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ABSTRACT

A model of viral infection of monocytes population by dengue virus is formulated in a system of four ordinary differen-
tial equations. The model takes into account the immune response and the incidence rate of susceptible and free virus
particle as Beddington-DeAngelis functional response. By constructing a block, the global stability of the uninfected
steady state is investigated. This steady state always exists. If this is the only steady state, then it is globally asymptoti-
cally stable. If any infected steady state exists, then uninfected steady state is unstable and one of the infected steady
states is locally asymptotically stable. These different cases depend on the values of the basic reproduction ratio and the
other parameters.

Keywords: With-In Host Model; Dengue Viral Infection; Basic Reproduction Ratio; Beddington-DeAngelis Immune

Response

1. Introduction

Dengue is an infections mosquito-borne viral disease. It
is estimated that about 50 million infections occur annu-
ally in over 100 countries [1]. There is no specific treat-
ment for curingdengue patients. Hospital treatment in
general is given as supportive care which includes bed
rest, antipyretics, and analgesics. Most dengue infections
are asymptomatic. Few of them suffer dengue fever and
dengue haemorrhagic fever, which may end up in fata-
lity.

Dengue virus is one of the most difficult arboviruses to
isolate. There are four serotypes of the dengue virus and
each of the serotype has numerous virus strains. Infection
with one dengue serotype may provide lifelong immunity
to that serotype, but there is no cross-protective immu-
nity to other serotype, [2]. Identification of the primary
target cells of dengue virus replication in infected human
body has proven to be extremely difficult. It is generally
believed that the target cells of dengue virus are mono-
cytes or its differentiated cells the macrophages [3].

It is usually believed that dengue virus is quickly cleared
in human body within approximately 7 days after the day
of sudden onset of fever [1]. Naturally this clearing pro-
cess is done by the immune system which is a result of
complex dynamic reactions. Following [4], in this paper
we try to understand the process using a mathematical
model.

Mathematical modeling of dengue disease transmis-
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sion in human and mosquito populations has been done
since the beginning of last century. Some of the recent
models could be seen in [2-5]. Several studies on infec-
tion model within human body have been done for vari-
ous cases [2,3] and [5-11]. Meanwhile, mathematical
modeling for with-in host dengue viral disease is quite
new.

The model for with-in host dengue viral infection with
Beddington-DeAngelis incidence rate and immune re-
sponse is as following.

ds aSv
—=u-aS—-—————,
dt I+ pS+a0V
ﬂ:aS—V_ﬁl]_V]Z,
dt 1+pS+aoV 1)
LU —

1+ pS+aV
2 _ rvdiz-57
dt

nv dn
where, =f+-— and ¢ =c+—.
B=p 5 | 5

The constant a > 0, is the rate constant characterizing
infection of the cells. The constants p,® are positive.

In the above S(¢),1(¢),V(¢) and Z(t)+% repre-
sent the density of susceptible monocytes, infected

monocytes, free virus particles and immune cells in 1 pl
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blood at time ¢, respective. The production of susceptible
monocytes by bone marrow is assumed at a constant rate

. . .1
i and the life span of susceptible monocytes is — . The
a

flow from susceptible monocytes to the infected mono-
cytes depends on the incidence rate of susceptible mo-
nocytes and free virus particle. This rate is shown by

SV aS . ..
————— where ————— is the incidence re-
1+ pS+aV 1+ pS+aV

sponse of susceptible monocytes to free virus particles.
The period of infected monocytes is assumed constant as

1 . C e
—. We assumed virus multiplication is at constant rate

k and the virus clearance rate is at constant rate y. We
also assumed the immune cells are produced at constant

- |
rate 7 and their life span is 5 Moreover we assumed

there is stimulation of immune cells production due to
the increase of infected cell which is proportional to the
density infected monocytes at a constant rate ¢ as well as
from the contacts with infected cells at the rate d and the
immune cells will eliminate the infected monocytes at a
constant rate v. Finally, the positive constants p and
@ have some biological meanings.

The above model is valid for only one serotype of
dengue virus circulate in an infected host and dengue
infects monocytes in blood stream.

For more detail the reader is referred to [4] and refer-
ences therein.

