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ABSTRACT

The generalized (n + 1)-dimensional KP equation with variable coefficients is investigated in this paper. The bilinear
form of the equation has been obtained by the Hirota direct method. In addition, with the help of Wronskian technique
and the Pfaffian properties, Wronskian and Grammian solutions have been generated.
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1. Introduction

Recently, there has been a growing interest in studying
variable-coefficient nonlinear evolution equations (NL-
EEs). Quite a few researchers studied the variable-coef-
ficient KP equations [1-3], which provides us with more
realistic models in such physical situations as the cano-
nical and cylindrical cases, propagation of surface waves
in large channels of varying width and depth with non-
vanishing vorticity and so on. In this paper, we consider
the generalized variable-coefficient (n + 1)-dimensional
KP equation

(u +s(t)uu, +m(t)u ) + zn:hk (t)hu,,, =0, (1)

where m(t), h (t)(k>2) are arbitrary functions with
respect to t. Equation (1) can be reduced to the (3 +
1)-dimensional KP equation

(u, +6uu, +u,,) +3u, +3u, =0, @)

by setting

s(t)=6,m(t)=1h,(t)=hy(t)=3 h (t)=0(k > 4),

X, =Y, Xy =Z

Equation (2) describes the dynamics of solitons and
nonlinear waves in plasmas physics and fluid dynamics.
Obviously, (1) is the generalization of (2).

It is well known that the bilinear method first proposed

by Hirota provides us with a comprehensive approach to
construct exact solutions [4-6]. Once a NLEE is written
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in bilinear form, we are able to derive systematically
particular solutions including the multi-soliton solutions.
Soliton solutions can also be written in Wronskian form,
which was first introduced by Satsuma in 1979 [7]. Free-
man and Nimmo developed the Wronskian technique,
which admits direct verifications of solutions in Wrons-
kian form to the bilinear equations [8]. It is noted that
Grammian is another type of solution representation for
soliton equations, which can be rewritten as a Pfaffian
and the proof can easily be completed by virtue of
Pfaffian properties [9,10].

The organization of the paper is as follows. In Section
2, based on the Hirota bilinear method, we obtain the
bilinear forms of (1). Then the Wronskian and Grammian
solutions of (1) are derived in Sections 3 and 4, respec-
tively. Finally, the conclusions and discussions will be
given in Section 5.

2. Bilinear Form of (1)
By the dependent variable transformation
u=12m(t)s™(t)(In f)_, ©)

Equation (1) can be transformed into the following bi-
linear form:

[DXDt+m(t)Df+Zn:hk(t)ka}f~f=O, @)

where the Hirota bilinear operators D,, D, and
D, (k>2) are defined by
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DyDfa-b=(0,-08,)" (6, -0, ) a(x,t)b(x,t')

x'=x,t'=t

5) ¢1(o) ¢1(1) ¢1(N—1)
Equation (4) can be rewritten as _ a0 g N )
f f—ff)+m(t)(ff —4ff  +3f2 : - :
( ) ( )( XXXX X XXX xx) (O) (l) (N—l)
, (6) o Py (4N
+Zh (t )( xow 1= ka):o, where ¢J' =6i¢j_/6xi. and ¢, =4, (x,xk,t) satisfy the
set of linear partial differential equations
3. Wronskian Solution of (1) Bi =AM () B 00 B = (D)0
In this section, the N-soliton solutions of (1) in Wrons- ZH:CE (H)h (t)=3m(t). ®
kian form have been generated.
Theorem 1. Equation (4) has the solution in terms of Proof. To conveniently write (7), we adopt the com-
the Wronskian determinant pact notation
w(¢1,¢2,--.,¢N)=|0,1,2,---,N—14=‘N—q. )

Under the properties of the Wronskian determinant and the conditions (8), we obtain
=
- ‘N ~3,N- 1N‘ ‘N 2N+q
- ‘N “4N-2,N- 1N‘+2‘N ~3,N- 1N+l‘ ‘N 2N+2‘
- ‘N ~5N-3,N-2,N - 1N‘+2‘N “3,N, N+1‘+3‘N “4,N-2,N 1N+q
+[N=2,N+3+3N-3N-1LN+2,
fug =—4m(t)([N=4 N2, N-1L N|+[N=2,N+2-[N=3 N -1,N +1), (10)
fie = —4m(1)([N=5,N =3,N =2,N =L, N|-[N=3,N,N+1+[N=2 N +3),
fux =G (t)(‘m,N +1-[N=3 N —1.ND,
fun, = CF (t)(‘N_—S,N ~3,N-2,N —1,ND—‘M,N ~2,N-1N+1
+2‘N_—3,N,N+4—‘N_4,N—1,N+2‘+‘W,N+3‘).

