

Bounds for Domination Parameters in Cayley Graphs on Dihedral Group

T. Tamizh Chelvam, G. Kalaimurugan

Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, India Email: tamche59@gmail.com

Received November 3, 2011; revised December 18, 2011; accepted December 25, 2011

ABSTRACT

In this paper, sharp upper bounds for the domination number, total domination number and connected domination number for the Cayley graph $G = Cay(D_{2n}, \Omega)$ constructed on the finite dihedral group D_{2n} , and a specified generating set Ω of D_{2n} . Further efficient dominating sets in $G = Cay(D_{2n}, \Omega)$ are also obtained. More specifically, it is proved that some of the proper subgroups of D_{2n} are efficient domination sets. Using this, an E-chain of Cayley graphs on the dihedral group is also constructed.

Keywords: Cayley Graph; Dihedral Group; Domination; Total Domination; Connected Domination; Efficient Domination

1. Introduction and Notation

Design of interconnection networks is an important integral part of any parallel processing of distributed system. There has been a strong interest recently in using Cayley graphs as a model for developing interconnection networks for large interacting arrays of CPU's. An excellent survey of interconnection networks based on Cayley graphs can be found in [1]. The concept of domination for Cayley graphs has been studied by various authors [2-7]. I. J. Dejter and O. Serra [3] obtained efficient dominating sets for Cayley graphs constructed on a class of groups containing permutation groups. The efficient domination number for vertex transitive graphs has been obtained by Jia Huang and Jun-Ming Xu [4]. A necessary and sufficient condition for the existence of an independent perfect domination set in Cayley graphs has been obtained by J. Lee [5]. Total domination in graphs was introduced by Cockayne, Dawes, and Hedetniemi [2] and is now well studied in graph theory. T. Tamizh Chelvam and I. Rani [6-8] have obtained bounds for various domination parameters for a class of Circulant graphs.

Let Γ be a finite group. Let Ω be a generating set of Γ satisfying $e \notin \Omega$ and $a \in \Omega$ implies $a^{-1} \in \Omega$. The *Cayley* graph corresponding to Γ is the graph G = (V, E), where $V(G) = \Gamma$ and $E(G) = \{(x, xa): x \in V(G), a \in \Omega\}$ and it is denoted by $G = \text{Cay}(\Gamma, \Omega)$. Let G = (V, E), be a finite, simple and undirected graph. We follow the terminology of [9]. A set $S \subseteq V$ of vertices in a graph G is called a *dominating set* if every vertex $v \in V$ is either an element of S or adjacent to an element of S. A dominating set S is a minimal dominating set if no proper subset of S is a dominating set. The *domination number* $\gamma(G)$ of a graph G is the minimum cardinality of a dominating set in Gand the corresponding dominating set is called a *y-set*. A set $S \subseteq V$ is called a *total dominating set* if every vertex v $\in V$ is adjacent to an element $u \neq v$ of S. The total domination number $\gamma_t(G)$ equals the minimum cardinality among all the total dominating sets in G and the corresponding total dominating set is called a γ -set. A dominating set S is called a *connected dominating set* if the induced subgraph $\langle S \rangle$ is connected. The connected domi*nation number* $\gamma_c(G)$ of a graph G equals the minimum cardinality of a connected dominating set in G and a corresponding connected dominating set is called a γ_c -set. A set $S \subseteq V$ is called an *efficient dominating set* (*E-set*) if for every vertex $v \in V$, $|N[v] \cap S|=1$.

An E-chain is a countable family of nested graphs, each of which has an E-set. We say that a countable family of graphs $G = \{G_i, i \ge 1\}$ with each G_i has an E-set S_i is an *inclusive E-chain* if for every $i \ge 1$, there exists a surjective map $f_i: G_{i+1} \rightarrow G_i$ such that $f_i^{-1}(S_i) \subset S_{i+1}$. And also we define that a finite family of graphs $G = \{G_i, i \ge 0\}$ is an *inductive E-chain* if every G_{i+1} is a spanning subgraph of G_i and each G_i has an E-set S_i . Let $V(G_i)$ be any finite group and if, for each $i \ge 0$, there exists a bijective map $\zeta_i: V(G_i) \rightarrow V(G_{i+1})$ such that $\zeta_i(S_i) \subseteq S_{i+1}$ and S_i is the subgroup of $V(G_i)$ then we say that G is an *inductive subgroups E-chain*.

