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ABSTRACT 

The particle production in hadron-nucleon (h-N), 
hadron-nucleus (h-A) and nucleus-nucleus (A-A) 
collisions at high energies are studied in view of 
the multi-peripheral model. A multi-peripheral 
T-matrix element is assumed with multi surface 
parameter that is functionally dependent on the 
number of particles in the final state and control 
the kinematical path of the reaction. A Monte 
Carlo code is designed to simulate events ac-
cording to a hypothetical model, the quark 
structure of the interacting nucleons is consid-
ered. The number of possible nucleon collisions 
inside the target nucleus plays an important role 
in folding the (h-N) to generate the (h-A) and 
(A-A) collisions. The predictions of the model 
give reasonable agreement with the recently 
examined experimental data. 

Keywords: Monte-Carlo Generators; Multiplicity 
Distribution; Integral Phase Space 

1. INTRODUCTION 

In the last few years, research work has been concen-
trated on the possible existence of the quark-gluon 
plasma phase, considering of unconfined quarks and 
gluons at high temperature or high density. In the labo-
ratory, nucleus-nucleus collisions at very high energies 
provide a promising way to produce high temperature or 
high-density matter. As estimated by Bajorken [1] the 
energy density can be so high that these reactions might 
be utilized to explore the existence of the quark-gluon 
plasma. One of the many factors that lead to an optimis-
tic assessment that matter at high density and high tem-
perature may be produced with nucleus-nucleus colli-
sions is the occurrence of multiple collisions. By this we 
mean, a nucleon of one nucleus may collide with many 
nucleons in the other and deposit a large amount of en-
ergy in the collision region. In the nucleon-nucleon cen-

ter of mass system, the longitudinal inter-nucleon spac-
ing between target nucleons is Lorentz contracted and 
can be smaller than 1 fm in high-energy collisions. On 
the other hand, particle production occurs only when a 
minimum distance of about 1 fm separates the leading 
quark and antiquark in the nucleon-nucleon center of 
mass system [2,3]. Therefore when the projectile nu-
cleon collides with many target nucleons, particle pro-
duction arising from the first N-N collision is not fin-
ished before the collision of the projectile with another 
target nucleon begins. There are models [4-11] that de-
scribe how the second collision is affected by the first 
one. Nevertheless, the fundamental theory of doing that 
remains one of the unsolved problems. Experimental 
data suggest that after the projectile nucleon makes a 
collision, the projectile-like object that emerges from the 
first collision appears to continue to collide with other 
nucleons in the target nucleus on its way through the 
target nucleus. In each collision the object that emerges 
along the projectile nucleon direction has a net baryon 
number of unity because of the conservation of the 
baryon number. One can speak loosely of this object as 
the projectile or baryon-like object and can describe the 
multiple collision process in terms of the projectile nu-
cleon making many collisions with the target nucleons. 
Then, losing energy and momentum in the process, and 
emerging from the other side of the target with a much 
diminished energy. The number of collisions depends on 
the thickness of the target nucleus. Experimental evi-
dence of occurrence of multiple collision process can be 
best illustrated with the data of p-A reactions in the pro-
jectile fragmentation region [3,12]. In the present work, 
we shall investigate the particle production mechanism 
in heavy ion collision by introducing the multi- periph-
eral model [13-16,18] which is based on the phase space 
integral to describe the multi-particle production in the 
Hadron-Hadron, Hadron-Nucleus and Nucleus-Nucleus 
interaction at different energies. In this technique the 
many body system is expanded into subsystems, each 
one concerns a two body collision where we have used 
the matrix element of the multi-peripheral nature whose 
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parameters are strongly correlated to the final state mul-
tiplicity. The simplified quark-quark interaction picture 
is considered to improve the results; we suppose that all 
the quarks which constitute the hadrons contribute in the 
reaction. It is assumed that each Hadron in the final state 
is produced at the specific peripheral surface that is 
characterized by a peripheral parameter. 