The local stability of the equilibrium points of the sys-
tem (1) for Lotka-Voltera functional response i.e.
¢(S) =aS, has been discussed in [4]. The model (1) is a
generalization of the self-regulating cytotoxic T lym-
phocytes (CTL) response model. The predator-prey like
CTL response model and the linear immune response
model in chapter 6 of [5].

In this paper, we will analyze the global of stability of
the viral free equilibrium for Beddington-DeAngelis in-
aS
1+ pS+aV

that if this equilibrium is the only rest point of the system
(1), then it is globally asymptotically stable. If there are
some other equilibria, then the local stability of them
depends on the values of the parameters.

cidence response, . In fact we will show

2. Global Stability of the Uninfected
Equilibrium

In this section, at first we will find the equilibrium points
of the system (1) and the eigenvalues of this system at
these points. This information leads us to prove the locally
asymptotical stability of the equilibrium points.
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At an equilibrium point of the system (1) we must
have
B aSv 0.

1+ pS+aoV
_ WV i viz-o,
1+ pS+0V 2)
_aSr _0

1+pS+aV
cl+dlZ-6Z=0

u—as

kKl —yV

(1—asS)(1+pS)

From the first equation we obtain, = .
(a+oa)S-awu

Substituting this value of ¥ into the third equation yields,

-aS 1+ pS

= (,u ¢ ) }/( P ) +1|. From the fourth equa-
k (a + a)a)S —ou

. . cl o

tion we obtain Z =——— . Substituting these values of

V,I and Z into the second equation yields,

o rEes) Y
gt st .
k? '

5—dkﬂl(y—aS)( 7(1+p5) +1]

aS—o(u-as)
If, p—aS =0, then from this, we have S = Tl . Thus
a
Vo = [ﬁ,o, 0,0J is one of the equilibrium points of the
a
system (1). If,

2
(ﬂ_as)(y(“—ps)+1j
+vclﬂ12 aS—a)(,u—aS) _0
IS 1 o
5;%(#_“5) M+1
k aS—-o(u-as)
then
q3S3+q252+qlS+q0 =0, (3)
where,
q, = —dkap, (ea+a)(yb+ea+a) ,
AM
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q, =6k* (a+ ea)2 +dkap, (y —eu)(a+ea)
+ [—e,udkoz/i’l +ave, B’ —dap’ —(a+ae)(dkup, + ﬂlék)](}/b +tea+a),

q, =—2eudk’ (a+ea)+(—adkpp, — adkp, —eakdP, —dap, +ave, B’ )(;/—e,u)

+ (edk,uz,b’l2 +eukdB, +dup’ — uve,f’ )(7/b +ea+ a)

and

gy = & 175 (dkup, + ko, ) (a+ea)(y —ep)+(y —eu)(duB} - uve,Bl)

In the following we consider the stability property of
the equilibrium point y,. In order to do this we check

aV (1+oV)
-7
(1+ pS+ V)
av (1+ V)

(1+,oS+coV)2

—aV (1+oV)
(1+pS+a)V)2
0 q+dZ

—p-vZ

k

So the valueof J at y, is

iy

-a 0 a 0
1+pﬁ
[24
M

0 -p @ 0
J(yo): l+pﬁ
[24
M

0 k —y—%— 0
l+pﬁ
[24

10 ¢ 0 -5 |

The eigenvalues of J ( yo) are the roots of the charac-
teristic polynomial

ot
x+a)(x+0)| x +| B +y+ X
(x+a)(x+8)| ¥ +| A <
1+pﬁ
a
Pad
_(k_ﬁl) +Byr |=0.
1+ p—
a

Thus, x, =—a and x, =-J are two of the eigen-
values and the other two are the roots of
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the sign of the eigenvalues of Jacobi matrix of (1) at y,.
The Jacobi matrix is

-aS(1+ pS)
(1+pS+a)V)2
S(1+ pS
_as(tepS)
(1+ pS+aV) “)
aS(1+ pS) 0
(1+,0S+a)V)2
0 dl -9 |
oM H
| By+—E— |x—(k-8) 2 |+ By=0.
1+pﬁ 1+pﬁ
a a
These roots are
H
—| B+y+—2|-JA
l+pﬁ
X, = @ ,
2
PEad
| B+y+—2 |+JA
1+pﬁ
x, = @ ,
2
2
a =
where, A=|f —y-——% +4k—%
7 7
1+p— 1+p—
a a

Clearly, x,, x, andx; have negative real part. If
x, has negative real part, then the equilibrium y, is
locally asymptotically stable. But x, is negative if and

M

only if, VA <| B +y+—%&
1+p—

a

. This condition equals
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k at
tO, R ¢ AR

B y+(p+a)

. This number is called

the basic reproduction ratio [7].