A graph \tilde{G} is called a *covering* of G with projection $p: \tilde{G} \to G$ if there is a surjection $p: V(\tilde{G}) \to V(G)$ such that $p/_{N(\tilde{v})} : N(\tilde{v}) \to N(v)$ is a bijection for any vertex $v \in V(G)$ and $\tilde{v} \in p^{-1}(v)$. We use the covering function to show the inclusive E-chain.

In this paper, we obtain upper bounds for domination number, total domination number and connected domination number in a Cayley graph $G = Cay(D_{2n}, \Omega)$ constructed on the dihedral group D_{2n} , for $n \ge 3$ and a generating set Ω . Further, we obtain some E-sets in $G = Cay(D_{2n}, \Omega)$. Note that the dihedral group D_{2n} with identity e is the group generated by two elements rand s with o(r) = n, o(s) = 2 and $rs = sr^{-1}$. From these defining relations, one can take

 $D_{2n} = \left\{ e, r, r^2, r^3, \cdots, r^{n-1}, s, sr, sr^2, \cdots, sr^{n-1} \right\} \text{ and } G = Cay(D_{2n}, \Omega), \text{ where } \Omega \text{ is a generating set of } D_{2n}.$ Throughout this paper, $n \ge 3$ be an integer, $\Gamma = D_{2n}$, $m = \frac{n-1}{2}$ and k, t be integers such that $1 \le k \le m$,

 $1 \le t \le n$. We take the generating set Ω in the form that $\Omega =$

$$\{r^{a_1}, r^{a_2}, \dots, r^{a_k}, r^{n-a_k}, r^{n-a_{k-1}}, \dots, r^{n-a_1}, sr^{b_1}, sr^{b_2}, \dots, sr^{b_t}\},\$$

where $1 \le a_1 < a_2 < \dots < a_k \le m$ and

 $0 \le b_1 < b_2 < \dots < b_i \le n-1$. Let $d_1 = a_1, d_i = a_i - a_{i-1}$ for $2 \le i \le k$, $d'_1 = b_1, d'_j = b_j - b_{j-1}$ for $2 \le j \le t$ and $d = \max_{1 \le i \le k, 1 \le j \le i} \{d_i, d'_j\}$. Some of the results are listed below for further reference.

Theorem 1 [4] Let G be a k-regular graph. Then $\gamma(G) \ge \frac{|V(G)|}{k+1}$, with the equality if and only if G has an

efficient dominating set.

Theorem 2 [5] Let $p: \tilde{G} \to G$ be a covering and let S be a perfect domination set of G. Then $p^{-1}(S)$ is a perfect domination set of \tilde{G} . Moreover, if S is independent, then $p^{-1}(S)$ is independent.

Theorem 3 [10] Every subgroup of the dihedral group D_{2n} is cyclic or dihedral. A complete listing of the subgroups is as follows:

1) cyclic subgroups $\langle r^d \rangle$, where d divides n, with index 2d.

2) dihedral subgroups $\langle r^d, r^i s \rangle$, where d divides n and $0 \le i \le d-1$ with index d. Every subgroup of D_{2n} occurs exactly once in this listing.

2. Domination, Total Domination and **Connected Domination Numbers**

In this section, we obtain upper bounds for the domination number, total domination number and connected domination number of graph $G = Cay(D_{2n}, \Omega)$. Also whenever the equality occurs we give the corresponding sets.

Lemma 4 Let
$$n \ge 3$$
 be an integer, $m = \frac{n-1}{2}$ and k,

t are integers such that $1 \le k \le m, 1 \le t \le n$. Let

$$\Omega = \{r^{a_1}, r^{a_2}, \dots, r^{a_k}, r^{n-a_k}, r^{n-a_{k-1}}, \dots, r^{n-a_1}, sr^{b_1}, sr^{b_2}, \dots, sr^{b_l}\}$$

and $G = Cay(D_{2n}, \Omega)$. If $d_1 = a_1, d_i = a_i - a_{i-1}$ for
 $2 \le i \le k$, $d'_1 = b_1, d'_j = b_j - b_{j-1}$ for $2 \le j \le t$ and
 $d = \max_{1 \le i \le k, 1 \le j \le l} \{d_i, d'_j\}, then$
 $\gamma(G) \le 2d \frac{n}{2d + 2a_k + b_t - b_1}$.
Proof. Let $x = 2a_k + 2d + b_t - b_1$ and $l = \left\lceil \frac{n}{x} \right\rceil$. Con-

sider the set

C

$$S = \{r^{ix+g}, sr^{n-(a_k+d-b_1+ix+g)} : 0 \le i \le l-1 \text{ and } 0 \le g \le d-1\}.$$