2. THE MULTI-PERIPHERAL MODEL 

We start with the initial single state of center of mass 

energy s , let us denote by it  the square of the 

4-vectore momentum transferred from the particle ap  

of mass ma to the system of 4-momenta 1nk  with mass 

1nM . This will reduce the many body problem into 

1n  iterative diagram, each of them has only two par-
ticles in the final state. For example, the ith diagram has 
two in the final state, the first one is the particle number 

1n , and the other has an effective mass iM , equiva-

lent to the rest of the i particles of the system. The gen-

eral expression for it  in the center of mass frame of 

Ki+1 is Kinematically calculated as, 
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Figure 1. The basic process diagram of 
nnba pKpp  1
 

expressed as a sequence of two particles decay. 
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where am  and bm  are the masses of the initially in-

teracting particles. The function denotes the Lorentz 
invariant function which is defined by, 

yzzyxzyx 4)(),,( 2           (7) 

The phase space integral )(SIn  which expresses the 
probability of obtaining a final state of n-particles with 

total center of mass (C. M) s  in which energy and 
momentum are conserved is given by, 
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where )( ipT  is the transition matrix element that 

represents the transition probability from an initial state 

ba pp   to the final state 11   nn PK  with the definite 

momentum ip . Once the phase space integral is defined, 

one can easily find the reaction cross-section as 
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where F is the flux function defined by, 
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If )( ipxx   is any physical quantity depending on 

the pi, the differential cross-section 
dx

d n
 is obtained by 

transforming the integral in Eq.8 so that x  appears as 
a variable and then omitting the integration over x. This 
can be most simply carried out by inserting the con-
straint )( ipxx   in the integrand as a δ function so 
that 
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The multiperipheral matrix element [17] is introduced 

in the form, 
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The function )( ii tg  cuts of large values of it  for in-

stance one may choose 

( ) exp( )i i i ig t a t               (13) 

where ia  is a peripheral parameter that play an impor-

tant role in converging the particles in phase space and 
consequently, control the energy of the particles in final 
state. So that the values of ia  are adjusted to conserve 

the total energy. The energy E
(i) 

of the particle number i 
is related to its rapidity iy  through the relation, 

( ) cosh( )i
t iE m y   

where tm  is defined by, 
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so that the total energy of the particles in the final state is 
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n

i , is the function of the parameters ia  which should 

be compared with the total center of mass energy s of 
the initial state. We first start with n=1 to get 1a , which 

is inserted again in the case n = 3 to get a2 and so on. 
These are repeated sequentially to get the values of the 
rest parameters. The integral phase space Eq.8 is then 
calculated as, 
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The multiple integration in Eq.16 may be solved by 

using the Monte-Carlo technique [21-23]. At extremely 
high energy, Eq.16 has an asymptotic limit in the form, 
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 is the normalization density and 

n  is defined by, 
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Let )(ir  be a group of i-random numbers, 10 )(  ir , 
then the invariant mass iM  for a system of i-particles 

can be generated according to 
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It means that, the invariant masses vary between the 
limits 11   iiii mMM , i=2,…, n-1 for the special 

case where T is constant (no dynamical effect), the mo-
mentum transfer it  should vary homogeneously be-

tween the two limiting values 
it , 
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and the Monte-Carlo will generate the t values according 
to 

( ) ( )i
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The limiting values t  define the physical region 
boundaries of 22   reaction on the Chow-Low plot 

shown in Figure 2. 
On the other hand, using a multiperipheral form in T 

as in Eq.13, we can generate events with anisotropic 
behavior so as to satisfy the simulation identity [16]. 
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The condition Eq.22 will spread the points in a con-
fined Zone in the Chow-Low Plot by cutting of the high 

t values. The parameters ia  are directly reproduced 

from the comparison with experimental distributions. 

2.1. Effect of the Quark Structure 

Let use assume that the interaction takes place not with 
the interacting particles as a whole but rather among 

 
Figure 2. The basic process at stage i of iteration. 
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their minute constituent quarks. Neglecting the spin ef-
fect of the quark and considering, for example, πp, sys-
tem as two bags containing, respectively, two and three 
quarks each of effective mass qm , we assume that the 

reaction goes through one of the following channels: 
1) One of the projectile quarks interacts with one of 

the target quarks. We use the symbols ( ) and 
( ) to describe the two states of the first channel. 
The number of possible permutation of these states is 3. 