Therefore we have the following theorem.

Theorem 2.1. If, R, <1, the equilibrium point y, is
locally asymptotically stable and if R, >1, the equilib-
rium y, is unstable.

Now we will show that if, R, <1, then the equilib-
rium, y, is globally asymptotically stable. In order to
see this, first of all consider the following domain in the
(S,1,V,Z) space.

D, ={(S.1,V,Z):0<S<a,I>0,V >0,Z>0}, a>

R Ix

It follows that the flow generated by that system (1.1)
gets into D, on the boundary of D,.Let D=D, for,

a=* Thus D isa global attractor. Now in D con-

a
sider the following set for C >0:

0, :{(S,I,V,Z):0<S <
(24

1>0,V>0,Z>0andK(S,1,V,Z)< C},

where, K(S’I’V’Z)ZAI(E—SJ+AZI+A3V+A4Z

a
and
4 =p(r+¢" )(1-R’)
- dko’ 4,
? [(jf—i-go* +1)(ﬂd—vc)—dk(p1
f OPdvo4
[(7/4—;0* +1)(,Bd—vc)—dk(p*]
4= vke' A,
! [(74—;0* +1)(,6’d —vc)—dk(p*J
ol
and ¢ =—% .
1+pﬁ
a

If we differentiate K (S,1,V,Z) along the orbits of
the system (1), we obtain:

Copyright © 2012 SciRes.

K 4§+ A AT+ A7
dt

=4 (u-aS-Ve(S,V))
+4,(Vo(S,V)-B1-vIZ)
+4, (K =yV =Vo(S.V))
+A4,(cI+dIZ-6Z)
=—A(u-aS)+(-B A4, +kd, +c4,)1
+(p4 +pd —(7+0)4,)V
~8A,Z +(dA, —i4,)1Z
aS
1+ pS+aV

face K(S,1,Z,V)=C of the boundary of Q., we
have p—aS>0 and ¢p—¢ <0 and

Here, ¢:=¢(S,V)= . Since on the sur-

B (7+¢*)(1—R02) > 0, therefore %< 0. Thus the flow

gets into Q. on, K(S,/,Z,V)=C . Hence the flow
gets into Q. from its boundary. Therefore Q. is an
attractor in D for all C>0. But y, =e,0.. Thus
¥, 1s a global attractor. Thus we have proved the fol-
lowing theorem.

Theorem 2.2. If, R, <1, then y, ,the uninfected
equilibrium is the only equilibrium of the system (1).
Moreover this equilibrium is globally asymptotically
stable.

Since y, is globally asymptotically stable for R, <1,
any other equilibrium points of the system (1) cannot
exist for R, <1. Therefore, y, is the unique equilib-
rium point for R, <1.

3. Stability of the Other Equilibrium Points

In this section, we consider the stability of the other rest
point of the system (1). In order to this, we consider the
Equation (3). First, we consider this equation for ¢, =0
and then for ¢, #0.

There are two cases for ¢; =0 as follows.

Casel. ¢c=d=0

In this case, the system (1) has two equilibrium points,
¥, and another one. To see this, from the first equation

aSVv

1+ pS+aV

from the fourth equation we get Z =0. Substituting
these values of V' and Z into the second equation

-

1

of (2) we obtain, —aS = . Since ¢=d =0

5 . By using the value of / and the

(k= B)(u-asS)
By

values into the Equation (3), we obtain,

yields, 7=

third equation we get V = . Using these
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7B, + ou(k - f) .
(k=) (a+aw)-pyp,

Therefore, we obtain

S =

-as,) (k- -as
ylz(So,(ﬂ a 0),( f)lu-a 0),0] where
A Br
k—
S, = 7+ ou ﬂl) as the second rest point of
(k=) (a+aw)-pyp,
the system (1).