Substituting these derivatives into (6), the left side becomes

(o f = ff ) m(t)( o — 4T, f,, +32)+ Zh () fon f—12)

=12m(t)([N=4[N=3,N,N+1~[N =3 N -1 N +3|N =2 N|-+|[N =2, N +|N =3, —1,N|}

=12m(t)([N=3 N -2 N[N =3,N,N +1~[N=3 N2 N[[N=3 N-L N +1+|N =3 N-2,N +1|N =3, N -1 N}
~0,

11)
Thus, we have the N-soliton solutions of (1) in Wronskian form

IN=1([N=3.N -1N[+[N=2,N +1])-[N =2, Nr

: ,
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u=12m(t)s™(t)x

(12)

[N~
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where ¢, =, (x,X,,t) satisfies the conditions (8).

4. Grammian Solution of (1)

In what follows, we focus on the Grammian type solution
and construct a broad set of sufficient conditions which
make the Grammian determinant a solution of the bili-
near Equation (4).

Theorem 2. Equation (4) has the Grammian solution
as follows:

fy = det|a Jay =8 +[ gyidx 1<i j<N, (13)

i l1<i<j<n

where the functions ¢ = ¢ (X, x,,t) and
V=Y, (x, %, t) satisfy the two sets of conditions

¢i,xk =Gy (t)¢|,xx' ¢|,t =—4m (t)¢|,xxx’

'//j,xk = _Ck (t)¢j,xx"//j,t =-4m (t)¢j,xxx'

(14)

(15)

&au :¢|V/j :(do’d;liv j*)v

ET AL.
Proof. A differential of the determinant f, express-
ed by means of a Pfaffian is
fN = (1!21”'1 N!N*l'“!Z*!l*)y
(16)

ay =(i,i") =0, +[ gy dx (i, j)=(i", ") =0

Next we introduce the Pfaffians (m,n=0,12,---,N)
defined by

n

(0 §7) =~ (4 07 ) = an
(dn,l):ﬁﬂ,(dn,l):(dm,l )=0. (18)

Based on the Pfaffians defined above, differentials of
the elements a; (i=12,---,N;j=12,---,N) can be ob-
tained as follows:

st alj j (¢|,tl//j +¢|l//j,t)dx = 4m (t)(¢|,x1//j,x _¢|,xxl//j _¢|l//j,xx)

= am(t)] (d, 47,0 §7)(do, 01, ) =(d 05, §7)
Y zjx(gb'vkaj +¢Il//j,xk )dX =

0

X,

=, ()(d.v; —dv;.)=

We denote f, =(1,2,-++,N,N",---,
fN,x :(do’dgv.)y
fuo = (.5, 0)+(d5, o),

2*,1*) = (), then

(19)

["(c () 80v75 —C () g 4 )l

¢ (V)] (do 0, J7)~(du. 3.1, §7) |

fuoo = (0,05, 0)+2(d,, 0, ) +(dy, d5 o),

N XXXX

=(ds,dg,#)+3(d,,d; ¢)+3(d,,d;, ) +2(dy, dg, d;, 0 e) +(dy, 0 0),
fie = 4m ()] (d;, 7 0)—(do 0, )~ (g, 05 o) |,

(20)

= (O]9, 7.0) (0. 65.0) (0 0.0)

fus = (O] (do. 05 0)~(d50)

fun =G (V)] (ds,05,9) = (01, 3,0) +2(dy, 0y, 0, 07 #) + (g, 05 0) = (o, 07 o) |
Substituting the above Pfaffians into (4), after some calculations, we have
[DXDt+m(t)Df+Zn:hk(t)ka}f~f=(fle—f1f) M(E)( o~ 4T, Fy +312)+ Z () f T 12)
k=2 k=2

=12m(t)[ (d, 05, d, 0, #)(#) = (do. Ay ) (c, ;) + (A, @) (I ] #) | =0

This shows that the Grammian determinant f
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(21)

with the conditions of (14) and (15) solves (4).
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5. Conclusions and Discussions

In summary we have extended the Wronskian method
and Pfaffian properties to the generalized variable-coef-
ficient (n + 1)-dimensional KP Equation (1). As a result,
the Wronskian solutions and the Grammian solutions of
(1) have been derived. It is known that if one gets the
solutions of the conditions (8) or that of (14) and (15),
then one can obtain the corresponding solutions of (1),
which need to be further studied.
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