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ABSTRACT 

The generalized Ornstein-Uhlenbeck process is derived from a bivariate Lévy process and is suggested as a continuous 
time version of a stochastic recurrence equation [1]. In this paper we consider the generalized Ornstein-Uhlenbeck 
process and provide sufficient conditions under which the process is exponentially ergodic and hence holds the expo-
nentially β-mixing property. Our results can cover a wide variety of areas by selecting suitable Lévy processes and be 
used as fundamental tools for statistical analysis concerning the processes. Well known stochastic volatility model in 
finance such as Lévy-driven Ornstein-Uhlenbeck process is examined as a special case. 
 
Keywords: β-Mixing; Generalized Ornstein-Uhlenbeck Process; Exponential Ergodicity; Lévy-Driven           

Ornstein-Uhlenbeck Process 

1. Introduction 

Many continuous time processes are suggested and stud-
ied as a natural continuous time generalization of a ran-
dom recurrence equation, for example, diffusion model 
of Nelson [2], continuous time GARCH (COGARCH) 
(1,1) process of Klüppelberg et al. [3] and Lévy-driven 
Ornstein-Uhlenbeck (OU) process of Barndorff-Nielsen 
and Shephard [4] etc. Continuous time processes are par-
ticularly appropriate models for irregularly spaced and 
high frequency data [5]. We consider the generalized 
Ornstein-Uhlenbeck (GOU) process   0t t

V


 which is de-
fined by 

0 0
= d ,

t
t t s

tV V e e e t       0,s          (1) 

where  is a two-dimensional Lévy process and 
the starting random variable 0V  is independent of 

. Lévy processes are a class of continuous time 
processes with independent and stationary increments 
and continuous in probability. Since Lévy processes t

  0
,t t t

 


 0t ,t t 

  
and t  are semimartingales, stochastic integral in Equa-
tion (1) is well defined. 

The GOU process is a continuous time version of a 
stochastic recurrence equation derived from a bivariate 
Lévy process (de Haan and Karandikar [1]). The GOU 
process has recently attracted attention, especially in the 
financial modelling area such as option pricing, insur-
ance and perpetuities, or risk theory. Stationarity, mo-
ment condition and autocovariance function of the GOU 

process are studied in Lindner and Maller [6]. Fasen [7] 
obtain the results for asymptotic behavior of extremes 
and sample autocovariance function of the GOU process. 
For related results, we may consult, e.g. Masuda [8], 
Klüppelberg et al. [3,9], Maller et al. [5] and Lindner [10] 
etc. 

Mixing property of a stochastic process describes the 
temporal dependence in data and is used to prove consis-
tency and asymptotic normality of estimators. For a sta-
tionary process   0

, = :t t s t
X F X s  t


 and 

 : s t=t sG X  , let 

       
=1 =1

1
= sup ,

2

I J

i j i j
i j

t P A B P A P B    

where the supremum takes over , ,i u i u tA F B G    

= , = ,i j i jA A B B     

if =i j  and . If =1 =1=I J
i i j jA B  =    0t   as 

, then t    0t t
 is called β-mixing. X  X

att Ke 0t t
 is 

called exponentially β-mixing if  for some 
 and all . 

  
0t , > 0K a

In this paper we prove the exponential ergodicity and 
exponentially β-mixing property of the GOU process 

  0t t

of the Lévy-driven OU process as a special case. 
V


 of Equation (1) and obtain the β-mixing property 

For more information on Markov chain theory, we re-
fer to Meyn and Tweedie [11]. We refer to Bertoin [12] 
and Sato [13] for basic results and representations con-
cerning Lévy processes. 
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2. Exponential Ergodicity of    0t t
V



2.1. The Model 

A bivariate Lévy process 
0t
 defined on a com-

plete probability space 
 ,t t 


 , ,F P

 0 0, = 
  is a stochastic process 

in , with càdlàg paths,  and station-
ary independent increments, which is continuous in 
probability. 