Notice that this rest point exists if yg—aS,>0, or

Sy < 2o S, = £ , this rest point is the same as
a a

7
as, ag
1+ pS, + oV, 1+pﬁ’

a

or

Now, we consider the local stability of the equilibrium
y,. By using the formula (4), the value of Jacobi matrix
at y, is

-a-4 0 -B 0
A -5 B -vi,
J = )
() -4 k —y-B 0
0 0 0 -0
- 1
where IOZM’ A:M,
B (1+pS, +aVy)
B aSO(1+,oSO)2 and Vo:(k—ﬁl)(,u—aSo).
(1 + pS, + a)VO) Br

We calculate the eigenvalues of J ( yl) as follow:
det(xZ,., —J ()

x+a+ A 0 B 0
-4 x+p -B vi,
|4 &k x+y+B 0
0 0 0 X+0

:(x+5)(x3 +[a+y+ B +A4+B]x*
+[Br+(B—k+a)B+(f+y)(a+4)]x
+[ﬂlay+(ﬁla—ka)3+/)’lyz4])=0.

Thus one of the roots is x =—¢ . The other roots are
given by

Copyright © 2012 SciRes.

x +q2x2 +qx+q, =0.

Here g, =a+y+pB +A4A+B,
¢, =By+(B -k+a)B+(B +7)(a+A4) and
9, = ﬁ1a7+(ﬁ1a _ka)B+1817A .

By substituting the value of 4,B and V, in g,,q,
and ¢, we see that ¢,,q, and ¢, are positive. More-
over, it is easy to check that, ¢,q, >¢,. By the Rouths
Hurwitz Criteria, all roots of the cubic polynomial have
negative real part. Therefore we have the following
theorem.

Theorem 3.1. If, R, >1, then the equilibrium point
y, exists and is locally asymptotically stable. Moreover
the equilibrium y, exists and is unstable.

Remark 3.1. Since, the rest points and the eigenvalues
depend continuously on the parameters, thus for small
values of ¢>0 and >0, y, exists and is locally as-
ymptotically stable.

Case2. c=n=0,d#0

In this case, the system (1) has three equilibrium points
and y, is one of them. Since c¢=7=0, the fourth
equation of the system (1) gives dIZ—0Z =0. There-

fore, Z=0 or I= g For Z =0, substituting the value

of Z into the second equation yields, / = “ —ﬂaS . By

using the value of / and the third equation we get,

k- -aS
V= % . Substituting values of ¢ and 7
4
into the Equation (3), we obtain,
k—
S, = LRk a),u( ﬁ) . Thus, we get
(k—ﬁ)(a+aa))—p7ﬁ
-as.) (k- —as.
= (S*, (ﬂ @ ),( ,b’)(,u @ ),0] as another rest
B By

point of the system (1).
For I= g, by substituting this value of 7 in the sec-

ond equation of the system (1), we obtain
d(,u—aS)_ﬁ_ d(,u—aS)—ﬂ5
Vo v 172)
ké—d(p—as)
dy
this value of V' into the first equation of the system (1),
we obtain the following quadratic equation.

Z = . Then from the

third equation we get, V = . By using
(apy+aa +oa’ )S2

ko
+ 7(a+aa))+ay—p,u}/—a,u—2ya)a S

wkd
4—((1)#2 —y,u—’uTj =0.
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If k6-d(pu—aS)>0 and d(u-aS)-p5>0,

then , =(S**’é’k5 d(u aS**),d(,u as..) w}
d yd vo

is another equilibrium point of the system (1) where S..
is the positive root of the above quadratic equation.

In the following, we consider the stability property of
these points.

At first consider it for y, . Here we check the sign of
the eigenvalues of Jacobi matrix of the system (1) at y, .
From the formula (4) we have

4 -B B —vli,
J(y)=
(yl) 4 b —yoB .
0 0 0 dL.-¢5
where L:M, Azm’
P (1+ pS. +aV.)
po S UHpS) gy (k=p)luzas)
(1+,DS*+(0V*) ﬂ}/

We calculate the eigenvalues of J(y/) as follows:

de‘c(xLM -J(» '))

x+a+A 0 B 0

-4 x+p -B vi,

- A -k x+y+B 0
0 0 0 x+0—dl.

=(x+5—d1*){x3 +[a+y+B+A+B]x
+[Br+(B-k+a)B+(B+y)(a+A)]x
+[ﬂa7+(ﬂa—ka)3+ﬂyA]} =0.

