
Theoretical Economics Letters, 2012, 2, 45-49 
http://dx.doi.org/10.4236/tel.2012.21008 Published Online February 2012 (http://www.SciRP.org/journal/tel) 

Some Results on a Double Compound Poisson-Geometric 
Risk Model with Interference 

Dezhi Yan 
Department of Economic, Shandong Jiaotong University, Jinan, China 

Email: dezyan@163.com 
 

Received November 15, 2011; revised December 10, 2011; accepted December 18, 2011 

ABSTRACT 

In this paper, we study the actual operating of an insurance company with random income. A double compound Pois-
son-Geometric risk model with interference was established. By using the martingale method, the adjustment coeffi- 
cient equation, the formula and the upper bound of ruin probability, the time to reach a given level in this new risk mo- 
del were obtained. 
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1. Introduction 

As one of the most important topics in risk theory, the 
ruin problem in stochastic environments has been studied 
by many researchers [1,2]. In classical risk model, the 
claim number process was assumed to be a Poisson pro- 
cess and the individual claim amounts were described as 
independent and identically distributed random variables. 
In recent years, the classical risk process has been extend- 
ed to more practical and real situations. For most of the 
investigations treated in risk theory, it is very significant 
to deal with the risks that rise from monetary inflation in 
the insurance and finance market, and also to consider 
the operation uncertainties in administration of financial 
capital. 

In order to get more realistic models, the perturbed 
risk process was introduced by Dufresne and Gerber [3] 
and investigated by Veraverbeke [4]. The classical risk 
process perturbed by diffusion is given as follows: 

     0U t u ct S t W t     

where u is the initial surplus of an insurance company, c 
> 0 is the gross premium rate and  
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is the aggregate claim process.  denotes a Poisson 
process with intensity

 N t
0  ; ,i 1Z i 
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 is a sequence of 
independent and identically distributed (i.i.d. for short) 
nonnegative random variables, independent of  

. is standard Brownian mo-
tion with . Based on the foregoing model, 
Dufresne and Gerber obtained an integro-differential eq- 

uation for ruin probability and proved a Lundberg-type 
inequality corresponding to the ruin probability by means 
of martingale methods [3]. Gerber and Shiu [5] and Ger-
ber and Landry [6] continued studying the expected dis- 
counted penalty function and the time value of ruin. For 
more details and new developments on the perturbed risk 
process, the interested readers can refer to [7-13]. 
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Other kinds of generalizations for the classical risk 
process are inspired by the extensive investigations of 
both risk and portfolio fluctuations. For instance, the 
continuous-time risk processes with stochastic interest 
have been studied by many authors, see [14-21]. Temnov 
[22] described the premium income by Poisson process 
and derived an explicit formula for the ruin probability to 
the corresponding risk process.  

Motivated by the above findings, this study aims at 
gaining an insight into the effects of stochastic premium 
incomes under perturbation. In this paper, we will con-
sider a double compound Poisson-Geometric risk model 
with diffussion in which the arrival of policies and claims 
follows compound Poisson-Geometric process, respec-
tively. Then we study the adjustment coefficient equation, 
ruin probability and the time to reach a given level. 

2. The Risk Model 

Definition 1 A distribution is said to be Poisson-Geo- 
metric distributed, denoted by  ,PG   , if it’s gener-
ating function is 
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where 0  , 0 1  . 
Definition 2 Let 0   and 0 1  , then 
  ; 0N t t    is said to be a Poisson-Geometric process 

with parameters  ,  , if it satisfies 
1) ;  0 0N 

  ;N t t 2)  has stationary and independent in-
crements； 
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Let denote the surplus at time t. Then the double 
compound Poisson-Geometric risk model with interfere- 
ence is defined as 
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where, is the initial capital,  0u U  1N t  is the 
number of premium up to time t, and follows a Poisson- 
Geometric distribution with parameters 1 , 1 ;  2N t  
is the number of claims up to time t, and follows a Pois-
son-Geometric distribution with parameters 2 , 2 . Let 
the size or amount of the k th claim be kY and 

k  be a sequence of i.i.d. nonnegative random 
variables with mean 
 ,Y k  1

Y , variance 2
Y  and moment 

generating function Y  M t .  , 2,, 1k  are posi-
tive i.i.d. random variables representing the successive 
premium amounts with mean 

X k

X , variance 2
X  and 

moment generating function X M t . is 
standard Brownian motion with 

 ;W t t 0
 0 0W   and   is a 

constant, representing the diffusion volatility parameters. 

Throughout this paper, we assume that , 

, ,  and 

 are mutually independent. 
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then 0  is the relative security loading factor. 
For the risk model (1), the time to ruin, denoted by T, 

is defined as 

  inf 0 0T t U t    

and define the ruin probability with an initial surplus 
 by 0u   u , namely 

    0u P T U u              (2) 

3. The Property of the Profits Process 

Define the profits process by , i.e.  R t
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It is obviously, we have 
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then 

 E R t t    

 Var R t t    

Lemma 1 The profits process   ; 0R t t    has the 
following properties: 

1)  0 0R  ; 
2)   0;R t t   has stationary and independent in-

crements. 
Theorem 1 For the profits process   ; 0R t t  , there 

has a function  s s r such that 

  rR t ts rE e e   
              (4) 

Proof 
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Theorem 2 The equation 

  0s r                        (6) 

has a unique positive solution , and the Equa- 
tion (6) is said to adjustment coefficient equation of the 
risk model (1). 
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Theorem 4 T is a stopping time for R
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Theorem 5 The probability of the risk model (1) is 
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Corollary   Ruu e  . 

4. The Time to Reach a Given Level 

Let 
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Then   is the time when the surplus reaches a given 
level firstly. 
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