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ABSTRACT 

In this paper, we propose a nonmonotone adap-
tive trust-region method for solving symmetric 
nonlinear equations problems. The convergent 
result of the presented method will be estab-
lished under favorable conditions. Numerical 
results are reported. 
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1. INTRODUCTION 

Consider the following system of nonlinear equations: 

( ) 0, ng x x R               (1) 

where : n ng R R  is continuously differentiable, the 

Jacobian ( )g x  of g is symmetric for all nx R . 

Define a norm function by 21
( ) || ( ) ||

2
x g x  . It is not 

difficult to see that the nonlinear equations problem 
Eq.1 is equivalent to the following global optimization 
problem 

min  ( ),  nx x R              (2) 

Here and throughout this paper, we use the following 
notations.  

 || ||   denote the Euclidian norm of vectors or its 
induced matrix norm.  

 { }kx  is a sequence of points generated by an algo-

rithm, and ( )kg x  and ( )kx  are replaced by kg  and 

k  respectively. 

 kB  is a symmetric matrix which is an approxima-

tion of ( ) ( )Tg x g x  .  
It is well known that there are many methods for the 

unconstrained optimization problem min ( )nx R
f x


 (see 

[1-7], etc.), where the trust-region methods are very suc-
cessful, e.g., Moré and Sorensen [8]. Other classical ref-
erences on this topic are [9-12]. Trust- region methods 
have been applied to equality constrained problems 
[13-16]. Many authors have studied the trust-region 
method [2,17-22] too. Zhang [23] combined the trust 
region subproblem with nonmonotone technique to pre-
sent a nonmonotone adaptive trust region method and 
studied its convergence properties.  

1
min  ( )

2
T T

k kf x d d H d   

. . || || ,  n
ks t d h d R              (3) 

where kH  is the Hessian of some function : nf R R  

at kx  or an approximation to it, 1
1 || ( ) || ,p

k k kh c f x M    

10 1,c   1|| ||,k kM B    1p  is a nonnegative integer, 

they adjust 1p  instead of adjusting the trust radius, and 

kB  is a safely positive definite matrix based on Schna-
bel and Eskow [24] modified cholesky factorization, 

,k k kB H E    where 0kE   if kH  is safely positive 

definite, and kE  is a diagonal matrix chosen to make 

kB  positive definite otherwise.  

For nonlinear equations, Griewank [25] first estab-
lished a global convergence theorem for quasi-Newton 
method with a suitable line search. One nonmonotone 
backtracking inexact quasi-Newton algorithm [26] and 
the trust region algorithms [27-30] were presented. A 
Gauss-Newton-based BFGS method is proposed by Li 
and Fukushima [31] for solving symmetric nonlinear 
equations. Inspired by their ideas, Wei [32] and Yuan 
[33-37] made a further study. Recently, Yuan and Lu [38] 
presented a new backtracking inexact BFGS method for 
symmetric nonlinear equations.  

Inspired by the technique of Zhang [23], we propose a 
new nonmotone adaptive trust region method for solving 
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Eq.1. More precisely, we solve Eq.1 by the method of 
iteration and the main step at each iteration of the fol-
lowing method is to find the trial step kd . Let kx  be 

the current iteration. The trial step kd  is a solution of 

the following trust region subproblem 

1
min  ( ) ( )

2
T T

k k kq d x d d B d    

. . || || ,  n
ks t d d R               (4) 

where ( ) ( ) ( )k k kx g x g x   , || ( ) || ,p
k k kc x M    

0 1,c   1|| ||,k kM B   p is a nonnegative integer, and 

matrix kB  is an approximation of ( ) ( )T
k kg x g x  which 

is generated by the following BFGS formula [31]: 

1

T T
k k k k k k

k k T T
k k k k k

B s s B y y
B B

s B s y s              (5) 

where 1k k ks x x  , ( )k k k ky g x g   , 1k k kg g   . 