Thus one of the roots is x =dh, —6 . The other roots
are given by

X +q2x2 +q,x+¢q,=0.

Here g, =a+y+pf+A+B,
q,=Pr+(f-k+a)B+(B+y)(a+A) and
qy = Bay + By A+(pa—ka)B.

By substituting the value of 4,8 and V, in g,,q,
and ¢, we will see that ¢,,q, and ¢, are positive.
Moreover, it is easy to see that, g,q, >¢q,. By the
Rouths Hurwitz Criteria, all roots of the cubic polyno-

. . 1)
mial have negative real part. If 1, < 7 or

(du—pS)—adS. <0, then real part of all of the eigen-
values are negative. Therefore the point y| is locally
asymptotically stable.

Now we consider the stability property of the other
equilibrium point, y,. From the formula (4) we have

Copyright © 2012 SciRes.
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-a-A4 0 _B 0
vo
A -p-vZ. B ——
J(yz): ﬂ 4 a .
A ko -y-B 0
where I*zé’ Z**:d(ﬂ—aS**)—ﬂé’
d Vo
_ aV**(1+a)V**)2’ K*:k(s-d(ﬂ_as**) »
(1+pS.. + aV..) v
aS..(1+_S..)
(l + pSu + V., )2 .

The eigenvalues of the matrix J(y,) are given by
the algebraic equation,

det(xZ,., —J (»,))

x+a+A4 0 B 0
-4 x+p+vZ. -B vo

= dl=0,
—k x+y+B 0
0 -dZ.. 0 X

or
x| (x+a+A)((x+B+vZ.)(x+y+B)-kB)
+B(kd—A(x+B+vZ.))]
—-dZ.. [?AB—?(x+a+A)(x+y+B)} =0.
Then from the above equation we get
X +a+ fry+BHvZa+ A)X
+[ Bla+y)+ay+(a+y+38)vZ.+vBZ.,
+(a+B-k)B+vZ.A+(B+y)A]x’
+[apy +adv+ySv+vyaZ. +avBZ.
+(af—ak+6v)B+(yvZ. + By +5v)A]x
HvS(ay +aB+yA]=0.

By considering the value of Z,. it follows that all of
the coefficients of the above equation are positive, then
from Routh Hourwitz Criteria we see that all of the roots
have negative real parts. Therefore we have the following
theorem.

Theorem 3.2. For ¢=n=0,d#0 and R,>1, we
have the following results.

1) If du—-p6<0, the equilibrium points y, and
¥, are the only rest points of the system (1), then y, is
unstable and y, is locally asymptotically stable.

2)If du—p5>0, then for S, >@, the equi-
[04
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librium y;, is locally asymptotically stable and for
s, <dH=Po
ad

¥, and y/ are the only two rest points of the system (1)
and y, does not exist.

, it becomes unstable. If k6-du<0,

)If dyu—pS>0 and KO g dH=PO
ad ad

then the equilibrium y, exists and is locally asymptoti-
cally stable. Moreover the equilibrium points y, and
v, are unstable.

Remark 3.2. If dyu— 6 <0, the point y, does not
exist, therefore the point y, is the only endemic equi-
librium point of the system (1). Also, for du—£6 >0
and S, >M

ad
equilibrium point.

Remark 3.3. 1) From continuous dependent of the
equilibrium points and eigenvalues to the parameters,
Theorem 3.1 and 3.2 must be valued for ¢, >0 and
small.

2) For the case, ¢, #0 and large, if R, <1, the point

, the point y; is the only endemic

Vo = (ﬁ,o, 0,0) is the unique equilibrium of the system
a

(1) which is globally asymptotically stable. If R, >1,
the system (1) has a unique endemic equilibrium point,

(S*,I "V.Z *) satisfying in the equations
\_lias)(1+p)
(a+oa)S-ou’
[:(,u—aS) }/(H'DS) +11, Z:i and the
k (a+a)a)S—a),u o—dl

Equation (3). Here stability property of this point is not
shown.

4. Numerical Simulation

For the following numerical simulations, we use para-
meters of T-cells as the parameters of immune cells, those

are 1 =280 cell/ (day . ul) , azé days. The estimated va-

lue of 7 is obtained by assuming that the equilibrium
value of the density of immune cells in the absence of
infection is 2000 cells.

