
Journal of Software Engineering and Applications, 2012, 5, 69-75
http://dx.doi.org/10.4236/jsea.2012.52011 Published Online February 2012 (http://www.SciRP.org/journal/jsea)

69

Design of a Performance Measurement Framework for
Cloud Computing

Luis Bautista1,2, Alain Abran2, Alain April2

1Department of Electronic Systems, Autonomous University of Aguascalientes, Aguascalientes, Mexico; 2Department of Software
Engineering and Information Technology, ETS University of Quebec, Montreal, Canada.
Email: lebautis@correo.uaa.mx, {alain.abran, alain.april}@etsmtl.ca

Received December 20th, 2011; revised January 21st, 2012; accepted February 5th, 2012

ABSTRACT

Cloud Computing is an emerging technology for processing and storing very large amounts of data. Sometimes anoma-
lies and defects affect part of the cloud infrastructure, resulting in a performance degradation of the cloud. This paper
proposes a performance measurement framework for Cloud Computing systems, which integrates software quality
concepts from ISO 25010.

Keywords: Cloud Computing; Measurement; Performance; ISO 25010; COSMIC; Maintenance

1. Introduction

Cloud Computing (CC) is an emerging technology aimed
at processing and storing very large amounts of data. It is
an internet-based technology in which several distributed
computers work together to efficiently process large amounts
of information, while ensuring the rapid processing of query
results to users. Some CC users prefer not to own the
physical infrastructure they are using: instead, they rent
cloud infrastructure, or a cloud platform or software, from a
third-party provider. These infrastructure application op-
tions delivered as a service are known as Cloud Services
[1].

One of the most important challenges in delivering
Cloud Services is to ensure that they are fault tolerant. Fail-
ures and anomalies can degrade these services, and im-
pact their quality, and even the availability. According to
Coulouris [2], a failure occurs in distributed systems (DS),
like CC systems (CCS), when a process or a communica-
tion channel departs from what is considered to be its
normal or desired behavior. CCS include all the technical
resources clouds have in order to process information, like
software, hardware, and network elements, for example.
An anomaly is different, in that it slows down part of a
CCS without making it fail completely, impacting the
performance of tasks within nodes and, consequently, of
the system itself.

A performance measurement framework (PMF) for CCS
should propose a means to identify and quantify “normal
cluster behavior”, which can serve as a baseline for de-
tecting possible anomalies in the computers (i.e. nodes in
a cluster) that may impact cloud performance. To achieve

this goal, methods are needed to collect the necessary
base measures specific to CCS performance, and analysis
models must be designed to determine the relationships
that exist among these measures.

The ISO International Vocabulary of Metrology (VIM)
[3] defines a measurement method as a generic descrip-
tion of a logical organization of operations used in meas-
urement, and an analysis model as an algorithm or calcu-
lation combining one or more measures obtained from a
measurement method to produce evaluations or estimates
relevant to the information needed for decision making.

The purpose of a measurement process, as described in
ISO 15939 [4], is to collect, analyze, and report data re-
lating to the products developed and processes implemented
within the organizational unit, to support effective man-
agement of the process, and to objectively demonstrate
the quality of the products.

ISO 15939 [4] defines four sequential activities: estab-
lish and sustain measurement commitment, plan the meas-
urement process, perform the measurement process, and
evaluate the measurement. These activities are performed
in an iterative cycle that allows for continuous feedback
and improvement of the measurement process, as shown
in Figure 1.

This work presents a PMF in which the two activities
recommended by the ISO 15939 measurement process
are developed: 1) establish measurement commitment;
and 2) plan the measurement process. This framework
defines the requirements for the CC performance meas-
urement, the type of data to be collected, and the criteria
for evaluating the resulting information. In future work,

Copyright © 2012 SciRes. JSEA

Design of a Performance Measurement Framework for Cloud Computing 70

Figure 1. Sequence of activities in a measurement process (Adapted from the ISO 5939 measurement process model [4]).

the design of a measurement method and a performance
measurement model for CCS will be developed.