Clearly |S| = 2dl and

$$N[S] = \bigcup_{i=0}^{l-1} \left\{ N\left[r^{ix+g}\right] \bigcup N\left[sr^{n-(a_k+d-b_l+ix+g)}\right] \right\},$$

where $0 \le i \le l-1$ and $0 \le g \le d-1$ We have to prove that $V(G) \subseteq N[S]$. If $v \in V(G)$, then we can write v as either one vertex of the form $v = r^c$ or $v = sr^{n-(c-b_t)}$. where $0 \le c \le n-1$. By the division algorithm,

c = xi + j, where $0 \le i \le l - 1$ and $0 \le j \le x - 1$.

Suppose $v = r^c$. We have the following cases:

Case 1. Suppose $0 \le i \le l-1$ and $0 \le j \le a_k + d-1$.

Subcase 1.1 If $0 \le j < a_1$, then by the definition of $d, v \in S \subseteq N[S]$.

Subcase 1.2 If $j = a_m + g$, for some integers m, g with $1 \le m \le k$ and $0 \le g \le d-1$ then $v = r^{ix+a_m+g}$ whereas $r^{ix+g} \in S$ and so $v \in N[r^{ix+g}] \subset N[S]$.

Case 2. Suppose $0 \le i \le l-1$ and

 $a_k + d \le j \le a_k + d + b_t - b_1 + d - 1$. In this case, there exists an integer h with $1 \le h \le b_t - b_1 + d - 1$ such that $v \cdot sr^h = sr^{n - (a_k + d - b_1 + ix)}.$

Subcase 2.1 If
$$h \in \Omega_2 = \{b_1, b_2, \dots, b_t\}$$
, then

 $v \in N(sr^{n-(a_k+d-b_1+ix)}) \subseteq N[S]$ **Subcase 2.2** Suppose $h = b_m + g$, for some integers m, g with $1 \le m \le t$ and $1 \le g \le d - 1$. In this case, $v \cdot sr^{b_m} = sr^{n-(a_k+d-b_l+ix+g)}$, which means that

 $v \in sr^{n-(a_k+d-b_l+ix+g)} \subset N[S].$

Case 3. Suppose $0 \le i \le l-2$ and

$$a_k + d + b_t - b_1 + d \le j \le a_k + d + b_t - b_1 + d + a_k - 1$$
.

In this case, there exists an integer h with $1 \le h \le a_k$ such that $v \cdot r^h = r^{(i+1)x}$.

Subcase 3.1 If $h \in \Omega_1 = \{a_1, a_2, \dots, a_k\}$, then $v \in N(r^{(i+1)x}) \subseteq N[S].$

Subcase 3.2 Suppose $h = a_m - g$, for some integers *m*, g, with $1 \le m \le k$ and $1 \le g \le d - 1$. In this case, $v \cdot r^{a_m} = r^{(i+1)x+g}$, which means that $v \in N(r^{(i+1)x+g}) \subseteq N[S]$.

Case 4. Suppose i = l - 1 and

$$a_k + d + b_t - b_1 + d \le j \le a_k + d + b_t - b_1 + d + a_k - 1$$

Then there exists an integer *h* with $1 \le h \le a_k$ such that $v \cdot r^h = r^0$.

Subcase 4.1 If $h \in \Omega_1$, then $v \in N(r^0) \subseteq N[S]$. Subcase 4.2 Suppose $h = a_m - g$, for some integers m, g with $1 \le m \le k$ and $1 \le g \le d - 1$. In this case, $v \cdot r^{a_m} = r^g$ which means that $v \in N(r^g) \subseteq N[S]$. Suppose $v = sr^{n-(c-b_l)}$. We have the following cases: Case 1. Suppose $0 \le i \le l - 1$ and $0 \le j \le b_t - b_1 + d - 1$. In this case, there exists an integer h with $0 \le h \le b_t - b_1 + d - 1$ such that $v.sr^h = r^{ix}$ Subcase 1.1 If $h \in \Omega_2$, then $v \in N(r^{ix}) \subseteq N[S]$. Subcase 1.2 Suppose $h = b_m + g$, for some integers m, g with $1 \le m \le t$ and $1 \le g \le d - 1$. In this case, $v \cdot sr^{b_m} = r^{ix+g}$, which means that $v \in N(r^{ix+g}) \subseteq N[S]$. Case 2. Suppose $0 \le i \le l - 1$ and $b_t - b_1 + d \le j \le b_t - b_1 + d + a_k - 1$. In this case, there