In this model the endemic status of the disease depends
on the individual response toward incoming viruses. The
larger the invasion rate a, the chance is higher to catch
the disease. On the contrary the increase of the elimination
rate v of infected cell, the risk of infection is lower.

For p:a):l,%:ly, 1 =0.265 cell/(day - pl),
£=057=08¢=0.01%k=20,v=0.001,d =0.03, we

have

Copyright © 2012 SciRes.
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For p=1, =0 we obtain the same result in the
above table.

If p=0,w=1 then for the same value of parameters
we have the following table.

5. Conclusions

In order to understand the main characteristic of Dengue
mystery, the author in [4] assumed that this virus can be
eliminated by immune response which is described by the
last equation of the system (1).

By using linear incidence rate of susceptible and free
virus particle, they analyzed the existence of the endemic
virus equilibria.

In this paper, from the analysis of the endemic
equilibria it is found that, for Beddington DeAngelis in-
cidence rate of susceptible and free virus particle, the
same results are valid.

The reson for this correspondence is that in both models,
the feature of the immune response is described by the
term 7+cl +dIZ . However, the parameter p in Bed-
dington DeAngles makes the elimination of dengue virus
by immune response in a shorter time. This fact can be
seen by comparing Tables 1 and 2.

Table 1. Status of equilibrium points of system (1) in the case
p=w=1.

Status of system (1)

‘ R, Equiliburia points Statuse of stability
0.001 0.2041 ¥, =(240,0,0,0) Globally stable
0.002 0.2885 ¥, =(240,0,0,0) Globally stable
0.003 0.3531 ¥, =(240,0,0,0) Globally stable

Table 2. Status of equilibrium points of system (1) in the case
p=0, w=1.

Status of system (1)

R, Equiliburia points Sst?atgisl?t;f
¥, =(240,0,0,0) Un stable
0.001 2.7811 »= (239.3557,0.3599, 0.7292,0) Unstable
b2 Not exist
¥, =(240,0,0,0) Un stable
0.002 3.5452  y,=(238.6419,0.7586,18.400,0)  Unstable
», Not exist
¥, =(240,0,0,0) Un stable
0.003 3.9844  y =(237.9324,1.1549,28.0127,0)  Unstable
b2 Not exist
AM
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By Theorem 2.2, if the basic reproduction number, R,
is less than one, then uninfected equilibrium point, y, is
the only steady state point of system (1) and it is globally
asymptotically state. This means that the virus is eli-
minated by immune response. For larger values of 7 and
£, R, is more attractor and the virus is cleared much
faster.

If the basic reproduction number, R, is more than one;
for ¢, =0, besides of the uninfected steady state y,
which is uninfected, there are some infected steady state.
Here we consider two cases of endemic virus.

Fist, for ¢ =d =0, we have only one infected endemic
y,. If =0, there is no immune response, so the density
of susceptible moncytes equal zero. In 7 # 0, this density

equals %, so it does not depend on the other parameters

for virus load of infected cell. For lager values of f and
p , the infected endemic y, is closer to the uninfected
endemic y, and it is more controllable.

Second, for c=7=0 and d #0, from Theorem 3.2
we see thatif du— 6 is negative or positive small, then
there is only one infected endemic equilibrium y, which
is stable. However if du— 6 is positive and large, then
the endemic virus equilibrium y, exists and is stable.
This means that we found « new threshold for R;. For
condition R, is less than this threshold the dynamic of
the model is qualitatively same as the case ¢=d =0.
When R, is greater than this threshold, we have a new
endemic virus equilibrium, y, which is stable and the
equilibrium points y, and y, are unstable. From the
components of the endemic equilibrium y, we see that
after the onset of the symptom, if d increases, the
and / components of equilibria decrease and the S and
Z-components of equilibria will increase. Conversely, if
a and p increase, the V' and /-components of equili-
bria will decrease but the virus load increases at the initial
viral infection.

Forcase ¢, #0 and large and R, >1, the model has a
unique endemic virus. The ¥ and / components of this
equilibrium point decrease as a increases and the S
and Z-components of it increase as d increases.

Therefore, d,a and p are the important parameters
to capture the phenomena that dengue virus is quickly
cleared in a shorter time.
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