This paper is structured as follows. Section 2 presents
related work on performance measurement for computer
based systems. Section 3 establishes the performance con-
text for CC by defining the basic concepts of performance
and developing an overview of the elements involved in the
measurement process. Section 4 presents the design of
the proposed PMF for CCS using COSMIC concepts. In
addition, this section introduces a number of key interna-
tional standards terms, related to performance, with which
we further detail the PMF described in this section. Fi-
nally, Section 5 summarizes the contributions of this re-
search and suggests future work.

2. Related Work

2.1. Performance Measurement Approaches
for Computer Systems

Currently, the measurement of computer-based system (CBS)
performance has been investigated in the computer sci-
ence literature from the following viewpoints: load bal-
ancing, network intrusion detection, and host state main-
tenance. For example, Burges [5] defines system per-
formance as “normal behavior”, and proposes that this
behavior can only be determined by learning about past
events and by modeling future behavior using statistics
from the past and observing present behavior. According
to Burges, modern computing systems are complex: they
are composed of many interacting subsystems, which makes
their collective behavior intricate and, at the same time,
influences the performance of the whole system.

Other authors have tried to predict the performance of
complex systems (computer clusters, for example) by
simulating cluster behavior using a virtual environment.
For instance, Rao [6] estimates the variation of cluster
performance through changes in task size, as well as the
time taken to solve a particular problem. He has also
built a predictive model using regression analysis to in-
vestigate the behavior of the system and predict the per-

formance of the cluster.
Other published approaches have focused on the reli-

ability aspects of large, high-performance computer sys-
tems in order to measure system performance. Smith [7]
observes that failure occurrence has an impact on both sys-
tem performance and operational costs. He proposes an
automatic mechanism for anomaly detection that aims to
identify the root causes of anomalies and faults. Smith [7]
has also developed an automatic anomaly detection frame-
work that is aimed at processing massive volumes of data
using a technique based on pattern recognition. In a case
study, Smith identifies health-related variables, which are
then used for anomaly detection. Each of these variables
is related to a system characteristic (such as user utiliza-
tion, CPU idle time, memory utilization, I/O volume op-
erations). Once the measurement data have been collected,
he proposes clustering categories, where an outlier de-
tector identifies the nodes that potentially have anomalies.
Finally, a list of those possible anomalies is sent to a system
administrator who has the expertise to quickly confirm
whether or not an anomaly exists.

Smith’s research presents interesting avenues for the
measurement of system performance from various perspec-
tives. Further work is needed to define an integrated model
of performance measurement, which would include the
perspectives of users, developers, and maintainers.

2.2. Jain’s System Performance Concepts
and Sub Concepts

A well known perspective for system performance meas-
urement is proposed by Jain [8], who maintains that a
performance study must first establish a set of perform-
ance criteria (or characteristics) to help to carry out the
system measurement process. He notes that if a system
performs a service correctly, its performance is typically
measured using three sub concepts: 1) responsiveness, 2)
productivity, and 3) utilization, and proposes a measure-
ment process for each. In addition, Jain notes that for each
service request made to a system, there are several possi-
ble outcomes, which can be classified in three categories:

Copyright © 2012 SciRes. JSEA

Design of a Performance Measurement Framework for Cloud Computing 71

the system may perform the service correctly or incor-
rectly, or it may refuse to perform the service altogether.
Moreover, he defines three sub concepts associated with
each of these possible outcomes which affect system
performance: 1) speed, 2) reliability, and 3) availability.
Figure 2 presents the possible outcomes of a service re-
quest to a system and the sub concepts associated with
them.

2.3. ISO 25010 Performance Concepts
and Sub Concepts

There are several software engineering standards on sys-
tem and software quality models, such as ISO 25010 [9],
which is a revision of the ISO 9126-1 [10] software qual-
ity model. The ISO 25010 standard defines software pro-
duct and computer system quality from two distinct per-
spectives: 1) a quality in use model, and 2) a product quality
model:

1) The quality in use model is composed of five char-
acteristics that relate to the outcome of an interaction when
a product is used in a particular context of use. This qual-
ity model is applicable to the entire range of use of the
human-computer system, including both systems and soft-
ware.

2) The product quality model is composed of eight char-
acteristics that relate to the static properties of software
and the dynamic properties of the computer system.

