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ABSTRACT 
I calculate the classical effects induced by an 
isotropic mass loss �̇�𝑴 𝑴𝑴⁄  of a body on the or-
bital motion of a test particle around it; the 
present analysis is also valid for a variation �̇�𝑮 𝑮𝑮⁄  
of the Newtonian constant of gravitation. I per-
turbatively obtain negative secular rates for the 
osculating semimajor axis a, the eccentricity e 
and the mean anomaly 𝓜𝓜, while the argument 
of pericenter ω does not undergo secular pre-
cession, like the longitude of the ascending 
node Ω and the inclination I. The anomalistic 
period is different from the Keplerian one, being 
larger than it. The true orbit, instead, expands, 
as shown by a numerical integration of the eq-
uations of motion in Cartesian coordinates; in 
fact, this is in agreement with the seemingly 
counter-intuitive decreasing of a and e because 
they only refer to the osculating Keplerian el-
lipses which approximate the trajectory at each 
instant. By assuming for the Sun �̇�𝑴 𝑴𝑴⁄ = −𝟗𝟗 ×
 𝟏𝟏𝟏𝟏−𝟏𝟏𝟏𝟏 𝐲𝐲𝐲𝐲−𝟏𝟏, it turns out that the Earth's perihe-
lion position is displaced outward by 1.3 cm 
along the fixed line of apsides after each revo-
lution. By applying our results to the phase in 
which the radius of the Sun, already moved to 
the Red Giant Branch of the Hertzsprung-Russell 
Diagram, will become as large as 1.20 AU in 
about 1 Myr, I find that the Earth's perihelion 
position on the fixed line of the apsides will in-
crease by ≈ 𝟏𝟏.𝟐𝟐𝟐𝟐 − 𝟏𝟏.𝟐𝟐𝟐𝟐  AU (for �̇�𝑴 𝑴𝑴⁄ = −𝟐𝟐 ×
 𝟏𝟏𝟏𝟏−𝟕𝟕 𝐲𝐲𝐲𝐲−𝟏𝟏); other researchers point towards an 
increase of ≈ 𝟏𝟏.𝟑𝟑𝟕𝟕 − 𝟏𝟏.𝟔𝟔𝟑𝟑  AU. Mercury will be 
destroyed already at the end of the Main Se-
quence, while Venus should be engulfed in the 
initial phase of the Red Giant Branch phase; the 
orbits of the outer planets will increase by 
𝟏𝟏.𝟐𝟐 − 𝟕𝟕.𝟐𝟐 AU. Simultaneous long-term numeri-
cal integrations of the equations of motion of all 
the major bodies of the solar system, with the 
inclusion of a mass-loss term in the dynamical 
force models as well, are required to check if the 

mutual N-body interactions may substantially 
change the picture analytically outlined here, 
especially in the Red Giant Branch phase in 
which Mercury and Venus may be removed from 
the integration. 

Keywords: Gravitation; Stars; Mass-Loss; Celestial 
Mechanics 

1. INTRODUCTION 

I deal with the topic of determining the classical orbital 
effects induced by an isotropic variation �̇�𝑀 𝑀𝑀⁄  of the 
mass of a central body on the motion of a test particle; 
my analysis is also valid for a change �̇�𝐺 𝐺𝐺⁄  of the 
Newtonian constant of gravitation. This problem, al-
though interesting in itself, is not only an academic one 
because of the relevance that it may have on the ultimate 
destiny of planetary companions in many stellar systems 
in which the host star experiences a mass loss, like our 
Sun [1]. With respect to this aspect, my analysis may be 
helpful in driving future researches towards the imple-
mentation of long-term N-body simulations including 
the temporal change of GM as well, especially over 
timescales covering paleoclimate changes, up to the Red 
Giant Branch (RGB) phase in which some of the inner 
planets should be engulfed by the expanding Sun. 
Another problem, linked to the one investigated here, 
which has recently received attention, is the observa-
tionally determined secular variation of the Astronomical 
Unit [2-5]. Moreover, increasing accuracy in astrometry 
pointing towards microarcsecond level [6], and long- 
term stability in clocks [7] requires to consider the pos-
sibility that smaller and subtler perturbations will be 
soon detectable in the solar system. Also future planetary 
ephemerides should take into account �̇�𝑀 𝑀𝑀.⁄  Other 
phenomena which may show connections with the prob-
lem treated here are the secular decrease of the semima-
jor axes of the LAGEOS satellites, amounting to 1.1 mm 
d−1 [8], and the increase of the lunar orbit’s eccentricity 
[9]. However, a detailed analysis of all such issues is 
beyond the scope of this paper.  
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Many treatments of the mass loss-driven orbital dy-
namics in the framework of the Newtonian mechanics, 
based on different approaches and laws of variation of 
the central body’s mass, can be found in literature 
[2,4,10-18] and references therein. 

The plan of the paper is as follows. Section 2 is de-
voted to a theoretical description of the phenomenon in a 
two-body scenario. By working in the Newtonian frame- 
work, I will analytically work out the changes after one 
orbital revolution experienced by all the Keplerian orbit-
al elements of a test particle moving in the gravitational 
field of a central mass experiencing a variation of its GM 
linear in time. Then, I will clarify the meaning of the 
results obtained by performing a numerical integration 
of the equations of motion in order to visualize the true 
trajectory followed by the planet. Concerning the me-
thod adopted, I will use the Gauss perturbation equations 
[19,20], which are valid for generic disturbing accelera-
tions depending on position, velocity and time, the 
“standard” Keplerian orbital elements (the Type I acc- 
ording to [16]) with the eccentric anomaly E as “fast” 
angular variable. Other approaches and angular variables 
like, e.g. the Lagrange perturbation equations [19,20], 
the Type II orbital elements [16] and the mean anomaly 
ℳ could be used, but, in my opinion, at a price of major 
conceptual and computational difficulties1. With respect 
to possible connections with realistic situations, it should 
be noted that, after all, the Type I orbital elements are 
usually determined or improved in standard data reduc-
tion analyses of the motion of planets and (natural and 
artificial) satellites. Instead, my approach should, hope-
fully, appear more transparent and easy to interpret, al-
though, at first sight, some counter-intuitive results con-
cerning the semimajor axis and the eccentricity will be 
obtained; moreover, for the chosen time variation of the 
mass of the primary, no approximations are used in the 
calculations which are quite straightforward. However, it 
is important to stress that such allegedly puzzling fea-
tures are only seemingly paradoxical because they will 
turn out to be in agreement with numerical integrations 
of the equations of motion, as explicitly shown by the 
Figures depicted. Anyway, the interested reader is ad-
vised to look also at [16] for a different approach. In 
Section 3, I will apply our results to the future Sun-Earth 
scenario and to the other planets of the solar system. 
Section 4 summarizes my results. 