By ( )k k k ky g x g   , we have the approximate rela-

tions 

1 1 1( )k k k k k k k k ky g x g g g g s             

Since 1kB   satisfies the secant equation 1k k kB s y   

and kg  is symmetric, we have approximately 

11 1 1 1k

T
k k k k k kB g g s g g s

          

This means that 1kB   approximates
1 1k

T
kg g

   along 

direction ks . We all know that the update Eq.5 can en-

sure the matrix 1kB   inherits positive property of kB  if 

the condition 0T
k ks y   is satisfied. Then we can use this 

way to insure the positive property of kB .  

This paper is organized as follows. In the next section, 
the new algorithm for solving Eq.1 is represented. In 
Section 3, we prove the convergence of the given algo-
rithm. The numerical results of the method are reported 
in Section 4.  

2. THE NEW METHOD 

In this section, we give our algorithm for solving Eq.1. 
Firstly, one definition is given. Let 

( )
0 ( )
max { },  0,1,2,l k k j

j n k
k   

          (6) 

where ( ) min{ , }n k M k , 0M   is an integer con-

stant. Now the algorithm is given as follows.  

 Algorithm 1.  
Initial: Given constants , (0,1)c  , 0p  , 0  , 

0M  , 0
nx R , 0

n nB R R  . Let : 0k  ; 

Step 1: If || ||k   , stop. Otherwise, go to step 2; 

Step 2: Solve the problem Eq.4 with k    to get 

kd ; 

Step 3: Calculate ( )n k , ( )l k  and the following rk: 

( ) ( )

(0) ( )
l k k k

k
k k k

x d
r

q q d

  



          (7) 

If kr  , then we let 1p p  , go to step 2. Oth-
erwise, go to step 4; 

Step 4: Let 1k k kx x d   , 1k k kg g   , ky   

( )k k kg x g  . If 0T
k kd y  , update 1kB   by Eq.5, 

otherwise let 1k kB B  .  

Step 5: Set : 1k k   and 0p  . Go to step 1.  
Remark. i) In this algorithm, the procedure of “Step 

2-Step 3-Step 2” is named as inner cycle.  
ii) The Step 4 in Algorithm 1 ensures that the matrix 

sequence { }kB  is positive definite.  
In the following, we give some assumptions.  
Assumption A. j) Let   be the level set defined by 

0{ ||| ( ) || || ( ) ||}x g x g x          (8) 

is bounded and ( )g x  is continuously differentiable in 

  for all any given 0
nx R .  

jj) The matrices { }kB  are uniformly bounded on 1 , 
which means that there exists a positive constant M  
such that 

|| || ,  kB M k                  (9) 

Based on Assumption A and Remark (ii), we have the 
following lemma.  

Lemma 2.1. Suppose that Assumption A(jj) holds. If 

kd  is the solution of Eq.4, then we have 

|| ( ) ||1
( ) || ( ) || min{ , }

2 || ||
k

k k k k
k

x
q d x

B





     (10) 

Proof. Using kd  is the solution of Eq.4, for any 

[0,1]  , we get 

( ) ( ( ))
|| ( ) ||

k
k k k k

k

q d q x
x

 



    


 

 2 2 21
|| ( ) || ( ) ( )/ || ( ) ||

2
T

k k k k k k kx x B x x            

         2 21
|| ( ) || || ||

2k k k kx B        

Then, we have 

2 2

0 1

1
( ) max[ || ( ) || || ||]

2k k k k k kq d x B


  
 

     

|| ( ) ||1
|| ( ) || min{ , }

2 || ||
k

k k
k

x
x

B
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The proof is complete. 
In the next section, we will concentrate on the con-

vergence of Algorithm 1. 

3. CONVERGENCE ANALYSIS 

The following lemma guarantees that Algorithm 1 does 
not cycle infinitely in the inner cycle.  

Lemma 3.1. Let the Assumption A hold. Then Algo-
rithm 1 is well defined, i.e., Algorithm 1 does not cycle 
in the inner cycle infinitely.  

