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ABSTRACT 

It is shown that the gauge boson mass is natu-
rally generated–without Higgs–in the pion beta 
decay using the scalar strong interaction had-
ron theory. This mass generation is made pos-
sible by the presence of relative time between 
quarks in the pion in a fully Lorentz covariant 
formalism. 

Keywords: No Higgs; Gauge Boson Mass; Scalar 
Strong Interaction 

The nonobservation of Higgs, needed in the standard 
model [1], has led to various supersymmetry models that 
have no experimental support. This gauge boson mass 
generation problem is resolved here in the scalar strong 
interaction hadron theory (SSI) [2,3], an alternative to 
low energy QCD. The equations of motion of mesons, 
not yet quantized, read [2,3]. 
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Here, xI and xII are the quark and antiquark coordi-

nates, I = /xI, II = /xII,  and  are the meson wave 
functions with the spinor indices a, b,..., undotted and 
dotted, running from 1 to 2, m the scalar interquark 
potential, gs the strong quark charge, mp and mr the quark 
masses, and p, r the quark flavors (1 for u and 2 for d 
quark). An epistemological background of this theory 
has been published earlier this year [4]. Eqs.1-3 have 
been rather successfully applied to confinement and 

meson spectra [5] and some basic meson decays [6-9]. 
In these references, the transformation 

  2/1,1,  mIImImIII axaxaXxxx     

(4) 

has been made. The relative space time x = (x0,x) are 
hidden variables [4] reflecting the fact that no free 
quarks exists. Generation of gauge boson mass without 
Higgs is shown here by the example of pion beta decay 
     0ee. Formally, this requires a field theoretical 
treatment but here attempt is made to describe such de-
cays on the quantum mechanical level, analogous to 
some semiclassical treatments of radiation in quantum 
mechanics. The justification is that the energies involved 
are low so that field-theoretical effects such as vacuum 
polarization are small, just like that analogous effects are 
small in QED at low energies. 

The starting point is the total action [10] 
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where SGB is the action for the gauge boson fields W, W¯ 
and W3 and SL the SU(2) part of the lepton action in the 
standard model. Sm is the SSI meson action generalized 
to include SU(2) gauge fields 

mailto:hoh@telia.com�


F. C. Hoh / Natural Science 2 (2010) 398-401 

Copyright © 2010 SciRes.                                                                    OPEN ACCESS 

399

   

           
           
























..22

44
2
1

ccMM

DDDD
xXddS

aeprmmpr

ea

rp

ea

prmmpraerp

fb

qrefsqII

ae

rpbapsIfbqr

ef

sqIIaerp

ba

psI

m




















                      (11) 

   

   

1 1 1

2 2 2

1

4

ab ab ab ab ab ab ab
I X I ps X ps l l psps

ab ab
I ps l lps

D i g W X

i g W X

  

 

            
 

  

      

 

                       (12) 

    3
1 2

3

2
, 2

2

ab

ab
l lps

W W
W X W W iW

W W







 
   
  




                                (13) 

 
The superscript  in Eq.11 denotes hermitian conjuga-

tion. Lorentz and gauge invariance of Eqs.4-10 has been 
established in [2,3]. Here, 
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Variation of Eq.11 with respect to  and , with 
boundary conditions specified in [12], yields 
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In the limit of g0, Eq.15 and Eq.16 reproduce 
Eqs.1 and 2 together with subsidiary conditions, arising 
from the c.c term in Eq.11, that are satisfied at least for 
plane wave W, which refers to W here. 

Following [8], let the meson wave functions be per-
turbed: 
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(17) 
Here, the index 1 denotes a first order quantity, apr is 

unity here but is in a quantized case to be elevated to an 
annihilation operator annihilating a initial meson with 

flavor pr. Its complex conjugate *
rsa  is also unity and is 

elevated to a creation operator creating a final state with 
flavor rs. (1) 0( )psa X  is a small amplitude that varies 

slowly with time and, in the quantized case, becomes an 
operator that “slowly” transforms the same initial state 
meson to some virtual intermediate vacuum state. It is 

zero at X0 = . (1)* 0( )rsa X  is the complex conjugate of 
(1) 0( )psa X  and, in the quantized case, becomes an opera-

tor that “slowly” creates the same final state as that cre-

ated by *
rsa . The subscripts pr have also been attached 

to EK and K of the meson. It has been shown that the last 
of Eq.4, required by decay applications [8], leads to that 
Eq.17 is independent of the relative time x0. 