2) In the second channel, the two projectile quarks 
may interact with the three target quarks in a collective 
manner. This state is symbolized by ( ) with 
only one possible permutations. The square of the cen-
ter-of-mass energy of each state is calculated according 
to;  

qqaqqba eNNmmNNs 2)( 222        (23) 

where aN  and bN  are the number of quarks partici-

pating in the reaction from the target and projectile, re-
spectively; qm  is the effective quark mass and qe  is 

the laboratory energy per quark. The multiplicity distri-
bution )(nF  of an n-particle system is calculated in 

terms of the distribution functions of the different states 
of the reaction. For our example case (π p-system), let us 
assume that )(11 nf  and )(12 nf  represent the phase 

space integrals of the state ( ) and ( ) for 
the first channel, so that the distribution of the first 
channel is obtained by a restricted superposition of the 
two functions; 

1 11 12( ) ( )[( ( ) ( )) ( ( ))]
i j

f n Z n f i f j n i j     
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where the normalization factor, )(nZ  is given by 
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The second channel has only one state ( ) 
represented by a phase space integral )(2 nf , then the 

overall distribution function )(nF  is 

2211)( fkfknF                     (26) 

where 1k  and 2k  are the number of possible permuta-

tions in each channel. The distribution function for any 
other physical quantity x  is simply given by 

1 1 2 2( ) ( ) ( )iH x k h x k h x             (27) 

2.1.1. Hadron-Nucleus Collision 
On extending the model to the hadron-nucleus or nu-
cleus-nucleus collision, we follow the NN-base super 
position as expected from the features of the experimen-
tal data. We should consider the possible interactions 

with the nucleons forming the target nucleus tA . The 

incident hadron makes successive collisions inside the 
target. The energy of the incident hadron (leading parti-
cle) slows down after each collision, producing a num-
ber of created hadrons each time which depends on the 

available energy. The phase space integral I
n

NA  in this 

case has the form; 
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where ),( tAP   is the probability that ν nucleons out of 

tA  will interact with the leading particle and )(  sIn  

is the phase space integral of NN collision that produces 

hadrons at energy s . The delta function in Eq.28 is to 
conserve the number of particles in the final state. All 

the nucleons are treated identically, and the NNX  is the 

N-N phase shift function [20,24-26]. Then, according to 
the eikonal approximation, 
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This approach was then worked out by putting the 
multi-dimension integration of Eq.16 and the generated 
kinematical variables into a Monte-Carlo program which 
was created by the author. This in turn is restored ν 
times, where ν is the number of collisions inside the tar-
get nucleus that is generated by a Monte-Carlo Genera-
tor according to the probability distribution Eq.29. In the 
first one, the incident hadron has its own incident energy 
and moves parallel to the collision axis ( 0)( 0  axisZ . 

The output of the program determines the number of 
created hadrons 1n  as well as the energy )( 01 EE   

and the direction 1q  of the leading particle. The leading 

particle leads the reaction in its second round with 1E  

and 1  as input parameters and creates new number of 

2n  and so on. The number jn  is determined ac-

cording to a multiplicity generator which depends on the 
square of the center of mass energy js  in the round 

number j:  

jNNj Emms 22 2                (30) 

3. NUCLEUS-NUCLEUS COLLISIONS 

The extension of the multi peripheral model to the nu-
cleus-nucleus case is more complicated. The number of 
available collisions is multi-folded due to the contribu-
tion of the projectile nucleons. By analogy of the AN    



A. A. A. Al-Haydari et al. / Natural Science 2 (2010) 388-397 

Copyright © 2010 SciRes.                                                                    OPEN ACCESS 

392 

collision, it is possible to define the phase space integral 
AA

nI
 
in AA  collisions as, 

, , ,
,

( ) ( ) ( , , , ) ( )
p t t

j k

A A A
NN

n n j k AA p t j k
j k j k

I s I s P j A k A n n   (31) 

where )( ,, kjn sI
kj

 is the phase space integral due to the 

knocked on nucleon number j from the projectile and 
that, number k  from the target. The probability that the 

AA  collision encounters events. So that, 

),().,(),,,( ttpptpAA AvPAvPAkAjP         (32) 

About 1000 events have been generated for each reac-
tion by the Monte-Carlo according to the decay diagram 
of Figure 1. 