This product quality model is applicable to both sys-
tems and software. According to ISO 25010, the proper-
ties of both determine the quality of the product in a par-
ticular context, based on user requirements. For example,
performance efficiency and reliability can be specific con-
cerns of users who specialize in areas of content delivery,
management, or maintenance. The performance efficiency
concept proposed in ISO 25010 has three sub concepts: 1)
time behavior, 2) resource utilization, and 3) capacity,
while the reliability concept has four sub concepts: 1)
maturity, 2) availability, 3) fault tolerance, and 4) recov-
erability. In this research, we have selected performance
efficiency and reliability as concepts for determining the
performance of CCS. Both Jain’s proposal and the ISO
25010 concepts and sub concepts form the basis of our
definition of the performance concept in CC.

3. Definition and Decomposition of the
Performance Concept for
Cloud Computing

3.1. Definition of the Performance Concept
for Cloud Computing

Based on the performance perspectives presented by Jain
and the product quality characteristics defined by ISO
25010, we propose the following definition of CCS per-
formance measurement:

Figure 2. Possible outcomes of a service request to a system,
according to Jain [10].

“The performance of a Cloud Computing system is de-

termined by analysis of the characteristics involved in
performing an efficient and reliable service that meets
requirements under stated conditions and within the
maximum limits of the system parameters.”

Although at first sight this definition may seem com-
plex, it only includes the sub concepts necessary to carry
out CCS performance measurement from three perspec-
tives: 1) users, 2) developers, and 3) maintainers.

Furthermore, from the literature review, a number of
sub concepts have been identified that could be directly
related to the concept of performance, such as:
 Performance efficiency: The amount of resources used

under stated conditions. Resources can include soft-
ware products, the software and hardware configura-
tion of the system, and materials.

 Time behavior: The degree to which the response and
processing times and throughput rates of a product or
system, when performing its functions, meet require-
ments.

 Capacity: The degree to which the maximum limits of
a product or system parameter meet requirements.

 Resource utilization: The degree to which the amounts
and types of resources used by a product or system
when performing its functions meet requirements.

 Reliability: The degree to which a system, product or
component performs specified functions under speci-
fied conditions for a specified period of time.

 Maturity: The degree to which a system meets needs
for reliability under normal operation.

 Availability: The degree to which a system, product or
component is operational and accessible when required
for use.

 Fault tolerance: The degree to which a system, prod-
uct, or component operates as intended, in spite of the
presence of hardware or software faults, and,

 Recoverability: The degree to which a product or system
can recover data directly affected in the event of an in-
terruption or a failure and be restored to the desired state.

Copyright © 2012 SciRes. JSEA

Design of a Performance Measurement Framework for Cloud Computing 72

3.2. Definition of a Performance Context
Diagram for Cloud Computing

Now that the CCS performance measurement concepts
and sub concepts have been identified, a context diagram
will be helpful that shows the relationships between the
performance sub concepts proposed by ISO 25010 and
the performance measurement perspective presented by
Jain, as well as the logical sequence in which the sub con-
cepts appear when a performance issue arises in a CCS
(see Figure 3).

In this figure, system performance is determined by
two main sub concepts: 1) performance efficiency, and 2)
reliability. As explained previously, when a CCS receives a
service request, there are three possible outcomes (the
service is performed correctly, the service is performed
incorrectly, or the service cannot be performed). The out-
come will determine the sub concepts that will be applied
for performance measurement. For example, suppose that
the CCS performs a service correctly, but, during its execu-
tion, the service failed and was later reinstated. Although
the service was ultimately performed successfully, it is
clear that the system availability (part of the reliability
sub concept) was compromised, and this affected CCS
performance.

As illustrated above, CCS performance can be based
on two main concepts: 1) performance efficiency, and 2)
reliability. Performance efficiency will determine the amount
of resources used for a period of time, while reliability
will determine the degree to which a system successfully
performs specified functions during the same period. Re-
sources include all CCS elements, such as: software ap-
plications, hardware system, and network system.