2. ANALYITICAL CALCULATION OF THE 
ORBITAL EFFECT OF �̇�𝝁 𝝁𝝁⁄  

By defining 𝜇𝜇 ≐ 𝐺𝐺𝑀𝑀 at a given epoch 𝑡𝑡0, the accelera-

tion of a test particle orbiting a central body experienc-
ing a variation of 𝜇𝜇 is, to first order in 𝑡𝑡 − 𝑡𝑡0, 

𝑨𝑨 =  −𝜇𝜇 (𝑡𝑡)
𝑟𝑟2 𝒓𝒓�  ≈  − 𝜇𝜇

𝑟𝑟2 �1 + ��̇�𝜇
𝜇𝜇
� (𝑡𝑡 − 𝑡𝑡0)� 𝒓𝒓�,  (1) 

with �̇�𝜇  ≐  ��̇�𝜇|𝑡𝑡=𝑡𝑡0 . �̇�𝜇  will be assumed constant 
throughout the temporal interval of interest ∆𝑡𝑡 =  𝑡𝑡 −
𝑡𝑡0, as it is the case, e.g., for most of the remaining life-
time of the Sun as a Main Sequence (MS) star [1]. Note 
that �̇�𝜇 can, in principle, be due to a variation of both the 
Newtonian gravitational constant G and the mass M of 
the central body, so that 

�̇�𝜇
𝜇𝜇

=  �̇�𝐺
𝐺𝐺

+ �̇�𝑀
𝑀𝑀

 .               (2) 

Moreover, while the orbital angular momentum is 
conserved, this does not happen for the energy. 

By limiting ourselves to realistic astronomical scena-
rios like our solar system, it is quite realistic to assume 
that  

��̇�𝜇
𝜇𝜇
� (𝑡𝑡 − 𝑡𝑡0) ≪ 1            (3) 

over most of its remaining lifetime: indeed, since �̇�𝑀 𝑀𝑀⁄  
is of the order of 2 10−14 yr−1, for the Sun [1], the con-
dition (3) is satisfied for the remaining2 ≈ 7.58 Gyr 
before the Sun will approach the RGB tip in the 
Hertzsprung-Russell Diagram (HRD). Thus, I can treat it 
perturbatively with the standard methods of celestial 
mechanics. 

The unperturbed Keplerian ellipse at epoch 𝑡𝑡0, as-
sumed coinciding with the time of the passage at perihe-
lion 𝑡𝑡𝑝𝑝 , is characterized by 

⎩
⎪
⎨

⎪
⎧
𝑟𝑟 = 𝑎𝑎(1 − 𝑒𝑒 cos𝐸𝐸),
𝑑𝑑𝑡𝑡 = �1−𝑒𝑒 cos 𝐸𝐸

𝑛𝑛
� 𝑑𝑑𝐸𝐸,

cos𝑓𝑓 = cos 𝐸𝐸−𝑒𝑒
1−𝑒𝑒 cos 𝐸𝐸

,

sin 𝑓𝑓 =
�1−𝑒𝑒2 sin 𝐸𝐸

1−𝑒𝑒 cos 𝐸𝐸
,

�            (4) 

where a and e are the semimajor axis and the eccentricity, 
respectively, which fix the size and the shape of the un-
changing Keplerian orbit, 𝑛𝑛 ≐ �𝜇𝜇 𝑎𝑎3⁄  is its unper-
turbed Keplerian mean motion, f is the true anomaly, 
reckoned from the pericentre, and E is the eccentric 
anomaly. Eq.4 characterizes the path followed by the 
particle for any 𝑡𝑡 >  𝑡𝑡𝑝𝑝  if the mass loss would sudden-
ly cease at 𝑡𝑡𝑝𝑝 . Instead, the true path will be, in general, 
different from a closed ellipse because of the perturba-
tion induced by �̇�𝜇, and the orbital parameters of the os-
culating ellipses approximating the real trajectory at 
each instant of time will slowly change in time. 

1Think, e.g., about the cumbersome expansions in terms of the mean 
anomaly and the Hansen coefficients, the subtleties concerning the 
choice of the independent variable in the Lagrange equations for the 
semimajor axis and the eccentricity [19]. 

2About 80% of such a mass-loss is due to the core nuclear burning, 
while the remaining 20% is due to average solar wind. 
3The age of the present-day MS Sun is 4.58 Gyr, counted from its ze-
ro-age MS star model [1]. 
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2.1. The Semimajor Axis and the Eccentricity 
The Gauss equation for the variation of the semimajor 
axis a is [19,20] 

𝑑𝑑𝑎𝑎
𝑑𝑑𝑡𝑡

= 2
𝑛𝑛√1−𝑒𝑒2 �𝑒𝑒𝐴𝐴𝑟𝑟 sin 𝑓𝑓 + 𝐴𝐴𝜏𝜏 �

𝑝𝑝
𝑟𝑟
��,       (5) 

where 𝐴𝐴𝑟𝑟  and 𝐴𝐴𝜏𝜏  are the radial and transverse, i.e. 
orthogonal to the direction of 𝒓𝒓�, components, respec-
tively, of the disturbing acceleration, and 𝑝𝑝 ≐ 𝑎𝑎(1 − 𝑒𝑒2) 
is the semilatus rectum. In the present case 

𝐴𝐴 = 𝐴𝐴𝑟𝑟 = − �̇�𝜇
𝑟𝑟2 �𝑡𝑡 − 𝑡𝑡𝑝𝑝�,          (6) 

i.e. there is an entirely radial perturbing acceleration. For 
�̇�𝜇  < 0, i.e. a decrease in the body’s GM, the total gravi-
tational attraction felt by the test particle, given by (1), is 
reduced with respect to the epoch 𝑡𝑡𝑝𝑝 .  