2R 0,0

0.

u

Consider the GOU process  given by tV

  

0 0
= d ,

t
t s

t sV e e V t       

Assume that  is independent of . Let 0V   0
,t t t

 


 = , = d
ts st s t u

t t .
s

A e B e e
               (2) 

Then we have that 

     1 1 1= , >nh nh
nhn h n h n hV A V B h n   0, 0



.      (3) 

Let n denote an integer and  a real number. We can t
easily show that in Equation (2) is a 

    1 1
0

,nh nh
n h n h

n
A B  

sequence of independent and identically distributed ran-
dom vectors and   0t t

 in Equation (1) is a time ho-
mogeneous Markov process with t-step transition prob-
ability function 

V

       0, = = , , ,  t
tP x C P V C V x x R C B R  

where  is a Borel σ-field of subsets of real num-
bers R. 

 B R

We temporally assume that  is fixed. > 0h  V
0nh n

 
in Equation (3) can be considered as a discrete time 
Markov process with n-step transition probability func-
tion      0 =V x, = , 1nhP x C P V C nnh . 

0nh n
 is 

called the h-skeleton chain of 
 V 

  0t t
. A Markov process 

0nh 
 is 

V
 n
V  -irreducible if, for some  -finite meas-

ure  ,  for all    2 ,nh

n
P x B > 0n x R  whenever 

. 
0t t

 is said to be simultaneously   > 0B  V  -ir-
reducible if any h-skeleton chain is  -irreducible. It is 
known that if 

0t t
 is simultaneously  V  -irreducible, 

then any h-skeleton chain is aperiodic (Proposition 1.2 of 
Tuominen and Tweedie [14]). 

For fixed , we make the following assumptions: > 0h

(A1)  0 < <h hE E    and <log hE   . 

(A2) 
0

< , d <
rr h

h h s
sE e E e e         for some  >0.r

Theorem 2.1 Under the assumption (A1),  V

V

0nh n
 

defined by Equation (3) converges in distribution to a 
probability measure  which does not depend on 0 . 
Further,  is the unique invariant initial distribution 
for . 

π
π

  0nh n
Proof. The conclusion follows from Theorem 3.1 and 

Theorem 3.4 in de Haan and Karandikar [1]. Note that if 

V

 0log < 0hE A  and  0 <log hE B  .  
Remark 1 Assume  0 < <h hE E  that  . Then 

<log h
E   is also nece e of a 

ary solution. (See Theorem 2.1 in Lindner 
and Maller [6].) 

Remark 2 Suppose t

ssary for the existenc
strictly station

hat there exist > 0  and 
, > 1q  with p 1 1 1p q   such that 

      max 1,max 1, 1< 0 < ,p E 1, <
q

E e



    

where     
 t

denotes the Lévy exponent of the Lévy 
process  :   1= log .Ee    If in addition,   1 < ,E    
then assump ) hold (Proposi  
Lindner and Maller [6]). 

tions (A1) and (A2 tion 4.1 in

2.2. Drift Condition for  

ess is said to hold 

  0nh n
V



A discrete time Markov proc   0n n
X


 

positive the drift condition if there exist a function g on R, 
a compact set K, and constants > 0  and 0 < < 1  
such that 

    1 = ,  c
n nE g X X x g x x K      

and           1 = <sup n n
x K

E g X X x


  .

Theorem 2.2 Under the assumptions (A1) and (A2), 
  0nh n

 given in Equation (3) satisfies the drift condition. 
 For notational simplicity, let 0 0

1 1= , =h h

V
Proof. A A B B . 

From assumptions, we have that E   1log < 0A  and

1 <
r

E A   for some > 0r . Then 

  log 1
1

r 1 r
E AE A e  

as  ( Hardy et al. [15]). Here 0r 
lies th

 1log < 0E A  
r  such thatimp e existence of * < 1r , *0 < <r  

*
*

1:= < 1
r

E A . Now def  test func- 

 
ine a nonnegative

the assumption (A1) holds, then it is obtained that 

tion g on R by 
*

= 1
r

x xg  . Then we have that 

  

 

*

* * *

1 0 1 0

1 1

1 1

*

  

= 1

1

= , 

r

r r r

E g AV

E A x B

E A x E B

g x M



 

=B V x

  



         (4) 

where 
*

*
1= 1

r
M E B  <   , by assumption (A2). 