Proof. First, we prove that the following relation 
holds when p  is sufficiently large 

1( )

( )
k k

k k

x

q d

 





                (11) 

Obviously, || ( ) ||kx    holds, otherwise, Algo-

rithm 1 stops. Hence 

|| ( ) ||
0,  

|| ||

p
k

k
k

c x
p

B


       (12) 

By Lemma 2.1, we conclude that 

|| ( ) ||1 1
( ) || ( ) || min{ , }

2 || || 2
k

k k k k k
k

x
q d x

B


 


      , 

as p                      (13) 

Consider 
2

1| ( ) ( ) | (|| || )k k k k kx q d O d       (14) 

By Eqs.12-14, and || ||k kd   , we get 

2
1 1( ) ( ) ( ) 2 (|| || )

| 1| | | 0
( ) ( )

k k k k k k k

k k k k k

x x q d O d

q d q d

   


   
   

  
 

Therefore, for p sufficiently large, which implies Eq.11.  
The definition of the algorithm means that 

( ) 1 1
( ) ( )

( ) ( )
l k k k k

k
k k k k

x x
r

q d q d

   
 

 
  

 
. 

This implies that Algorithm 1 does not cycle in the 
inner cycle infinitely. Then we complete the proof of this 
lemma. 

Lemma 3.2. Let Assumption A hold and { }kx  be 

generated by the Algorithm 1. Then we have { }kx   .  

Proof. We prove the result by induction. Assume that 
{ }kx   , for all 0k  . By using the definition of the 

algorithm, we have 

( ) 0l kr                      (15) 

Then we get 

( ) 1 1( )l k k k k kq d             (16) 

By ( )l k k , ( ) 0l k  , from Eq.16, we have 

1 0k   , 

this implies 

1 0|| || || ||kg g  , 

i.e., 

1kx     

which completes the proof. 

Lemma 3.3. Let Assumption A hold. Then ( ){ }l k  is 

not increasing monotonically and is convergent.  
Proof. By the definition of the algorithm, we get 

( ) 1,  l k k k                   (17) 

We proceed the proof in the following two cases.  
1) k M . In this case, from the definition of ( )l k  

and Eq.17, it holds that 

( 1) 1
0 ( 1)

max { }l k k j
j n k

     
  

1
0 ( ) 1

max{ max { }, }k j k
j n k

    
       (18) 

( )l k  

2) k M . In this case, using induction, we can prove 
that 

( ) 0l k   

Therefore, the sequence ( ){ }l k  is not increasing 

monotonically. By Assumption A(j) and Lemma 3.2, we 
know that { }k  is bounded. Then ( ){ }l k  is convergent. 

In the following theorem, we establish the conver-
gence of Algorithm 1.  

Theorem 3.1. Let the conditions in Assumption A 
hold. If 0  , then the algorithm either stops finitely or 
generates an infinite sequence { }kx  such that 

liminf 0k k               (19) 

Proof. We prove the theorem by contradiction. As-
sume that the theorem is not true. Then here exists a 
constant 1 0   satisfying 

1,  k k   .                (20) 

By Assumption A(jj) and the definition of kB , there 

exists a constant 0m   such that 
1|| ||

k
B m                    (21) 

Therefore, according to Assumption A(j), Lemma 2.1, 
Eq.20, and Eq.21, there is a constant 1 0b   such that 

1( ) kp
k kq d b c                (22) 

where kp  is the value of p  at which the algorithm 
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gets out of the inner cycle at the point kx . By step 2, 

step 3, step 4, and Eq.22, we know 

( ) 1 1
kp

l k k b c               (23) 

Then 

( )

( 1) ( ( )) 1
l kp

l k l l k b c     .       (24) 

By Lemma 3.3 and Eq.24, we deduce that 

( )
p
l k

                   (25) 