In order to have the rate of the semimajor axis aver-
aged over one (Keplerian) orbital revolution (6) must be 
inserted into (5), evaluated onto the unperturbed Keple-
rian ellipse with (4) and finally integrated over 𝑛𝑛𝑑𝑑𝑡𝑡 2𝜋𝜋⁄  
from 0 to 2𝜋𝜋 because 𝑛𝑛 2𝜋𝜋⁄  ≐  1 𝑃𝑃Kep⁄  (see below). 
Note that, from (4), it can be obtained 

𝑡𝑡 − 𝑡𝑡𝑝𝑝 = 𝐸𝐸−𝑒𝑒 sin 𝐸𝐸
𝑛𝑛

 .             (7) 

As a result, I have 4 

〈𝑑𝑑𝑎𝑎
𝑑𝑑𝑡𝑡
〉 = − 𝑒𝑒𝑎𝑎

𝜋𝜋
��̇�𝜇
𝜇𝜇
� ∫ (𝐸𝐸−𝑒𝑒 sin 𝐸𝐸) sin 𝐸𝐸

(1−𝑒𝑒 cos 𝐸𝐸)2 𝑑𝑑𝐸𝐸   2𝜋𝜋
0     (8) 

=
2𝑒𝑒𝑎𝑎

1 − 𝑒𝑒
�
�̇�𝜇
𝜇𝜇
� . 

Note that if 𝜇𝜇  decreases, a gets reduced as well: 
〈�̇�𝑎〉  < 0. This may be seemingly bizarre and coun-
ter-intuitive, but, as it will be shown later, it is not in 
contrast with the true orbital motion. 

The Gauss equation for the variation of the eccentric-
ity is [19,20] 
𝑑𝑑𝑒𝑒
𝑑𝑑𝑡𝑡

= √1−𝑒𝑒2

𝑛𝑛𝑎𝑎
�𝐴𝐴𝑟𝑟 sin 𝑓𝑓 + 𝐴𝐴𝜏𝜏 �cos 𝑓𝑓 + 1

𝑒𝑒
�1 − 𝑟𝑟

𝑎𝑎
��� (9) 

For 𝐴𝐴 = 𝐴𝐴𝑟𝑟  it reduces to 
𝑑𝑑𝑒𝑒
𝑑𝑑𝑡𝑡

= �1−𝑒𝑒2

2𝑎𝑎𝑒𝑒
� 𝑑𝑑𝑎𝑎
𝑑𝑑𝑡𝑡

 ,            (10) 

so that 

〈𝑑𝑑𝑒𝑒
𝑑𝑑𝑡𝑡
〉 = (1 + 𝑒𝑒) ��̇�𝜇

𝜇𝜇
� ;           (11) 

also the eccentricity gets smaller for �̇�𝜇  < 0. 
As a consequence of the found variations of the oscu-

lating semimajor axis and the eccentricity, the osculating 
orbital angular momentum per unit mass, defined by 
𝐿𝐿2 ≐ 𝜇𝜇𝑎𝑎(1 − 𝑒𝑒2), remains constant: indeed, by using (8) 
and (11), it turns out 

〈𝑑𝑑𝐿𝐿
2

𝑑𝑑𝑡𝑡
〉 = 𝜇𝜇〈�̇�𝑎〉(1 − 𝑒𝑒2) − 2𝜇𝜇𝑎𝑎𝑒𝑒〈�̇�𝑒〉 = 0.    (12) 

The osculating total energy ℰ ≐ −𝜇𝜇 2𝑎𝑎⁄  decreases 
according to 

〈𝑑𝑑ℰ
𝑑𝑑𝑡𝑡
〉 = 𝜇𝜇

2𝑎𝑎2 〈�̇�𝑎〉 = 𝑒𝑒�̇�𝜇
𝑎𝑎(1−𝑒𝑒) .          (13) 

Moreover, the osculating Keplerian period 

𝑃𝑃Kep ≐ 2𝜋𝜋�𝑎𝑎3

𝜇𝜇
 ,             (14) 

which, by definition, yields the time elapsed between 
two consecutive perihelion crossings in absence of per-
turbation, i.e. it is the time required to describe a fixed 
osculating Keplerian ellipse, decreases according to  

〈𝑑𝑑𝑃𝑃
Kep

𝑑𝑑𝑡𝑡
〉 =  3

2
𝑃𝑃Kep 〈�̇�𝑎〉

𝑎𝑎
 = 6𝜋𝜋𝑒𝑒 �̇�𝜇

(1−𝑒𝑒)
�𝑎𝑎
𝜇𝜇
�

3
2� .   (15) 

As I will show, also such a result is not in contrast 
with the genuine orbital evolution. 