The terms in the actions can now be grouped in pow-
ers of the small parameter g. Only the lowest order and 
independent quantities are listed in the two alternatives 
below [3]: 
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Insert Eq.17 into Eq.15 and Eq.16, multiply Eq.15 by 
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rp  , add them together, and inte-

grate over X and x. The first order quantities read 
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Here, '
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The source part '

msS  of the first order terms contains 

the gW terms in Eq.11, ignoring the c.c. term there, 
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(22) 
where Rs is a surface term [3] which vanishes upon inte-
gration in Eq.29 below. As a rudimentary quantization 
procedure, let 
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where Pi(12) represents the initial  , Pf ( 1122) the final 
state  0  and W the intermediary boson. The subscript K 
in Eq.17 is zero for the initial   and is suppressed. 

apr in Eq.17 is now elevated to become an annihila-
tion operator according to 

    0prpripr EPa              (24) 

Similarly, *
rsa  is interpreted as a equivalent creation 

operator acting on |0> or an annihilation operator acting 
on <f|. Along these lines, the decay amplitude has been 
defined as [3] 

  iXaafS prrpfi .0)1(             (25) 

The zeroth order wave functions for a pseudoscalar 
meson at rest are obtained by solving Eqs.1-3 using 
Eq.17 and are [3,7] 
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Inserting these into Eq.17 and Eq.21 and place Eq.20 

between <f| and |i> yields: 
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where Epr is the mass of the initial  . With Eq.22 and 
Eqs.26 and 27, Eq.28 becomes 
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This result can also be obtained starting from either 

Eq.15 or Eq.16, without the addition operation men-
tioned below Eq.19. 

Variation of Eqs.6 and 7 with respect to baW
  de-

fined in Eq.13 yields 
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where VC is trilinear in W. Variation of the same order 
part of Eq.11 yields 
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Inserting Eqs.26 and 27 into Eq.31 yields 
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The same variation applied to Eqs.8-10 yields 
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where L on the right side refers to e+. With Eqs.30-33, 
variation of Eq.5 with respect to baW

  gives 
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MW is the mass of the charged gauge boson [7] and its 
square the ratio of an integral over the relative time x0 
between the quarks of the pion and the normalization 
volume  of the pion wave function. By the last of 
Eq.28 and Eq.29, this ratio is   finite. The pions 
here also play the role of the Higgs in the standard 
model. That Higgs boson is not needed to generate MW 
was first shown in [12]. 

Contracting Eq.34 by baba   and  yields 
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Choose the gauge [3] to be the Coulomb type 

  0 WX                 (38) 

Further, the ordering Eqs.18 and 19 adopted relegates 
the nonlinear g2VC terms in Eqs.36 and 37 to higher or-
der. In the absence of the lepton source terms on the 
right of Eqs.36 and 37, it yields to lowest order 

00 W                     (39) 

02 �  WMW W             (40) 

W is identified with the observed charged gauge 
boson W [1] with the mass 

Gev42.80WM              (41) 

The time component W   associated with W  in 
Eqs.39 and 40 vanishes in agreement with the nonob-
servation of such a singlet charged gauge boson W   
accompanying the observed triplet W . If Higgs boson 
were used to generate the gauge boson mass, such a 
singlet W  with same mass Eq.41 should also be seen, 
contrary to observation. 
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If the Lorentz gauge 
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cd

dc

X W 
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                   (42) 

were employed, Eq.40 remains unchanged and Eq.39 
becomes 

0020 �  WMW W             (43) 

This implies that W   has an imaginary mass of Eq.41 
and therefore must vanish and Eq.39 remains in effect 
valid. 

The energy and momentum of the virtual gauge boson 
in Eqs.36 and 37 are determined by those of the lepton 
pair and are small and can be dropped next to the mass 
terms. Hence, Eqs.36 and 37 reduces to 
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While the triplet W can exist freely and hence be seen, 
as is shown in Eq.40, it can also be a virtual intermedi-
ate state in Eq.45. On the other hand, the singlet W 
cannot be observed by Eq.39, but can only be a charged, 
virtual intermediate singlet as is seen in Eq.44. These 

results are due to that the signs of the 2
WM  terms in 

Eqs.36 and 37 are different, which in its turn stems from 
that the meson wave functions Eqs.26 and 27 are not 
scalar but the time component of a four vector in SSI. In 
pseudoscalar meson decays, only the virtual W   enters. 

Because Eqs.26 and 27 are independent of flavor, any 
pseudoscalar meson can generate the same MW. When 
the above treatment is generalized to account for kaon 
decay [3], MW is unaltered and the neutral gauge boson 
mass becomes MZ=MW/cos (Weinberg angle)=91.02 Gev. 
Decay of the W  boson into a lepton pair is the same as 
that in the standard model. Inserting Eqs.44 and 45 into 
Eq.29 leads to a pion beta decay amplitude [3,6] that is 
(E0/E)

1/2  1 times that of the literature [11] assuming 
conserved vector currents. 

The value MW   finite cannot and should not be 
determined in the present theory so far. If MW were 

somehow obtained from some data, it implies a test of 
the well-established Fermi constant with far reaching 
consequences. This is due to that Fermi constant is 

proportional to 2
WM   and is hence also is a ratio   

finite. 
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