On Cycle Related Graphs with Constant Metric Dimension

${ }^{1}$ Department of Mathematics, FAST-National University of Computer and Emerging Sciences, Peshawar, Pakistan
${ }^{2}$ Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan, Pakistan Email: *gohar.ali@nu.edu.pk

Received September 16, 2011; revised November 2, 2011; accepted December 7, 2011

Abstract

If G is a connected graph, the distance $d(u, v)$ between two vertices $u, v \in V(G)$ is the length of a shortest path between them. Let $W=\left\{w_{1}, w_{2}, \cdots, w_{k}\right\}$ be an ordered set of vertices of G and let v be a vertex of G. The representation $r(v \mid W)$ of v with respect to W is the k-tuple $\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \cdots, d\left(v, w_{k}\right)\right)$. If distinct vertices of G have distinct representations with respect to W, then W is called a resolving set or locating set for G. A resolving set of minimum cardinality is called a basis for G and this cardinality is the metric dimension of G, denoted by $\operatorname{dim}(G)$. A family \mathcal{G} of connected graphs is a family with constant metric dimension if $\operatorname{dim}(G)$ is finite and does not depend upon the choice of G in \mathcal{G}. In this paper, we show that dragon graph denoted by $T_{n, m}$ and the graph obtained from prism denoted by $2 C_{k}+\left\{x_{k} y_{k}\right\}$ have constant metric dimension.

Keywords: Metric Dimension; Basis; Resolving Set; Dragon Graph

1. Notation and Preliminary Results

If G is a connected graph, the distance $d(u, v)$ between two vertices $u, v \in V(G)$ is the length of a shortest path between them. Let $W=\left\{w_{1}, w_{2}, \cdots, w_{k}\right\}$ be an ordered set of vertices of G and let v be a vertex of G. The representation of the v with respect to W is denoted by $r(v \mid W)$ is the k-tuple
$\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \cdots, d\left(v, w_{k}\right)\right)$. If distinct vertices of G have distinct representations with respect to W, then W is called a resolving set or locating set for G [1]. A resolving set of minimum cardinality is called a metric basis for G and its cardinality is the metric dimension of G, denoted by $\operatorname{dim}(G)$. The concepts of resolving set and metric basis have previously appeared in the literature (see [1-14]).
For a given ordered set of vertices
$W=\left\{w_{1}, w_{2}, \cdots, w_{k}\right\}$ of a graph G, the ith component of $r(v \mid W)$ is 0 f and only if $v=w_{i}$. Thus, to show that W is a resolving set it sufficient to verify that $r(x \mid W) \neq r(y \mid W)$ for each pair of distinct vertices $x, y \in V(G) \backslash W$.
Motivated by the problem of uniquely determining the location of an intruder in a network, the concept of metric dimension was introduced by Slater in [2] and studied independently by Harary et al. [3]. Applications

[^0]of this invariant to the navigation of robots in networks are discussed in [4] and applications to chemistry in [1] while applications to problems of pattern recognition and image processing, some of which involve the use of hierarchical data structures are given in [5].

By denoting $G+H$ the join of G and H, a fan is $f_{n}=K_{1}+P_{n}$ for $n \geq 1$ and Jahangir graph
$J_{2 n},(n \geq 2)$ (also known as gear graph) is obtained from the wheel $W_{2 n}$ by alternately deleting n spokes. Caceres et al. [6] found the metric dimension of fan f_{n} and Tomescu et al. [7] found the metric dimension of Jahangir graph $J_{2 n}$. Also Tomescu et al. [8] the partition and connected dimension of wheels.

Chartrand et al. proved:
Theorem 1: [1] A graph G has metric dimension 1 if and only if G is a path.

Hence paths on n vertices constitute a family of graphs with constant metric dimension. Similarly, cycles with $n(\geq 3)$ vertices also constitute such a family of graphs as their metric dimension is 2 . Since prisms D_{n} are the trivalent plane graphs obtained by the cartesian product of the path P_{2} with a cycle C_{n}, hence they constitute a family of 3 -regular graphs with constant metric dimension. Also Javaid et al. proved in [9] that the plane graph antiprism A_{n} constitutes a family of regular graphs with constant metric dimension as $\operatorname{dim}\left(A_{n}\right)=3$ for every $n \geq 5$.