2.2. The Pericenter, the Node and the    
Inclination 

The Gauss equation for the variation of the argument of 
pericentre ω is [19,20] 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

=
√1 − 𝑒𝑒2

𝑛𝑛𝑎𝑎𝑒𝑒
�−𝐴𝐴𝑟𝑟 cos 𝑓𝑓 + 𝐴𝐴𝜏𝜏 �1 +

𝑟𝑟
𝑝𝑝
� sin 𝑓𝑓� 

− cos 𝐼𝐼 𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

 ,            (16) 

where I and Ω are the inclination and the longitude of 
the ascending node, respectively, which fix the orienta-
tion of the osculating ellipse in the inertial space. Since 
𝑑𝑑𝑑𝑑 𝑑𝑑𝑡𝑡⁄  and 𝑑𝑑𝐼𝐼 𝑑𝑑𝑡𝑡⁄  depend on the normal component 𝐴𝐴𝜈𝜈  
of the disturbing acceleration, which is absent in the 
present case, and 𝐴𝐴 = 𝐴𝐴𝑟𝑟 , I have 

〈𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡
〉 = √1−𝑒𝑒2

2𝜋𝜋𝑒𝑒
��̇�𝜇
𝜇𝜇
� ∫ (𝐸𝐸−𝑒𝑒 sin 𝐸𝐸)(cos 𝐸𝐸−𝑒𝑒)

(1−𝑒𝑒 cos 𝐸𝐸)2 𝑑𝑑𝐸𝐸2𝜋𝜋
0 = 0. (17) 

The osculating ellipse does not change its orientation 
in the orbital plane, which, incidentally, remains fixed in 
the inertial space because 𝐴𝐴𝜈𝜈 = 0 and, thus, 𝑑𝑑𝑑𝑑 𝑑𝑑𝑡𝑡⁄ =
𝑑𝑑𝐼𝐼 𝑑𝑑𝑡𝑡⁄ = 0.  

2.3. The Mean Anomaly 
The Gauss equation for the mean anomaly ℳ, defined 
as ℳ≐ 𝑛𝑛�𝑡𝑡 − 𝑡𝑡𝑝𝑝�, [19,20] is 

𝑑𝑑ℳ
𝑑𝑑𝑡𝑡

= 𝑛𝑛 − 2
𝑛𝑛𝑎𝑎
𝐴𝐴𝑟𝑟

𝑟𝑟
𝑎𝑎
− √1 − 𝑒𝑒2 �𝑑𝑑𝑑𝑑

𝑑𝑑𝑡𝑡
+ cos 𝐼𝐼 𝑑𝑑𝑑𝑑

𝑑𝑑𝑡𝑡
�. (18) 

It turns out that, since 

− 2
𝑛𝑛𝑎𝑎
𝐴𝐴𝑟𝑟

𝑟𝑟
𝑎𝑎
𝑑𝑑𝑡𝑡 = 2�̇�𝜇

(𝑛𝑛𝑎𝑎 )3 (𝐸𝐸 − 𝑒𝑒 sin𝐸𝐸)𝑑𝑑𝐸𝐸,     (19) 

then 

4Recall that the integration is taken over the unperturbed Keplerian 
ellipse: that is why a and e are kept out of the integral in (8) and in the 
following averages. 
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〈𝑑𝑑ℳ
𝑑𝑑𝑡𝑡
〉 = 𝑛𝑛 + 2𝜋𝜋 ��̇�𝜇

𝜇𝜇
� ;          (20) 

the mean anomaly changes uniformly in time at a slower 
rate with respect to the unperturbed Keplerian case for 
�̇�𝜇 < 0. 

2.4. Numerical Integration of the Equations of 
Motion and Explanation of the Seeming   
Contradiction with the Analytical Results 

At first sight, the results obtained here may be rather 
confusing: if the gravitational attraction of the Sun re-
duces in time because of its mass loss the orbits of the 
planets should expand (see the trajectory plotted in Fig-
ure 1, numerically integrated with MATHEMATICA), 
while I obtained that the semimajor axis and the eccen-
tricity undergo secular decrements. Moreover, I found 
that the Keplerian period 𝑃𝑃Kep  decreases, while one 
would expect that the orbital period increases.  

In fact, there is no contradiction, and my analytical 
results do yield us realistic information on the true evo-
lution of the planetary motion. Indeed, a, e and 𝑃𝑃Kep  
refer to the osculating Keplerian ellipses which, at any 
instant, approximate the true trajectory; it, instead, is not 
an ellipse, not being bounded. Let us start at 𝑡𝑡𝑝𝑝  from 
the osculating pericentre of the Keplerian ellipse corres-
ponding to chosen initial conditions: let us use a helio-
centric frame with the x axis oriented along the osculat-
ing pericentre. After a true revolution, i.e. when the true  

 

 
 

Figure 1. Black continuous line: true trajectory obtained by 
numerically integrating with MATHEMATICA the perturbed 
equations of motion in Cartesian coordinates over 2 yr; the 
disturbing acceleration (1) has been adopted. The planet starts 
from the perihelion on the x axis. Just for illustrative purposes, 
a mass loss rate of the order of 10−2 yr−1 has been adopted 
for the Sun; for the planet initial conditions corresponding to a 
= 1 AU, e = 0.8 have been chosen. Red dashed line: unper-
turbed Keplerian ellipse at 𝑡𝑡 = 𝑡𝑡0 = 𝑡𝑡𝑝𝑝 . Blue dash-dotted line: 
osculating Keplerian ellipse after the first perihelion passage. 
As can be noted, its semimajor axis and eccentricity are clearly 
smaller than those of the initial unperturbed ellipse. Note also 
that after 2 yr the planet has not yet reached the perihelion as it 
would have done in absence of mass loss, i.e. the true orbital 
period is longer than the Keplerian one of the osculating red 
ellipse. 

radius vector of the planet has swept an angular interval 
of 2𝜋𝜋, the planet finds itself again on the x axis, but at a 
larger distance from the starting point because of the 
orbit expansion induced by the Sun's mass loss. It is not 
difficult to understand that the osculating Keplerian el-
lipse approximating the trajectory at this perihelion pas-
sage is oriented as before because there is no variation of 
the (osculating) argument of pericentre, but has smaller 
semimajor axis and eccentricity. And so on, revolution 
after revolution, until the perturbation theory can be ap-
plied, i.e. until �̇�𝜇 𝜇𝜇⁄  �𝑡𝑡 − 𝑡𝑡𝑝𝑝� ≪ 1. In Figure 1 the situ-
ation described so far is qualitatively illustrated. Just for 
illustrative purposes I enhanced the overall effect by 
assuming �̇�𝜇 𝜇𝜇⁄  ≈  10−2 yr−1  for the Sun; the initial 
conditions for the planet correspond to an unperturbed 
Keplerian ellipse with a = 1 AU, e = 0.8 with the 
present-day value of the Sun's mass in one of its foci. It 
is apparent that the initial osculating red dashed ellipse 
has larger a and e with respect to the second osculating 
blue dash-dotted ellipse. Note also that the true orbital 
period, intended as the time elapsed between two con-
secutive crossings of the perihelion, is larger than the 
unperturbed Keplerian one of the initial red dashed os-
culating ellipse, which would amount to 1 yr for the 
Earth: indeed, after 2 yr the planet has not yet reached 
the perihelion for its second passage. 