4. Design of Performance Measurement
Framework for Cloud Computing

4.1. The COSMIC Measurement Method Model

The ISO 19761 COSMIC v 3.0 Functional Size Meas-
urement Method (FSM) [11] defines an explicit model of
software functionality derived from the functional user
requirements (FUR). FUR describe the functionality that
the software or system is to execute (sometimes also known
as system capabilities). According to this method, each
FUR is represented by one or more functional processes
within the piece of software to which it has been allo-
cated. In turn, each functional process is represented by
sub processes, which can be of the data movement type
or the data transform type.

Based on this explicit model of functionality, four data
movement types are recognized (Entry, Exit, Read, and
Write). Figure 4 shows the COSMIC model of generic
software adapted from Figure 12.4, p. 256 of [12]).

According to the COSMIC model [12], software is de-
limited by hardware, as shown on the left-hand side of

Figure 3. Context diagram for Cloud Computing perform-
ance measurement.

Figure 4. COSMIC model of generic software-adapted from
Figure 12.4 of [12].

Figure 4: software can be used by a user, an engineered
device, or other software through I/O hardware, such as a
keyboard, a printer, a mouse, etc. In addition, as depicted
on the right-hand side of Figure 4, software is delimited
by persistent storage hardware, like a hard disk. Thus,
software functionality can be viewed as a flow of data
groups characterized Entry, Exit, Read, and Write data
movements. The Entry and Exit data movements allow
the exchange of data with the user across the I/O hard-
ware/software boundary, and the Read and Write data
movements allow the exchange of data between the soft-
ware and the storage hardware.

Copyright © 2012 SciRes. JSEA

Design of a Performance Measurement Framework for Cloud Computing 73

4.2. Performance Measurement Framework
for Cloud Computing Systems

Sarayreh [13] notes that different abstractions are typi-
cally used for different measurement purposes. For ex-
ample, in real-time software, users are typically replaced
by engineered devices that interact directly with the soft-
ware; that is, the users are I/O hardware. In other domains,
like business application software, for example, the ab-
straction commonly assumes that the users are one or more
humans who interact directly with the software, ignoring
the I/O hardware/software boundary.

Based on the COSMIC model of generic software and
the abstractions mentioned above, our proposed design
for the generic PMF for CC is presented in Figure 5.

The left-hand side of Figure 5 presents the CCS. En-
tries are the detailed attributes that determine CCS per-
formance: for example, system attributes such as mem-
ory use, CPU loads, network information, etc., as well as
user application attributes, such as successfully performed
tasks, error tasks, etc. These attributes are used to quan-
tify the efficiency and reliability concepts through vari-
ous measurement functions to be able to satisfy func-
tional requirements.

These measurement functions provide an interpretation
of the system attributes, i.e. they assign values to the
properties. A target value of the attribute measure repre-
sents a system requirement, i.e. the required value of the
availability property. Similarly, the actual value of the
measurement represents the observed level of satisfaction
of the requirement.

So, the above measurement functions share common
base measures between the concepts using intermediate
Entries and Exits as communication channels. A base
measure is the result of the measurement of an attribute
obtained through a measurement method. The right-hand
side of the figure shows the system that stores the func-
tion results to be used to determine CCS performance
through, for example, an analysis model.

Figure 5. Generic performance measurement framework for
CC.

4.3. Identification of Terms Associated with
Performance

Once the generic PMF for CCS has been defined, the
next step is to identify the various terms related to per-
formance concepts (refer to Figure 3) that represent the
system attributes, and which can be measured to assess
whether or not the CCS satisfies the system requirements.
We chose the ECSS [14] and ISO 25010 [9] standards to
carry out an inventory of requirement terms (both stan-
dards are recognized guidelines used in academia and by
practitioners to define both hardware and software sys-
tems). A number of terms have been identified that rep-
resent key aspects of measurement, and these have been
included in the proposed performance framework.

These terms are grouped into functions, which are re-
sponsible for conducting the measurement process using
a combination of base measures. They are associated with
the corresponding ISO 25010 quality concepts, as pre-
sented in Table 1.

Table 1. Terms associated with performance sub concepts.