Let $2 C_{n}+\left\{x_{n} y_{n}\right\}$ be a family of graphs of order $2 n$ obtained from a prism D_{n} as shown in Figure 1 and Figure 2 respectively, by deleting the spokes $x_{i} y_{i}$ for $i \in\{1,2, \cdots, n-1\}$. We prove the following.
Theorem 2: Let $G=2 C_{n}+\left\{x_{n} y_{n}\right\}$ with $|V(G)|=2 n$, then $\operatorname{dim}(G)=2$ for $n \geq 3$.
Let C_{n} be a cycle with vertex set
$V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and P_{m+1} be a path with vertex set $V\left(P_{m+1}\right)=\left\{v_{n}=u_{0}, u_{1}, \cdots, u_{m}\right\}$. Dragon graph $T_{n, m}$ as shown in Figure 3, is a graph of order $n+m$ obtained by identifying v_{n} of C_{n} with u_{0} of P_{m+1}. We prove the following.

Theorem 3: For all $n \geq 3, m \geq 2 \quad \operatorname{dim}\left(T_{n, m}\right)=2$.

2. Proofs

Proof of the Theorem 2: By Theorem 1, $\operatorname{dim}(G) \geq 2$. We only need to show that $W=\left\{y_{1}, x_{1}\right\}$ is a resolving set for G, which is obviously of minimal cardinality.

Figure 1. Prism $D_{\boldsymbol{n}}$.

Figure 2. Graph $2 C_{k}+\left\{x_{k} y_{k}\right\}$.

Figure 3. Dragon graph.

Case (a) When $n=2 k$ for $k \in \mathbb{N}$. Representations of all vertices from $V(G) \backslash\left\{y_{1}, x_{1}\right\}$ are as follows,

$$
r\left(x_{i+1} \mid W\right)= \begin{cases}(i, i+3), & 1 \leq i \leq k-1 \\ (n-i, n-i+1), & k \leq i \leq n-1 \\ (i+3, i), & 1 \leq i \leq k-1 \\ (n-i+1, n-i), & k \leq i \leq n-1\end{cases}
$$

It is easy to check that all the above representations are distinct. For example, suppose that
$(s+3, s)=(n-j, n-j+1)$ for some fixed s and j. Then $s=n-j-3$ and $s=n-j+1$, a contradiction.

Case (b) When $n=2 k+1$ for $k \in \mathbb{N}$. Representations of vertices from $V(G) \backslash\left\{y_{1}, x_{1}\right\}$ are as follows,

$$
r\left(y_{i+1} \mid W\right)= \begin{cases}(i, i+3), & 1 \leq i \leq k-1 ; \\ (k, k+2), & \\ (n-i, n-i+1), & k+1 \leq i \leq n-1 ; \\ (i+3, i), & 1 \leq i \leq k-1 ; \\ (k+2, k), & \\ (n-i+1, n-i), & k+1 \leq i \leq n-1 .\end{cases}
$$

All the above representations are also distinct.
Proof of the Theorem 3: By Theorem 1,
$\operatorname{dim}\left(T_{n, m}\right) \geq 2$. We only need to show that there is a resolving set W of cardinality 2.

Case (a) When $n=2 k$ for $k \in \mathbb{N}$. The set $W=\left\{v_{k}, v_{k+1}\right\}$ is a resolving set for the graph $T_{n, m}$. Representations of all vertices from $V(G) \backslash W$ are as follows,

$$
r\left(v_{i} \mid W\right)= \begin{cases}(k-i, k-i+1), & 1 \leq i \leq k-1 \\ (i-k, i-k-1), & k+2 \leq i \leq n\end{cases}
$$

and

$$
r\left(u_{i} \mid W\right)=(k+i, k+i-1), \quad 1 \leq i \leq m .
$$

It is easy to check that all the representations are distinct. For example, suppose that
$(k+s, k+s-1)=(j-k, j-k-1)$ for some fixed s and j. Then $j=2 k+s>n$ because $1 \leq s$, a contradiction.