Now, if I compute the radial change ∆𝑟𝑟(𝐸𝐸) in the 
osculating radius vector as a function of the eccentric 
anomaly E I can gain useful insights concerning how 
much the true path has expanded after two consecutive 
perihelion passages. From the Keplerian expression of 
the Sun-planet distance in (4) one gets the radial com-
ponent of the orbital perturbation expressed in terms of 
the eccentric anomaly E 

∆𝑟𝑟(𝐸𝐸) = (1 − 𝑒𝑒 cos𝐸𝐸)∆𝑎𝑎 − 𝑎𝑎 cos𝐸𝐸 ∆𝑒𝑒 
+𝑎𝑎𝑒𝑒 sin𝐸𝐸 ∆𝐸𝐸;   (21) 

It agrees with the results obtained in [21]. Since 

⎩
⎪
⎨

⎪
⎧ ∆𝑎𝑎 = − 2𝑎𝑎𝑒𝑒

𝑛𝑛
��̇�𝜇
𝜇𝜇
� �sin 𝐸𝐸−𝐸𝐸 cos 𝐸𝐸

1−𝑒𝑒 cos 𝐸𝐸
� ,

∆𝑒𝑒 = − �1−𝑒𝑒2�
𝑛𝑛

��̇�𝜇
𝜇𝜇
� �sin 𝐸𝐸−𝐸𝐸 cos 𝐸𝐸

1−𝑒𝑒 cos 𝐸𝐸
� ,

∆𝐸𝐸 = ∆ℳ+sin 𝐸𝐸∆𝑒𝑒
1−𝑒𝑒 cos 𝐸𝐸

= 1
𝑛𝑛
��̇�𝜇
𝜇𝜇
� [𝒜𝒜(𝐸𝐸) + ℬ(𝐸𝐸) + 𝒞𝒞(𝐸𝐸)],

�(22) 

with 

⎩
⎪
⎨

⎪
⎧ 𝒜𝒜(𝐸𝐸) = 𝐸𝐸2+2𝑒𝑒(cos 𝐸𝐸−1)

1−𝑒𝑒 cos 𝐸𝐸
,

ℬ(𝐸𝐸) = �1−𝑒𝑒2

𝑒𝑒
� �1+𝑒𝑒−(1+𝑒𝑒) cos 𝐸𝐸−𝐸𝐸 sin 𝐸𝐸

(1−𝑒𝑒 cos 𝐸𝐸)2 �

𝒞𝒞(𝐸𝐸) = − �1−𝑒𝑒2� sin 𝐸𝐸(sin 𝐸𝐸−𝑒𝑒 cos 𝐸𝐸)
(1−𝑒𝑒 cos 𝐸𝐸)2 ,

�   (23) 

It follows 

∆𝑟𝑟(𝐸𝐸) = 𝑎𝑎
𝑛𝑛
��̇�𝜇
𝜇𝜇
� [𝒟𝒟(𝐸𝐸) + ℱ(𝐸𝐸)],    (24) 
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with  

𝒟𝒟(𝐸𝐸) = 𝑒𝑒

⎩
⎪
⎨

⎪
⎧ −2(sin𝐸𝐸 − 𝐸𝐸 cos𝐸𝐸) +

+ sin 𝐸𝐸�𝐸𝐸2+2𝑒𝑒(cos 𝐸𝐸−1)�
1−𝑒𝑒 cos 𝐸𝐸

−

− �1−𝑒𝑒2�sin 2𝐸𝐸(sin 𝐸𝐸−𝑒𝑒 cos 𝐸𝐸)
(1−𝑒𝑒 cos 𝐸𝐸)2 ⎭

⎪
⎬

⎪
⎫

,    (25) 

and 

ℱ(𝐸𝐸) = � 1−𝑒𝑒2

1−𝑒𝑒 cos 𝐸𝐸
� �

cos𝐸𝐸(sin𝐸𝐸 − 𝐸𝐸 cos 𝐸𝐸) +
+ sin𝐸𝐸 �1+𝑒𝑒−(1+𝑒𝑒) cos 𝐸𝐸−𝐸𝐸 sin 𝐸𝐸

1−𝑒𝑒 cos 𝐸𝐸
�� .(26) 

It turns out from (25) and (26) that, for E > 0, ∆𝑟𝑟(E) 
never vanishes; after one orbital revolution, i.e. after that 
an angular interval of 2𝜋𝜋 has been swept by the (osclat-
ing) radius vector, a net increase of the radial (osculating) 
distance occurs according to5 

∆𝑟𝑟(2𝜋𝜋) − ∆𝑟𝑟(0) = ∆𝑟𝑟(2𝜋𝜋) = − 2𝜋𝜋
𝑛𝑛
��̇�𝜇
𝜇𝜇
� 𝑎𝑎(1 − 𝑒𝑒) (27) 

This analytical result is qualitatively confirmed by the 
difference6 ∆𝑟𝑟(𝑡𝑡) between the radial distances obtained 
from the solutions of two numerical integrations of the 
equations of motion over 3 yr with and without �̇�𝜇 𝜇𝜇⁄ ; the 
initial conditions are the same. For illustrative purposes I 
used a = 1 AU, e = 0.01, �̇�𝜇 𝜇𝜇⁄ = −0.1 yr−1. The result 
is depicted in Figure 2. 