4. THEORETICAL CALCULATION 

4.1. The Multi-Peripheral Parameters ia  
with n  Particle Final State 

The values of the multi-peripheral parameters ia  play 

an important role in the calculation of the phase space 
integrals and the inclusive cross sections. The multi- 
peripheral parameters carry all the dynamical effects that 
control the geometrical and kinematical behavior of the 
reactions. The values of ia  are considered as fitting 
parameters and are determined to conserve the total en-
ergy in the center of mass of the reaction [17]. Taking all 
possible configurations (pairing) of quark combinations 
as described in Subsection 2.1. 

Referring to equations Eq.12 and Eq.13 we find that 
the parameter na , plays the effective role in the dy-
namic matrix element which controls the generation 
process of the events according to the assumed number 
of produced particles bn  and the square of the available 
energy in the center of mass s . The parameter na  is 
just a fitting parameter in the simulation process. Its 
value is to conserve the energy in the generator G(n). 

 

 

Figure 3. The flow chart of the Monte Carlo code for p-p collisions. 
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an 

n  

Figure 4. The multi-peripheral parameter (a) deduced for the n-particle final state in case of proton -proton collisions. 
 

In Figure 4 we display the values of the multi-pe-
ripheral parameters an as a function of number of created 
particles n in the final state at different center of mass 

energies, s  = 5,8,10,20,30,50 GeV, for different con-
figurations of participating nucleons from projectile na  

and target bn . In all cases the value of an increases in 

general with n and s . The relation of an with n and 

s  is parameterized in a polynomial form to speed up 
the simulation process of the generator. 

A Monte-Carlo code is designed to generate (pp) 
events at incident energies of 8.8, 102 and 400 GeV. 
Figure 3 shows the flow chart of the code generators. 
We start with the initial incident energy. The projectile 
and target protons consist of 3-quarks for each. The fol-
lowing generators are considered: 

1) -Impact parameter generator G(b) to generate the 
value of the impact parameter according to simple geo-
metrical aspects. 

2) -Specifying the target and projectile number of 

quark participating in the collision according to the im-
pact parameter value. 

3) -Multiplicity Generator G(n) to generate the num-
ber of particles in the final state. 

4) -The kinematics generator G(k) to generate particle 
kinematics in the final state according to the Feynman 
binary diagram Figure 2. 

5) -Combining the possible number of quarks that 
participate in the reaction 

6)  -Storing the kinematical data in multi-channels of 
momentum-angular and energy spaces. 

7)  -END. 
In dealing with the proton-nucleus (pA) and the nu-

cleus-nucleus (AA) collisions we considered the 
Monte-Carlo code of (pp) as a subroutine in a more 
general code. It is assumed that a number of ν-binary 
collisions of (pp) type would be carried out inside the 
(pA) or (AA) collision. Consequently, the pp code is 
folded ν-times for each (AA) event. The number ν de-
pends mainly upon the effective target mass at the 
considered impact parameter. 
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The Monte-Carlo code is run to the case of p-C col-
lision at 200 GeV. All possible values of a projectile 
nucleon participant in the reaction are considered. The 
case of 1pn  and 1tn  refers to the single nu-

cleon-nucleon collision. It rather happened for the con-
ditions of peripheral interactions. As collision orients 
towards the central collision, more target nucleons 
contribute to the reaction. Figure 5(a) Shows that the 
shower particle production (created particles) increases 
with increasing the number of target participant nu-
cleons; where the available center of mass energy in-
creases. The multiplicity distribution of the shower 
created particles may fit a Gaussian distribution, the 
peak and the dispersion of which shifts forward as tn  

increases. The contribution of each tn  value has a 

certain weight factor that is related to the impact pa-
rameter weight. Averaging over all possible values of 
the impact parameters results in the overall multiplic-
ity distribution that is displayed in Figure 5(b). It was 
found that the average value of the charged particle 
multiplicity is 4.35 and the dispersion is 1.37557 for 
the p-C interaction at 200 GeV. The same procedure is 
carried out for the He-Be interaction as an example of 
(AA) collision at the same incident energy for the sake 
of comparison. In this case both the number of projec-
tile and target participant nucleons pn  and tn  have 

appreciable effect in shaping the charged particle multi-
plicity distributions. The number pn  plays the role of 

multiplication factor in the production process. 
In Figure 6 we demonstrate the family of curves rep-

resenting the results of multiplicity distributions for the 

case where all projectile nucleons participate the reac-
tion 4pn  while parts of the target contribute as tn  = 

4, 5, 6, 7 and 8. 