exists an integer *h* with $1 \le h \le a_k$ such that $v \cdot r^h = sr^{n-(a_k+d-b_1+ix)}$.

Subcase 2.1 If $h \in \Omega_1$ then $v \in N(sr^{n-(a_k+d-b_1+ix)}) \subseteq N[S]$.

Subcase 2.2 Suppose $h = a_m - g$, for some integers *m*, *g* with $1 \le m \le k$ and $1 \le g \le d - 1$. In this case, $v \cdot r^{a_m} = sr^{n-(a_k+d-b_1+ix+g)}$, which means that $v \in sr^{n-(a_k+d-b_1+ix+g)} \subset N[S]$.

Case 3. Suppose $0 \le i \le l-1$ and

 $b_t - b_1 + d + a_k \le j \le b_t - b_1 + 2d + 2a_k - 1$. In this case, there exists an integer *h* with $0 \le h \le a_k + d - 1$ such that $v \cdot r^h = sr^{n-(a_k+d-b_1+xi)}$.

Subcase 3.1 If $0 \le h < a_1$, then by the definition of $d, v \in S \subseteq N[S]$.

Subcase 3.2 Suppose $h = a_m + g$, for some integers m, g with $1 \le m \le k$ and $0 \le g \le d - 1$. In this case, $v \cdot r^{a_m} = sr^{n-(a_k+d-b_1+ix+g)}$, which means that $v \in sr^{n-(a_k+d-b_1+ix+g)} \subseteq N[S]$.

Thus *S* is a dominating set of *G*.

The following lemma provides an upper bound for the total domination number in $G = Cay(D_{2n}, \Omega)$.

Lemma 5 Let
$$n \ge 3$$
 be an integer, $m = \left\lfloor \frac{n-1}{2} \right\rfloor$ and

k, *t* be integers such that $1 \le k \le m, 1 \le t \le n$. Let

$$\Omega = \{r^{a_1}, r^{a_2}, \dots, r^{a_k}, r^{n-a_k}, r^{n-a_{k-1}}, \dots, r^{n-a_1}, sr^{b_1}, sr^{b_2}, \dots, sr^{b_t}\},\$$

and $G = Cay(D_{2n}, \Omega)$. If $d_1 = a_1, d_i = a_i - a_{i-1}$ for $2 \le i \le k$, $d'_1 = b_{11}, d'_j = b_j - b_{j-1}$ for $2 \le j \le t$ and $d = \max_{1 \le i \le k, 1 \le j \le t} \{d_i, d'_j\}, then \ \gamma_t(G) \le 2d\frac{n}{d+2a_k}.$
Proof. Let $x = d + 2a_k$ and $l = \left\lceil \frac{n}{x} \right\rceil$. Consider the set

$$S_t = \left\{ r^{ix+g}, sr^{n-(ix+g-b_1)} : 0 \le i \le l - \text{ and } 0 \le g \le d-1 \right\}.$$

Clearly $|S_t| = 2dl$. We have to prove that

 $V(G) \subseteq N(S_t)$ If $v \in V(G)$, then we can write v as either one vertex of the form $v = r^c$ or $v = sr^{n-(c-b_1)}$, where $0 \le c \le n-1$. By the division algorithm,

c = xi + j, where $0 \le i \le l - 1$ and $0 \le j \le x - 1$. We have the following cases:

Case 1. Suppose $0 \le i \le l-1$ and $0 \le j < a_1$. For some integer g with $0 \le g \le d-1$ and by the definition of d, if $v = r^c$, then $v \in N(sr^{n-(ix+g-b_1)}) \subseteq N(S_t)$ or if $v = sr^{n-(c-b_1)}$, then $v \in N(r^{ix+g}) \subseteq N(S_t)$.