Note also that (25) and (26) tell us that the shift at the 
aphelion is 

∆𝑟𝑟(𝜋𝜋) = 1
2
�1+𝑒𝑒

1−𝑒𝑒
�∆𝑟𝑟(2𝜋𝜋),       (28) 

in agreement with Figure 1 where it is 4.5 times larger 
than the shift at the perihelion.  

Since Figure 1 tells us that the orbital period gets 
larger than the Keplerian one, it means that the true orbit 
must somehow remain behind with respect to the Keple 
rian one. Thus, a negative perturbation ∆𝜏𝜏 in the trans-
verse direction must occur as well; see Figure 3. 

Let us now analytically compute it. According to [21], 
it can be used  

∆𝜏𝜏 = 𝑎𝑎 sin 𝐸𝐸
�1−𝑒𝑒2

+ 𝑎𝑎√1 − 𝑒𝑒2∆𝐸𝐸 + 𝑟𝑟(∆𝑑𝑑 + cos 𝐼𝐼 ∆𝑑𝑑). (29) 

By recalling that, in the present case, ∆𝑑𝑑 = 0 and 
using 

∆𝑑𝑑 = −√1−𝑒𝑒2

𝑛𝑛𝑒𝑒
��̇�𝜇
𝜇𝜇
� �1+𝑒𝑒−(1+𝑒𝑒) cos 𝐸𝐸−𝐸𝐸 sin 𝐸𝐸

1−𝑒𝑒 cos 𝐸𝐸
�, (30) 

it is possible to obtain from (22) and (30) 

 (31) 

with 

 
Figure 2. Difference ∆𝑟𝑟(𝑡𝑡) between the radial distances ob-
tained from the solutions of two numerical integrations with 
MATHEMATICA of the equations of motion over 3 yr with 
and without �̇�𝜇 𝜇𝜇⁄ ; the initial conditions are the same. Just for 
illustrative purposes a mass loss rate of the order of �̇�𝜇 𝜇𝜇⁄ =
−0.1 yr−1 has been adopted for the Sun; for the planet initial 
conditions corresponding to a = 1 AU, e = 0.01 have been 
chosen. The cumulative increase of the Sun-planet distance 
induced by the mass loss is apparent. 

 

 
Figure 3. Radial and transverse perturbations ∆𝑟𝑟 and ∆𝜏𝜏 of 
the Keplerian radius vector (in blue); the presence of the 
transverse perturbation ∆𝜏𝜏 makes the real orbit (in red) lag-
ging behind the Keplerian one. 
 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝒢𝒢(𝐸𝐸) = sin 𝐸𝐸 (𝐸𝐸 cos 𝐸𝐸 − sin 𝐸𝐸),
ℋ(𝐸𝐸) = (1−𝑒𝑒 cos 𝐸𝐸)

𝑒𝑒
[(1 + 𝑒𝑒)(cos 𝐸𝐸 − 1) + 𝐸𝐸 sin𝐸𝐸],

ℐ(𝐸𝐸) = 𝐸𝐸2 + 2𝑒𝑒(cos 𝐸𝐸 − 1),

𝒥𝒥(𝐸𝐸) = sin 𝐸𝐸 ��1−𝑒𝑒2�(𝑒𝑒 cos 𝐸𝐸−sin 𝐸𝐸)
1−𝑒𝑒 cos 𝐸𝐸

� ,

𝒦𝒦(𝐸𝐸) = �1−𝑒𝑒2

𝑒𝑒
� �(1+𝑒𝑒)(1−𝑒𝑒 cos 𝐸𝐸)−𝐸𝐸 sin 𝐸𝐸

1−𝑒𝑒 cos 𝐸𝐸
� .

�(32) 

It turns out from (31) and (32) that, for 𝐸𝐸 > 0, 
∆𝜏𝜏(𝐸𝐸) never vanishes; at the time of perihelion passage 

∆𝜏𝜏(2𝜋𝜋) − ∆𝜏𝜏(0) = 4𝜋𝜋2

𝑛𝑛
𝑎𝑎 ��̇�𝜇

𝜇𝜇
��1+𝑒𝑒

1−𝑒𝑒
< 0.    (33) 

5According to (25) and (26), ∆r(0) = 0. 
6Strictly speaking, ∆r and the quantity plotted in Figure 2 are different 
objects, but, as the following discussion will clarify, I can assume that, 
in practice, they are the same. 
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This means that when the Keplerian path has reached 
the perihelion, the perturbed orbit is still behind it. Such 
features are qualitatively confirmed by Figure 1. From a 
vectorial point of view, the radial and transverse pertur-
bations to the Keplerian radius vector r yield a correc-
tion 

∆= ∆𝑟𝑟𝒓𝒓� + ∆𝜏𝜏𝝉𝝉� ,            (34) 
so that 

𝒓𝒓pert = 𝒓𝒓 + ∆.            (35) 

The length of ∆ is 

∆(𝐸𝐸) = �∆𝑟𝑟(𝐸𝐸)2 + ∆𝜏𝜏(𝐸𝐸)2.      (36) 
Eqs.27 and 31 tell us that at perihelion it amounts to 

∆(2𝜋𝜋) = ∆𝑟𝑟(2𝜋𝜋)�1 + 4𝜋𝜋2 (1+𝑒𝑒)
(1−𝑒𝑒)3 .  (37) 

The angle ξ between ∆ and r is given by 

tan ξ(𝐸𝐸) = ∆τ(𝐸𝐸)
∆𝑟𝑟(𝐸𝐸)

;           (38) 

at perihelion it is 

tan ξ(2𝜋𝜋) = −2π √1+𝑒𝑒

(1−𝑒𝑒)3
2�
 ,      (39) 

i.e. ξ is close to 90 deg; for the Earth it is 81.1 deg. Thus, 
the difference 𝛿𝛿 between the lengths of the perturbed 
radius vector 𝑟𝑟pert  and the Keplerian one r at a given 
instant amounts to about 

𝛿𝛿 ≈ ∆ cos ξ ;            (40) 
in fact, this is precisely the quantity determined over 3 yr 
by the numerical integration of Figure 2. At the perihe-
lion I have 