Term Functions ISO 25010 Concepts

Failures avoided
Failures detected
Failures predicted
Failures resolved

Failure function
Maturity
Resource utilization
Fault tolerance

Breakdowns
Faults corrected
Faults detected
Faults predicted

Fault function
Maturity
Fault tolerance

Tasks entered into recovery
Tasks executed
Tasks passed
Tasks restarted
Tasks restored
Tasks successfully restored

Task function

Availability
Capacity
Maturity
Fault tolerance
Resource utilization
Time behavior

Continuous resources time
Down time
Maximum response time
Observation time
Operation time
Recovery time
Repair time
Response time
Task time
Time of I/O devices occupied
Transmission response time
Turnaround time

Time function

Availability
Capacity
Maturity
Recoverability
Resource utilization
Time behavior

Transmission errors
Transmission capacity
Transmission ratio

Transmission
function

Availability
Capacity
Maturity
Recoverability
Resource utilization
Time behavior

Copyright © 2012 SciRes. JSEA

Design of a Performance Measurement Framework for Cloud Computing 74

4.4. Detailed Performance Measurement
Framework

Now that the terms related to the performance concepts
have been identified and categorized, we position the
resulting functions (on the right-hand side of Figure 6) in
a more detailed view of the PMF for CC. These functions
would be interconnected through an intermediate service
that shares common base measures, reducing the number
of operations in the measurement process at the time of
calculation.

The resulting PMF is composed of seven quality con-
cepts which are presented on the left-hand side of Figure
6. Each concept is measured using the five basic func-
tions that will share base measures through an intermedi-
ate service (IS). This means that the IS will share results
from the measurement processes of each function.

It is important to mention that this PMF proposal ad-
dresses the generic requirements for capturing the data
needed for the context diagram presented earlier, in Fig-
ure 3. These data can be collected using automated data
collection software.

4.5. Example of Measurement of the
Availability Concept

Using the proposed PMF for CC, we can demonstrate
how to measure the Cloud availability concept. This
concept (shown in Table 1) is determined by using three
functions: 1) the time function, 2) the task function, and
3) the transmission function. For example, a time func-
tion can use several different measurements, such as
CPU user utilization, job duration, and response time.
These measurements are obtained through a measure-
ment method that uses a data collector to obtain the base
measures needed. In turn, these base measures are input-
ted to a time function that calculates a derived measure
of the time concept. The intermediate service (IS) com-
bines the derived measures of each function to determine
a measurement of the availability concept that contrib-
utes to CCS performance, along with the other concept
measures defined in the framework.

It is important to mention that this measurement pro-
cedure is similar for all the concepts. The measures are
then grouped together, depending on the desired perspec-
tive: user, developer, or maintainer.

Finally, the performance analysis of the CCS is sup-
ported by an analysis model to help interpret the results
by relating them to the initial performance requirements.

5. Summary, Contributions, and
Future Work

Cloud Computing is an Internet-based technology aimed
at processing very large amounts of data in a more effi-
cient way, and one of its most important challenges is to

Figure 6. Detailed performance measurement model for CC.

deliver a high level of tolerance to faults and anomalies.
This paper proposes a performance measurement frame-
work for Cloud Computing systems. Such framework
should define the elements necessary to measure “cluster
behavior” using software quality concepts. The design of
our framework is based on the concepts of metrology,
along with aspects of software quality directly related to
the performance concept, which are addressed in the ISO
25010 international standard. We found through our lit-
erature search that the performance efficiency and reli-
ability concepts are closely associated with the meas-
urement perspective of Jain. As a result, this research
proposal integrates ISO 25010 concepts into Jain’s per-
spective for the performance measurement of informa-
tion systems. The terminology and vocabulary associated
with performance are aligned with many different inter-
national standards, such as ECSS. This first performance
measurement framework for Cloud Computing systems
(see Figure 5) was designed based on the COSMIC pro-
posal that models generic software, and includes the fun-
ctions required to measure performance.

This research work proposes a novel performance meas-
urement framework for Cloud Computing systems. It de-
fines the basis for the design of a measurement method
and will make it possible to measure the Cloud Comput-
ing concepts that are directly related to performance.

