. There are two definitions
for security of signcryption depending on whether the
adversary is an “outsider” (a third party who only knows
the public information) or “insider” (a legal user of the
network, either the sender or the receiver, or someone
that knows the secret key of either the sender or the re-
ceiver). In the first case the security model is named
“outsider security” and in the latter “insider security”.

4.1. Two-Users Security Model

In the symmetric setting, there is only one specific pair of
users who

1) Share a single key;
2) Trust each other;
3) “Know who they are”;
4) Only care about being protected from “the rest of

the world.”
In contrast, in Schnorr signcryption setting, each user

independently publishes its public keys, after which it
can send/receive messages to/from any other user. In par-
ticular, 1) each user should have an explicit identity (as-
sociated with its public key); 2) each signcryption has to
explicitly contain the (presumed) identities of the sender
S and the receiver R; 3) each user should be protected
from every other user.

The security goal is to provide both authenticity and
privacy of communicated data. In the symmetric setting,
since the sender and the receiver share the same secret
key, the only security model that makes sense is one in
which the adversary is modeled as a third party or an out-
sider who does not know the shared secret key. For Sch-
norr signcryption setting, the sender and the receiver do
not share the same secret key but each has his/her own sec-
ret key. Due to this asymmetry of the secret keys, the data
needs to be protected not only from an outsider but also
from an insider who is a legal user of the system (the sender
or the receiver themselves or someone who knows either

the sender’s secret key or the receiver’s secret key) [4].

4.2. Multi-User Security Model

A central difference between the multi-user model and the
two-user models is the extra power of the adversary. In the
multi-user model, the attacker may choose receiver (resp.
sender) public keys when accessing the attacked users’
signcryption (resp. unsigncryption) oracles. For signcry-
ption schemes that share some functionality between the
signature and the encryption components, such as are the
case for Zheng’s Signcryption scheme and Schnorr Sign-
cryption scheme, the extra power of the adversary in the
multi-user model may be much more significant, and a
careful case-by-case analysis is required to establish se-
curity of such schemes in the multi-user model.

As in the two-user setting, the multi-user setting also
has two types of models depending on the identity of the
attacker: an insider model and an outsider model.

5. Experimental Results

Here is provided an example from the execution of the
program on small numbers.

Example:
p = 23, q = 11, g = 2, X=3
XA = 4 => YA=13
XB=5 => YB=18
k = 13 => hash(k) = vTB6PsMp4Qos/4+4dICCPaEU+

PQ=
k1 = vTB6PsMp4Qos/w==
k2 = j7h0gII9oRT49A==
hash(k2, m) =

E2726583242AB5CCE58AE1151DB126208F17932F
hash(k2, m) in base 10 =

1292783042124763369608714420962730428414981280-
559

(hash(k2,m) in base 10) mod p = 3
s mod q = x + (r*Xa) mod q = 4
Unsigncrypt k = 13
In Table 1 is presented the cost evaluation for the sig-

nature and verification in ElGamal and Schnorr sign-
cryption schemes.

It is important the improvement for the cost consump-
tion that has been made in the case of the proposed sche-
me, as at this step it is not necessary to be calculated the
modular inverse.
 Texp: the time for a modular exponential computation.
 Tm: the time for a modular multiplication computation.
 Tinv: the time for a modular inverse computation.
 Th: the time for a one way hash function f(_) compu-

tation.

6. Conclusions and Future Work

This paper presents a new Signcryption scheme which is

Copyright © 2012 SciRes. JSEA

Combining Public Key Encryption with Schnorr Digital Signature

Copyright © 2012 SciRes. JSEA

107

Table 1. The comparison between the proposed Schnorr Signcryption scheme and the initial Youliang Zheng Signcryption
scheme.

 The Proposed Schnorr Signcryption Scheme The Initial Youliang Zheng Signcryption Scheme

Computation cost for signature generation Th + Tm Th + Tm + Tinv

Computation cost for verifying converted signature Th + Tm + Texp Th + Tm + Tinv + Texp

based on Schnorr digital signature algorithm. This sche-
me is named Schnorr Signcryption and it implements in a
single logical step both public key encryption and digital
signature, offering less costs as using these two crypto-
graphic functions individually.

In signcryption area, the following problems seem in-
teresting in future research: 1) presenting a formal mo-
del for group signcryption, and proposing provably se-
cure schemes; 2) Designing schemes to support dynamic
group member management in the sense that group mem-
ber can join or leave the group efficiently and dynami-
cally; 3) Optimizing the open procedure so that it does
not linearly depend on the number of group members, so
that such schemes are suitable for large groups.

REFERENCES
[1] Y. Zheng, “Digital Signcryption or How to Achieve Cost

(Signature & Encryption) << Cost(Signature) + Cost (En-
cryption),” Full Version, 2011.
http://www.sis.uncc.edu/yzheng/papers/

[2] International Organization for Standardization, “IT Secu-
rity Techniques—Signcryption,” ISO/IEC WD 29150,
2008.

[3] R. L. Rivest, A. Shamir and L. Adleman, “A Method for
Obtaining Digital Signatures and Public-Key Cryptosys-
tems,” Communications of the ACM, Vol. 21, No. 2, 1978,
pp. 120-126. doi:10.1145/359340.359342

[4] A. Dent and Y. L. Zheng, “Practical Signcryption, a Vol-
ume in Information Security and Cryptography,” Springer-
Verlag, Berlin, 2010.