Since  g x  increases to  a s x  increases to  , 
for an > 0y  , there exist *, 0 < < < 1    and 

> 0k  with  =K x x k , such that 

    ,* .cg x M  g x  x K      (5) 

Clearly, 
*

1 1 < .sup
r

x K

E A x B


                (6) 

Combining Equations (4)-(6), the drift condition for 

  0nh n
V


 holds.  
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2.3. Simultaneous  -Irreducibility of 

For reader’s convenience, we state the following theo-
r main re-

  0t t
V


 

rems which play important roles to prove ou

       

     

, = , d

, d = , sup

n

n

n hG
x K x K

h GG
x K

x G p x y y

p x y y M G



 

 


 

 

   sup suphP 

n

  (7) 

where  
sults. 

Theorem 2.3 (Meyn and Tweedie [11]) Suppose that a 
Markov chain  

   1:= sup , , <G hM p x y x K y G  . 

(7) and the condition thThe inequality in Equation at 0n n
X  has the Feller property. If 

 nG  
is any sequence inside compact sets in  B R  with nG   
imply that 

suplim


 0n n

 satisfies the drift condition for a compact set 
K , then there ex s  an invariant probability measure. In 
addition, if the process is 

 X
i ts

 -irreducible and aperiodic, 
then the given process is geometrically ergodic. 

Theorem 2.3 shows that the crucial step to prove the 
geometric ergodicity of a Markov process is to show that 
the 

     , =lim
h

n nn G nx KP x G M G    . 0

Therefore the uniform countable additivity condition 
holds for the compact set K. Theorem 2.4 and the exis-
tence of a unique invariant initial distribution for 

  0nh n
V


 yield the π -irreducibility of any h-s

given process is  -irreducible and holds the drift 
condition. In many cases, however, proving irreducibility 
of a Markov process is an awkward task. Consulting the 
following Theorem 2.4, irreducibility of the process can 
be derived from connection between  -irreducibility 
and the uniform countable additivity condition. A Markov 
chain   0n n

X


 is said to hold the uniform countable 
additivity condition (Liu and Susko [16]) if its one-step 

keleton 

chain   0nh n
V


. 

To complete the proof, we need to show that the as-
su

dent 
mption (A1) and (A2) hold for all > 0h . Since Lévy 

processes have stationary and indepen increments, it 

is easy to show that the assumption (A1) and <
r

hE e     transition probability function satisfies that for any de-
hold for all > 0h . It remains to prove that creasing sequence nG   inside compact sets, 

 , = 0 for every compact set .suplim n
G x Kn

P x G K
 

 
0

d <
rh

h s    sE e e  

for all  with some . We first define a finite > 0h
ocess 

 > 0r
Lévy pr   0t t

L


 as follows: 



Theorem 2.4 (Tweedie [17]) Suppose that the drift 
condition holds with a test set K and the uniform count-
able additivity condition holds for the same set K. Then 
there is a unique invariant measure for   0n n

X


 if and 
only if   0n n

X


 is  -irreducible. 

Let 


 

0<

,1 ,1

:= 1

       , , 0.

t t s
s t

L e

t Cov B B t 

 


  s

 


 

 =K x x k  be the compact set defined in the 
> 0t , Then it is shown that proof of m 2.2.  Theore

rem 2.5 Unde
 π

Theo r the assumptions (A1) and (A2), 
  0t t
V


 is simultaneously -irreducible if for any 0 0

d = d
D t

s t s
t

> 0h , 
   ,hP x   has a probability density function  ,hp x y  

espect to the Lebesgue measure (with r  ), which is 
uniformly bounded on compacts for x K . 

quProof. Let nG  be any decreasing se ence inside 
compact sets with nG  . Then 

.s se L e e       

(See Proposition 2.3 in Lindner and Maller [6]). Without 
loss of generality, we may assume that 0 < < 1r . 
Choose any > 0l . Then =l nh h , wher
nonnegative integer, 0 <

e n is a 
< 1  and > 0h  is in the 

assumptions (A1) and (A ave tha
 

2), we h t 

 

 
 

      

 

11

1

0

0 1
=1

( 1)1
=1

0 0
=1

=1

      d
rl

l s
sE e e   

  = d = d d

= d( ) d

d d

=

jj s nhnh

j n

r
r nl jh l

s s s
s s sj h nh

j

r
n jh ls hh

s j h s nhj h nh
j

r rn r rh hh s h s
s s

j

j

E e L E e L e L

E e e L L e e L L

E e E e L E e E e L

  

   

   

 



    


    


    



  

 

  

  

  

( 1)

0 0
d d < .j nh h

r rn r rh hh h s s
s sE e E e e E e E e e

            

               (8) 
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The first inequality in Equation (8) follows from station-
ary and independent increments property of Lévy proc-
esses  and . 