The definition of the algorithm implies that ( )l kd   

which corresponds to the following subproblem is unac-
ceptable: 

n ( ) ( ) ( )
d R

1
min  ( ),

2
T T
l k l k l kd d B d q d


   

( )( ) 1

( ) ( ). . || || l kl kp

l k l ks t d c M
c

 
       (26) 

i.e., 

( ( )) ( ) ( )

( ) ( )

( )

( )
l l k l k l k

l k l k

x d

q d

 


 



       (27) 

By the definition of ( )l k , we have 

( ( )) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )
l l k l k l k l k l k l k

l k l k l k l k

x d x d

q d q d

       


  
 (28) 

By step 2, step 3, and step 4, we have that when k  is 
sufficiently large, the following formula holds: 

( ) ( ) ( )

( ) ( )

( )

( )
l k l k l k

l k l k

x d

q d

 


 



        (29) 

This combines with Eq.28 will contradicts Eq.27. The 
contradiction shows that the theorem is true. The proof is 
complete.  

Remark. Theorem 3.1 shows that the iterative se-
quence { }kx  generated by Algorithm 1 such that 

( ) ( ) 0k kg x g x  . If *x  is a cluster point of { }kx  

and *( )g x is nonsingular, then we have || ( ) || 0kg x  . 

This is a standard convergence result for nonlinear equa-
tions. At present, there is no method that can satisfy 
|| ( ) || 0kg x   without the assumption that *( )g x  is 

nonsingular.  

4. NUMERICAL RESULTS 

In this section, results of some preliminary numerical 
experiments are reported to test our given method.  

Problem. The discretized two-point boundary value 
problem is the same to the problem in [39] 

 2

1
( ) ( ) 0

1
g x Ax F x

n
  


 

where A is the n n  tridiagonal matrix given by 

3 1

1 3 1

1 3 1

1

1 3

A

 
   
  

  
 
 
 

  

  
 

 

and 1 2( ) ( ( ), ( ), ( ))T
nF x F x F x F x  , with  

( ) sin 1,  i=1,2,i iF x x nS    

In the experiments, the parameters were chosen as 

0.01,c  10,M   and 0.8,   0B  is the unit matrix. 

Solving the subproblem Eq.4 to get kd  by Dogleg 

method. The program was coded in MATLAB 7.0. We 
stopped the iteration when the condition 5|| || 10kg   

was satisfied. The columns of the tables have the fol-
lowing meaning: 

Dim: the dimension of the problem.  
NG: the number of the function evaluations. 
NI: the total number of iterations.  
GG: the norm of the function evaluations.  
The numerical results (Table 1) indicate that the pro-

posed method performs quite well for the Problem. 
Moreover, the inverse initial points and the initial points 
don’t influence the performance of Algorithm 1 very 
much. Especially, the numerical results hardly change 
with the dimension increasing. 

Discussion. In this paper, based on [23], a modified 
algorithm for solving symmetric nonlinear equations is 
presented. The convergent result is established and the 
numerical results are also reported. We hope that the 
proposed method can be a topic of further research for 
symmetric nonlinear equations. 

Table 1. Test results for problem. 

x0 (2, … ,2) (10, … ,10) (50, … ,50) (-10, … ,-10) (-2, … ,-2) 
Dim NI/NG/GG NI/NG/GG NI/NG/GG NI/NG/GG NI/NG/GG 
n = 49 191/391/9.557342e-006 196/401/6.091920e-006 253/515/7.487518e-006 286/581/9.484488e-006 206/421/9.047968e-006
n = 100 240/505/9.607401e-006 402/829/9.985273e-006 117/259/8.296290e-006 185/395/9.828274e-006 144/313/9.842536e-006
n = 300 223/463/8.060658e-006 260/537/9.470041e-006 241/499/3.894953e-006 246/509/9.915900e-006 233/483/9.705042e-006
n = 500 157/331/9.236809e-006 171/359/9.814318e-006 177/371/9.567563e-006 170/357/9.852428e-006 155/327/7.401986e-006
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