Further research is needed for the design of measure-
ment methods and mechanisms to analyze the perform-
ance of a real Cloud Computing application, which could
contribute to validating our proposed performance meas-
urement framework. Such evaluation work will include
the definition and description of various derived meas-
ures which will be mapped to the functions identified
during our literature review. We therefore expect that in
future research a model will be proposed to analyze the
“normal node behavior” of a Cloud Computing Cluster,
in order to enable the detection of possible anomalies that

Copyright © 2012 SciRes. JSEA

Design of a Performance Measurement Framework for Cloud Computing

Copyright © 2012 SciRes. JSEA

75

affect Cloud Computing system performance.

REFERENCES
[1] H. Jin, S. Ibrahim, T. Bell, L. Qi, H. Cao, S. Wu and X.

Shi, “Tools and Technologies for Building Clouds,”
Cloud Computing: Principles, Systems and Applications,
Computer Communications and Networks, Springer-Verlag,
Berlin, 2010. doi:10.1007/978-1-84996-241-4_1

[2] G. Coulouris, J. Dollimore and T. Kindberg, “Distributed
Systems Concepts and Design,” Addison-Wesley, 4th
Edition, Pearson Education, Edinburgh, 2005.

[3] ISO/IEC Guide 99-12, “International Vocabulary of Me-
trology—Basic and General Concepts and Associated
Terms, VIM,” International Organization for Standardiza-
tion ISO/IEC, Geneva, 2007.

[4] ISO/IEC 15939, “Systems and Software Engineering—
Measure,” International Organization for Standardization
ement Process, Geneva, 2007.

[5] M. Burgess, H. Haugerud and S. Straumsnes, “Measuring
System Normality,” ACM Transactions on Computer
Systems, Vol. 20, No. 2, 2002, pp. 125-160.
doi:10.1145/507052.507054

[6] A. Rao, R. Upadhyay, N. Shah, S. Arlekar, J. Ragho-
thamma and S. Rao, “Cluster Performance Forecasting
Using Predictive Modeling for Virtual Beowulf Clusters,”
In: V. Garg, R. Wattenhofer and K. Kothapalli, Eds.,
ICDCN 2009, LNCS 5408, Springer-Verlag, Berlin, 2009,
pp. 456-461.

[7] D. Smith, Q. Guan and S. Fu, “An Anomaly Detection
Framework for Autonomic Management of Compute

Cloud Systems,” IEEE 34th Annual IEEE Computer
Software and Applications Conference Workshops, Seoul,
19-23 July 2010, pp. 376-381.

[8] J. Raj, “The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design, Meas-
urement, Simulation, and Modeling,” Wiley-Interscience,
New York, 1991.

[9] ISO/IEC 25010:2010(E), “Systems and Software Engi-
neering—Systems and Software Product Quality Re-
quirements and Evaluation (SQuaRE)—System and Soft-
ware Quality Models,” International Organization for Stan-
dardization, Geneva, 2010.

[10] ISO/IEC 9126-1:2001(E), “Software Engineering—Pro-
duct Quality—Part 1: Quality Model,” International Or-
ganization for Standardization, Geneva, 2001.

[11] ISO/IEC-19761, “Software Engineering—COSMIC v 3.0—
A Functional Size Measurement Method,” International
Organization for Standardization, Geneva, 2003.

[12] A. Abran, “Software Metrics and Software Metrology,”
John Wiley & Sons Interscience and IEEE-CS Press, New
York, 2010. doi:10.1002/9780470606834

[13] K. Sarayreh, A. Abran and L. Santillo, “Measurement of
Software Requirements Derived from System Reliability
Requirements,” Workshop on Advances on Functional
Size Measurement and Effort Estimation, 24th European
Conference on Object Oriented Programming, Maribor,
20-22 June 2010.

[14] ECSS-E-ST-10C, “Space Engineering: System Engineer-
ing General Requirements,” European Cooperation for
Space Standardization, Requirements & Standards Divi-
sion, Noordwijk, 2009.

http://dx.doi.org/10.1007/978-1-84996-241-4_1
http://dx.doi.org/10.1145/507052.507054
http://dx.doi.org/10.1002/9780470606834