There r any h-skeleton chain
  0t t



fore fo

  0t t
L


 >h 0 ,    0nh n

V


 
is π -irreducible and hence   0t t

V


 aperiod
 is simu

ducible and ic. 

2.4. Exponential Ergodicity of 

The next theorem is our main result. 
Theorem 2.6 Suppose that the assumptions of Theo-

rem 2.5 hold. Then the GOU process  in Equa-
tion (1) is exponentially ergodic and ponen-
tially 

ltaneously 
π -irre   0nh n

 isV

  0t t
V


 

  0t t
V


holds the ex

 -mixing property. 
 

is chain at is, 

Proof. Theorem 2.5 shows that any h-skeleton chain

  0nh n
V


 is π -irreducible and aperiodic. Note that 

 V  Feller , th
0nh n   a   1n h

a continuous functio  x whenever f is con  
and ounded. Therefore any n ial compact set is a 

all set. Theorem sures that  nhV

=nhE f V V x  
n of tinuous

 b ontriv
sm  2.2 en  holds the 
drift condition and hence Theorem  2.3 

l hat is, 

is 

 0n
 2.5 and Theorem

ly ergodic, t
h that 

imply that   0nh n
V


 is geometrica

there exists a constant  0,1   suc

       , π = ,nh nP x O             (9) 

π -a.a. x as n  , where   denotes the total varia-
tion n m. Under simultanor eous -irreducibility condi-π
tion of   0t t

V


, Equation (9) and Theorem 5 in Tuomi-
ne
ity of 

n and Tweed
 V

ie [14] guarantee the exponential ergodic-

0t t
 in the following sense: 

       , π = ,t tP x O e     

as t  , for some > 0  and π -a.a. x.  -mixing 
property for the continuous time GOU process   0t t

V


 
is also obtain

2.5. Examples 

ed. 

In this example, we assume that = ,t t > 0   . If t  is 
an cess, t  

hard 

y Lévy pro hen tV  in Equation (1) is the Lévy- 
driven OU process which is studie by Barndorff-Nielsen 
and Shep [4]. In particular, if t

d 
  is a subordinator, 

that is, t  has nondecreasing sample path, finite varia-
tion w nnegative drift and Lévyi no  c -
trated on , then 

th  measure oncen
 0,   0

 
l. For t

t t
V

ode
is called the Lévy-dri

he case that 
ven 

stochastic volatility m t  is a 
Bro otion, tV   classical OU process. Let wnian m i es th

  be the Lévy measure for the process t  a
sume that 

nd as-
<

r

hE    for some > 0h  and > 0r . 

Then  
>1

log
z

z z d < 

) hold. Theorem
ift condition

over, it is known that 

. Here we can easily show 

that the assumptions (A1)and (A2  2.2 
implies that  V  holds the dr . More-

0nh n

   ,tP x   admits a bC  density 
 ,tp x y

by Theo
 for each d Yamaz  [18]) and 
rem 2.5, 

> 0  (Sato ant ato
  0nh n

 is V  -irreduci le. Above 
ents hol nd he

b
nce statem d for any > 0h  a   0t t

V  is 
 simultaneously  -irre
exponential 

ducible. Theref  ore exponential
ergodicity and  -mixing property of  
  0t t
V


 fo

3. Conclusion 

Recently, tim
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quency 
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e nce and e etrics 
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stationarity, moment conditions, autocovariance function 
and asymptotic behavior of extremes of the process are 
studied in [6,7], but exponential ergodicity does not seem 
to have been investigated  yet. In this paper, we give 
sufficient conditions under which the process is expo-
nentially ergodic and  -m . The dr dition and 
the simultaneous 

ixing ift con
 -irreducibility of the process that is 

induced from uniform countable additivity condition play 
a crucial role to prove the results. Our results are used to 
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