𝛿𝛿 = ∆𝑟𝑟(2𝜋𝜋)�1 + 4𝜋𝜋2
(1 + 𝑒𝑒)

(1 − 𝑒𝑒)3  cos ξ .  (41) 

Since for the Earth 

�1 + 4𝜋𝜋2 (1+𝑒𝑒)
(1−𝑒𝑒)3  cos ξ = 1.0037,   (42) 

it holds 
𝛿𝛿 ≈ ∆𝑟𝑟(2𝜋𝜋).            (43) 

This explains why Figure 2 gives us just ∆𝑟𝑟. 
Concerning the observationally determined increase 

of the Astronomical Unit, more recent estimates from 
processing of huge planetary data sets by Pitjeva point 
towards a rate of the order of 10−2 m yr−1 [22,23]. It 
may be noted that my result for the secular variation of 
the terrestrial radial position on the line of the apsides 
would agree with such a figure by either assuming a 
mass loss by the Sun of just −9 × 10−14  yr−1 or a 
decrease of the Newtonian gravitational constant. 

. Such a value for the temporal varia-
tion of G is in agreement with recent upper limits  

from Lunar Laser Ranging [24].  
. This possibility is envisaged in [25] whose 

authors use �̇�𝑎 𝑎𝑎⁄ = − �̇�𝐺 𝐺𝐺⁄  by speaking about a small 
radial drift of – (6 ± 13) × 10−2  m yr−1 in an orbit at 1 
AU. 

3. THE EVOLUTION OF THE EARTH-SUN 
SYSTEM 

In this Section 1 will not consider other effects which 
may affect the final evolution of the Sun-Earth system 
like the tidal interaction between the Earth and the tidal 
bulges of the giant solar photosphere, and the drag fric-
tion in the motion through the low chromosphere [1]. 
For the Earth, by assuming the values a = 1.00000011 
AU, e = 0.01671022 at the epoch J2000 (JD 2451545.0) 
with respect to the mean ecliptic and equinox of J2000 
and �̇�𝜇 𝜇𝜇⁄ = −9 × 10−14  yr−1, (24) yields 

∆𝑟𝑟(2𝜋𝜋) = 1.3 × 10−2m.       (44) 
This means that at every revolution the position of the 

Earth is shifted along the true line of the apsides (which 
coincides with the osculating one because of the absence 
of perihelion precession) by 1.3 cm. This result is con-
firmed by our numerical integrations and the discussion 
of Section 2; indeed, it can be directly inferred from 
Figure 2 by multiplying the value of ∆𝑟𝑟 at t = 1 yr by 
9 × 10−13. By assuming that the Sun will continue to 
lose mass at the same rate for other 7.58 Gyr, when it 
will reach the tip of the RGB in the HR diagram [1], the 
Earth will be only 6.7 × 10−4 AU more distant than 
now from the Sun at the perihelion. Note that the value 
9 × 10−14  yr−1 is an upper bound on the magnitude of 
the Sun’s mass loss rate; it might be also smaller [1] like, 
e.g., 7 × 10−14  yr−1 which would yield an increment 
of 5.5 × 10−4 AU. Concerning the effect of the other 
planets during such a long-lasting phase, a detailed cal-
culation of their impact is beyond the scope of the 
present paper. By the way, I wish to note that the depen-
dence of ∆𝑟𝑟(2𝜋𝜋) on the eccentricity is rather weak; 
indeed, it turns out that, according to (24), the shift of 
the perihelion position after one orbit varies in the range 
1.1 − 1.3 cm for 0 ≤ 𝑒𝑒 ≤ 0.1. Should the interaction 
with the other planets increase notably the eccentricity, 
the expansion of the orbit would be even smaller; indeed, 
for higher values of e like, e.g., e = 0.8 it reduces to 
about 3 mm. By the way, it seems that the eccentricity of 
the Earth can get as large as just 0.02 – 0.1 [26-28] over 
timescales of ≈ 5 Gyr due to the N-body interactions 
with the other planets. In Table 1, I quote the expansion 
of the orbits of the other planets of the solar system as 
well.  
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It is interesting to note that Mercury7 and likely Venus 
are fated at the beginning of the RGB; indeed, from 
Figure 2 of [1] it turns out that the Sun’s photosphere 
will reach about 0.5-0.6 AU, while the first two planets 
of the solar system will basically remain at 0.38 AU and 
0.72 AU, respectively, being the expansion of their orbits 
negligible according to Table 1.  

After entering the RG phase things will dramatically 
change because in only ≈ 1 Myr the Sun will reach the 
tip of the RGB phase loosing mass at a rate of about 
−2 × 10−7 yr−1 and expanding up to 1.20 AU [1]. In 
the meantime, according to our perturbative calculations, 
the perihelion distance of the Earth will increase by 0.25 
AU. I have used as initial conditions for 𝜇𝜇, a and e their 
final values of the preceding phase 7.58 Gyr-long. In 
Table 2, I quote the expansion experienced by the other 
planets as well; it is interesting to note that the outer 
planets of the solar system will undergo a considerable 
increase in the size of their orbits, up to 7.5 AU for 
Neptune, contrary to the conclusions of the numerical 
computations in [29] who included the mass loss as well. 
I have used as initial conditions the final ones of the pre-
vious MS phase. Such an assumption seems reasonable 
for the giant planets since their eccentricities should be 
left substantially unchanged by the mutual N-body inte-
ractions during the next 5 Gyr and more [26-28]; con-
cerning the Earth, should its eccentricity become as 

 
Table 1. Expansion of the orbits, in AU, of the eight planets of 
the solar system in the next 7.58 Gyr for �̇�𝑀 𝑀𝑀⁄ = −9 ×
10−14 yr−1. I have neglected mutual N-body interactions. 