[5] Y. Zheng and H. Imai, “How to Construct Efficient Sign-
cryption Schemes on Elliptic Curves,” Information Proc-
essing Letters, Vol. 68, No. 5, 1998, pp. 227-233.

doi:10.1016/S0020-0190(98)00167-7

[6] M. Toorani and A. A. B. Shirazi, “Cryptanalysis of an
Elliptic Curve-Based Signcryption Scheme,” International
Journal of Network Security, Vol. 10, No. 1, 2010, pp.
51-56.

[7] D. Hankerson, A. Menezes and S. Vanstone, “Guide to
Elliptic Curve Cryptography,” Springer-Verlag, New York,
2004.

[8] M. Toorani and A. A. B. Shirazi, “LPKI—A Lightweight
Public Key Infrastructure for the Mobile Environments,”
Proceedings of the 11th IEEE International Conference
on Communication Systems, Guangzhou, 19-21 Novem-
ber 2008, pp. 162-166.

[9] C. P. Schnorr, “Efficient Identification and Signatures for
Smart Cards,” In: G. Brassard, Ed., Advances in Cryptol-
ogy—Crypto’89, Lecture Notes in Computer Science No
435, Springer-Verlag, 1990. pp. 239-252.

[10] C.-P. Schnorr, “Efficient Signature Generation by Smart
Cards,” Journal of Cryptology, Vol. 4, No. 3, 1991, pp.
161-174. doi:10.1007/BF00196725

[11] R. Steinfeld and Y. Zheng, “A Signcryption Scheme
Based on Integer Factorization,” In: J. Pieprzyk, E. Oka-
moto and J. Seberry, Eds., Information Security Work-
shop, Lecture Notes in Computer Science, Vol. 1975,
Springer, Berlin, 2000, pp. 308-322.

[12] J. H. An, Y. Dodis and T. Rabin, “On the Security of Joint
Signatures and Encryption,” In: L. Knudsen, Ed., Ad-
vances in Cryptology—Eurocrypt 2002, Lecture Notes in
Computer Science, Vol. 2332, Springer, Berlin, 2002, pp.
83-107.

[13] M. Bellare and C. Namprempre, “Authenticated Encryp-
tion: Relations among Notions and Analysis of the Ge-
neric Composition Paradigm,” In: T. Okamoto, Ed., Ad-
vances in Cryptology—Asiacrypt 2000, Lecture Notes in
Computer Science, Vol. 1976, Springer, Berlin, 2000, pp.
531-545.

Appendix

I created a source code program that verifies my algorithm. Executing this program I could generate examples. The
step-by-step implementation of the algorithm is as follows:
1) Calculate Ya and Yb
double powA = Math.Pow(g, xA);
int pow_intA = Convert.ToInt32(powA);

http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1016/S0020-0190(98)00167-7
http://dx.doi.org/10.1007/BF00196725

Combining Public Key Encryption with Schnorr Digital Signature 108

int invA = modInverse(pow_intA, p);

2) Calculate k
int yB = Convert.ToInt32(textBox11.Text);
int x = Convert.ToInt32(textBox18.Text);
int p = Convert.ToInt32(textBox4.Text);
string cheie = (BigInteger.ModPow(yB, x, p)). ToString();

3) Calculate hash(k)
string HashDeCheie = _calculateHash(cheie);
textBox13.Text = HashDeCheie;

4) Split k in two keys k1 and k2 with the same lenght
byte[] k = Convert.FromBase64String(textBox13.Text);
byte[] k1 = new byte[k.Length/2];
byte[] k2 = new byte[k.Length - k.Length/2];
Buffer.BlockCopy(k, 0, k1, 0, k.Length/2);
Buffer.BlockCopy(k, k.Length/2, k2, 0, k.Length - k.Length/2);
byte[] test = new byte[k.Length];
k1.CopyTo(test, 0);
k2.CopyTo(test, k1.Length);

5) Calculate r using k2; r = hash (k2, m)
BigInteger p = BigInteger.Parse(textBox4.Text);
System.Text.ASCIIEncoding encoding = new System.Text.ASCIIEncoding();
byte[] keyByte = encoding.GetBytes(key);
HMACSHA1 hmacsha1 = new HMACSHA1(keyByte);
byte[] messageBytes =encoding.GetBytes(message);
byte[] hashmessage = hmacsha1.ComputeHash(messageBytes);

6) Calculate r using k2; transform the value obtained from hash in base 10
textBox19.Text = fn16to10(textBox15.Text).ToIntString();

7) Calculate the modulo p of the number obtained in base 10
BigInteger nr = BigInteger.Parse(textBox19.Text);
BigInteger p = BigInteger.Parse(textBox4.Text);
BigInteger rest = 0;
BigInteger.DivRem(nr, p, out rest);

8) Calculate s
BigInteger q = Convert.ToInt32(textBox5.Text);
BigInteger r = Convert.ToInt32(textBox20.Text);
BigInteger XA = Convert.ToInt32(textBox9.Text);
BigInteger X = Convert.ToInt32(textBox18.Text);
BigInteger prod = BigInteger.Multiply(r, XA);
BigInteger sum = X + prod;
BigInteger rest;
BigInteger.DivRem(sum, q, out rest);

9) Encrypt m using the k1

10) Calculate k
BigInteger rez2 = BigInteger.Pow(rez1, XB);
B igInteger invK = modInverseBI(rez2, p)

Copyright © 2012 SciRes. JSEA