5. RESULTS AND DISCUSSION 

The numerical computation of the charged and negative 
charged multiplicity distribution of the outgoing parti-
cles in (p-p) interactions at 8.8 GeV Figure 7, 102 GeV 
Figure 8, 400 GeV Figure 9, (p-d) interaction at 28 GeV 
Figure 10 and (He-He) interaction at 120 Gev Figure 11 
are calculated. A Monte-Carlo program designed by the 
authors is used to simulate about 1000 events for each 
final state of specific n-values. The multi-peripheral ma-
trix element is used according to Eq.12 to calculate the 
phase space integral and the production cross section. 

The cut-off boundaries 
it  of the physical region is 

used according to Eq.22. 
The proposed model is a statistical model in its nature. 

It assumes a large phase space and consequently large 
number of quantum states to work in a relevant envi-
ronment. 

Figures 7-11 show that the prediction of the model 
comes closer to the experimental data as simple as in-
creasing both the available energy and the number of 
interacting particles (the size of the target and the pro-
jectile nuclei) that meets with the increase of the volume 
of phase space. 

Table 1 shows the Chi-square values for the reaction 
under consideration to test the validity or the behavior of 
the model against the projectile-target size and the en-
ergy of the reaction. 

 

 
(a)                                  (b) 

Figure 5. (a) Multiplicity distributions of the produced particles for 200 GeV proton-Carbon p-C in-
teractions for different number of target participants; (b) Total multiplicity distribution of the produced 
particles for 200 GeV p-C interactions. 
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(a)                                  (b) 

Figure 6. (a) Multiplicity distributions of the produced particles in He-Be interactions at 200 GeV/n 
for different target participants; (b) Total multiplicity distributions of the produced particles in He-
lium-Brelium He-Be interactions at 200 GeV/n. 

 

 
Figure 7. The multiplicity distributions of charged par-
ticles produced in p_p interactions at 8.8 GeV.The red 
curve is the model prediction, the black stars are the ex-
perimental data which have been taken from [27]. 

 

 

Figure 8. The multiplicity distributions of negative 
charged particles produced in p-p interactions at 102 
GeV. The red curve is the model prediction, the black 
stars with error bars are the experimental data which 
have been taken from [28]. 

 
Figure 9. The multiplicity distributions of negative 
charged particles produced in p-

 

p interactions at 
400 GeV. The red curve is the model prediction, the 
black stars with error bars are the experimental data 
which have been taken from [29]. 

 

 
Figure 10. The multiplicity distributions of charged 
particles produced in p-d interactions at 28 GeV. 
The red curve is the model prediction. The black 
stars are the experimental data which have been 
taken from [30]. 
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Figure 11. The multiplicity distribution of the particles pro-
duced in He-He interactions at 120 GeV. The red curve is the 
model prediction. The black stars are the experimental data 
which have been taken from [31]. 
 
Table 1. The Chi-square of the reactions. 

Reaction Energy Chi-Square 

p − p 8.8 GeV 0.005066 

p − p 102 GeV 0.004561 

p − p 400 GeV 0.822473 

p − d 28 Gev 0.034502 

He-He 120 GeV 0.000382 

 
5. CONCLUSIONS 

The multi-peripheral model is extended to the nu-
cleon-nucleus and the nucleus-nucleus interaction on the 
basis of nucleon-nucleon collisions, where the phase 
space integral of the nucleon-nucleon and nucleus-nu- 
cleus interaction is folded several times according to the 
number of encountered nucleons from the target. The 
number of created particles in each collision is summed 
over to get the production in the nucleon-nucleon case, 
where the conservation of number of particles in the 
final state is taken into consideration. The inclusive 
cross section is calculated and showed a fair agreement 
with experimental data. 
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