Planet ∆𝑟𝑟(AU) 
Mercury 
Venus 
Earth 
Mars 
Jupiter 
Saturn 
Uranus 
Neptune 

2 × 10−4 
5 × 10−4 
7 × 10−4 
9 × 10−4 
3 × 10−3 
6 × 10−3 
1 × 10−2 
2 × 10−2 

 
Table 2. Expansion of the orbits, in AU, of the eight planets of 
the solar system in the first 1 Myr of the RGB for �̇�𝑀 𝑀𝑀⁄ =
−2 × 10−7 yr−1. I have neglected mutual N-body interactions 
and other phenomena like the effects of tidal bulges and chro-
mospheric drag for the inner planets. 

Planet ∆𝑟𝑟(AU) 
Mercury 
Venus 
Earth 
Mars 
Jupiter 
Saturn 
Uranus 
Neptune 

7 × 10−2 
1.8 × 10−1 
2.5 × 10−1 
3.4 × 10−1 

1.24 
2.25 
4.57 
7.46 

large as 0.1 due to the N-body perturbations [26-28], 
after about 1 Myr its radial shift would be smaller 
amounting to 0.22 AU. Mutual N-body interactions have 
not been considered. Thus, orbital hardly preventing our 
planet to escape from engulfment in the expanding solar 
photosphere. Concerning the result for the Earth, it must 
be pointed out that it remains substantially unchanged if 
I repeat the calculation by assuming a circularized orbit 
during the entire RGB phase. Indeed, it is possible to 
show that by adopting as initial values of a and 𝜇𝜇 the 
final ones of the previous phase I get that after ≈ 1.5 
Myr ∆𝑟𝑟 has changed by 0.30 AU. Note that my results 
are in contrast with those in [1] whose authors obtain 
more comfortable values for the expansion of the Earth’s 
orbit, assumed circular and not influenced by tidal and 
frictional effects, ranging from 1.37 AU (|�̇�𝜇 𝜇𝜇⁄ | = 7 ×
10−14 yr−1) to 1.50 AU (|�̇�𝜇 𝜇𝜇⁄ | = 8 × 10−14 yr−1) and 
1.63 AU (|�̇�𝜇 𝜇𝜇⁄ | = 9 × 10−14 yr−1). However, it must be 
noted that such a conclusion relies upon a perturbative 
treatment of (1) and by assuming that the mass loss rate 
is constant throughout the RGB until its tip; in fact, dur-
ing such a Myr the term (�̇�𝜇 𝜇𝜇⁄ ) ∆𝑡𝑡 would get as large as 
2 × 10−1. In fact, by inspecting Figure 4 of [1] it ap-
pears that in the last Myr of the RGB a moderate varia-
tion of �̇�𝑀 𝑀𝑀⁄  occurs giving rise to an acceleration of 
the order of �̈�𝑀 𝑀𝑀⁄  ≈ 10−13 yr−2. Thus, a further qua-
dratic term of the form 

��̈�𝜇
𝜇𝜇
� (𝑡𝑡−𝑡𝑡0)2

2
              (45) 

should be accounted for in the expansion of (1). A per-
turbative treatment yields adequate results for such a 
phase 1 Myr long since over this time span (45) would 
amount to ≈ 5 × 10−2. However, there is no need for 
detailed calculations: indeed, it can be easily noted that 
the radial shift after one revolution is 

∆𝑟𝑟(2𝜋𝜋) ∝ ��̈�𝜇
𝜇𝜇
� 𝑎𝑎

4

𝜇𝜇
.          (46) 

After about 1 Myr (46) yields a variation of the order 
of 10−9 AU, which is clearly negligible. 

4. CONCLUSIONS 

I started in the framework of the two-body Newtonian 
dynamics by using a radial perturbing acceleration linear 
in time and straightforwardly treated it with the standard 
Gaussian scheme. I found that the osculating semima- 
jor axis a, the eccentricity e and the mean anomaly ℳ 
secularly decrease while the argument of pericentre ω 
remains unchanged; also the longitude of the ascending 
node Ω and the inclination I are not affected. The radial 
distance from the central body, taken on the fixed line of 
the apsides, experiences a secular increase ∆𝑟𝑟. For the 
Earth, such an effect amounts to about 1.3 cm yr−1. By 
numerically integrating the equations of motion in Car-

7It might also escape from the solar system or collide with Venus over 
3.5 Gyr from now [26-28]. 
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tesian coordinates I found that the real orbital path ex-
pands after every revolution, the line of the apsides does 
not change and the apsidal period is larger than the un-
perturbed Keplerian one. I have also clarified that such 
results are not in contrast with those analytically ob-
tained for the Keplerian orbital elements which, indeed, 
refer to the osculating ellipses approximating the true 
trajectory at each instant. I applied our results to the 
evolution of the Sun-Earth system in the distant future 
with particular care to the phase in which the Sun, 
moved to the RGB of the HR, will expand up to 1.20 AU 
in order to see if the Earth will avoid to be engulfed by 
the expanded solar photosphere. My answer is negative 
because, even considering a small acceleration in the 
process of the solar mass-loss, it turns out that at the end 
of such a dramatic phase lasting about 1 Myr the perihe-
lion distance will have increased by only ∆𝑟𝑟 ≈ 0.22- 
0.25 AU, contrary to the estimates in [1] whose authors 
argue an increment of about 0.37-0.63 AU. In the case of 
a circular orbit, the osculating semimajor axis remains 
unchanged, as confirmed by a numerical integration of 
the equations of motion which also shows that the true 
orbital period increases and is larger than the unper-
turbed Keplerian one which remains fixed. Concerning 
the other planets, while Mercury will be completely en-
gulfed already at the end of the MS, Venus might survive; 
however, it should not escape from its fate in the initial 
phase of the RGB in which the outer planets will expe-
rience increases in the size of their orbits of the order of 
1.2- 7.5 AU. 

As a suggestion to other researchers, it would be very 
important to complement my analytical two-body calcu-
lation by performing simultaneous long-term numerical 
integrations of the equations of motion of all the major 
bodies of the solar system by including a mass-loss term 
in the dynamical force models as well to see if the 
N-body interactions in presence of such an effect may 
substantially change the picture outlined here. It would 
be important especially in the RGB phase in which the 
inner regions of the solar system should dramatically 
change. 
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