Case (b) When $n=2 k+1$ for $k \in \mathbb{N}$. The set $W=\left\{v_{1}, v_{n-1}\right\}$ is a resolving set for the graph $T_{n, m}$. Representations of all vertices from $V(G) \backslash W$ are as follows,

$$
\begin{gathered}
r\left(v_{i} \mid W\right)=\left\{\begin{array}{cc}
(i-1, i+1), & 2 \leq i \leq k-1 ; \\
(i-1, n-i-1), & k \leq i \leq k+1 ; \\
(n-i+1, n-i-1), & k+2 \leq i \leq n-2 ;
\end{array}\right. \\
r\left(v_{n} \mid W\right)=(1,1) ;
\end{gathered}
$$

and

$$
r\left(u_{i} \mid W\right)=(i+1, i+1), \quad 1 \leq i \leq m
$$

All the above representations are distinct.

3. Acknowledgements

This research is partially supported by FAST-National University of Computer and Emerging Sciences, Peshawar, Bahauddin Zakariya University, Multan and Higher Education Commission of Pakistan.

REFERENCES

[1] J. Caceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara and D. R. Wood, "On the Metric Dimension of Some Families of Graphs," Electronic Notes in Discrete Mathematics, Vol. 22, 2005, pp. 129133.
[2] G. Chartrand, L. Eroh, M. A. Johnson and O. R. Oellermann, "Resolvability in Graphs and Metric Dimension of a Graph," Discrete Applied Mathematics, Vol. 105, 2000, pp. 99-113. doi:10.1016/S0166-218X(00)00198-0
[3] F. Harary and R. A. Melter, "On the Metric Dimension of a Graph," Ars Combinatoria, Vol. 2, 1976, pp. 191-195.
[4] I. Javaid, M. T. Rahim and K. Ali, "Families of Regular Graphs with Constant Metric Dimension," Utilitas Mathematica, Vol. 75, 2008, pp. 21-33.
[5] S. Khuller, B. Raghavachari and A. Rosenfeld, "Localization in Graphs," Technical Report CS-TR-3326, University of Maryland at College Park, 1994.
[6] R. A. Melter and I. Tomescu, "Metric Bases in Digital Geometry," Computer Vision, Graphics, and Image Processing, Vol. 25, No. 1, 1984, pp. 113-121. doi:10.1016/0734-189X(84)90051-3
[7] P. J. Slater, "Dominating and Reference Sets in Graphs," Journal of Mathematical Physics, Vol. 22, 1998, pp. 445-455.
[8] I. Tomescu and I. Javaid, "On the Metric Dimension of the Jahangir Graph," Bulletin Mathématique de la Société des Sciences. Mathématiques de Roumanie, Vol. 50, No. 4, 2007, pp. 371-376.
[9] K. Karliraj and V. J. Vernold, "On Equatable Coloring of Helm and Gear Graphs," International Journal of Mathematical Combinatorics, Vol. 4, No. 1, 2010, pp. 32-37.
[10] I. Javaid, "On the Connected Partition Dimension of Unicyclic Graphs," Journal of Combinatorial Mathematics and Combinatorial, Vol. 65, 2008, pp. 71-77.
[11] I. Javaid and S. Shokat, "On the Patition Dimension of Some Wheel Related Graph," Journal of Prime Research in Mathematics,Vol. 4, 2008, pp. 154-164.
[12] M. Ali, M. Imran, A. Q. Baig, M. K. Shafiq and G. Ali, "On the Metric Dimension of Mobius Ladders," Ars Combinatoria, in press.
[13] I. Tomescu, I. Javaid, et al., "On the Patition Dimension and Connected Partition Dimension Wheels," Ars Combinatoria, Vol. 84, 2007, pp. 311-317.
[14] I. Javaid, et al., "Fault-Tolerance in Resolvibility," Utilitas Mathematica, Vol. 80, 2009, pp. 263-275.

[^0]: *Corresponding author.