Case 2. Suppose $0 \le i \le l-1$ and $a_1 \le j < a_k + d - 1$. We can write $j = a_m + g$, for some integers *m*, *g* with $1 \le m \le k$ and $0 \le g \le d - 1$. If $v = r^c$, then $v = r^{ix+g+a_m}$ whereas $r^{ix+g} \in S_t$ and so $v \in N(r^{ix+g}) \subseteq N(S_t)$ or if $v = sr^{n-(c-b_1)}$, then $v = sr^{n-(ix+g+a_m-b_1)}$ whereas $sr^{n-(ix+g-b_1)} \in S_t$ and so $v \in N(sr^{n-(ix+g-b_1)}) \subseteq N(S_t)$.

Case 3. Suppose $0 \le i \le l-2$ and $d + a_k \le j < d + 2a_k$. In this case, there exists an integer *h* with $1 \le h \le a_k$ such that $v \cdot r^h = r^{(i+1)x}$ or $v \cdot r^h = sr^{n-((i+1)x-b_1)}$.

Subcase 3.1 Suppose $h \in \Omega_1 = \{a_1, a_2, \dots, a_k\}$ and if $v = r^c$, then $v \in (r^{(i+1)x}) \subseteq N(S_i)$ or if $v = sr^{n-(c-b_1)}$, then $v \in N(sr^{n-((i+1)x-b_1)}) \subseteq N(S_i)$.

Subcase 3.2 Suppose $h = a_m - g$, for some integers m, g with $1 \le m \le k$ and $1 \le g \le d - 1$. In this case, if $v = r^c$, then $v \cdot r^{a_m} = r^{(i+1)x+g}$, which means that $v \in N(r^{(i+1)x+g}) \subseteq N(S_t)$ or if $v = sr^{n-(c-b_1)}$, then $v \cdot r^{a_m} = sr^{n-((i+1)x+g-b_1)}$, which implies that $v \in N(sr^{n-((i+1)x+g-b_1)}) \subseteq N(S_t)$.

Case 4. Suppose i = l-1 and $d + a_k \le j < d + 2a_k$. Then there exists an integer h with $1 \le h \le a_k$ such that $v \cdot r^h = r^0$ or $v \cdot r^h = sr^{n-b_1}$.

Subcase 4.1 When $h \in \Omega_1$, and if $v = r^c$, then $v \in N(r^0) \subseteq N(S_t)$ or if $v = sr^{n-(c-b_1)}$, then $v \in N(sr^{n-b_1}) \subseteq N(S_t)$.

Subcase 4.2 Suppose $h = a_m - g$, for some integers *m*, *g* with $1 \le m \le k$ and $1 \le g \le d - 1$. In this case, if $v = r^c$ and $v \cdot r^{a_m} = r^g$, which means that

$$v \in N(r^g) \subseteq N(S_t)$$
 or if $v = sr^{n-(c-b_1)}$, then
 $v \cdot r^{a_m} = sr^{n-(g-b_1)}$, which means that
 $v \in N(sr^{n-(g-b_1)}) \subseteq N(S_t)$.
Thus S_t is a total dominating set of G .
 $\gamma_t \leq |S_t| = 2dl$.

Now we obtain an upper bound for the connected domination number.

Lemma 6 Let $n \ge 3$ be an integer, $m = \left\lfloor \frac{n-1}{2} \right\rfloor$ and k, t be integers such that $1 \le k \le m, 1 \le t \le n$. Let

 $\Omega =$

 $\left\{ r^{a_1}, r^{a_2}, \dots, r^{a_k}, r^{n-a_k}, r^{n-a_{k-1}}, \dots, r^{n-a_1}, sr^{b_1}, sr^{b_2}, \dots, sr^{b_t} \right\},$ and $G = Cay(D_{2n}, \Omega)$. If $d_1 = a_1 = 1, d_i = a_i - a_{i-1}$ for $2 \le i \le k$, $d'_1 = b_{11}, d'_j = b_j - b_{j-1}$ for $2 \le j \le t$ and $d = \max_{1 \le i \le k, 1 \le j \le t} \left\{ d_i, d'_j \right\},$ then $\gamma_c(G) \le 2d \frac{n}{a_{k+d-1}}.$

Proof. Let $x = a_k + d - 1$ and $l = \left\lceil \frac{n}{x} \right\rceil$. Consider the set

$$S_{t} = \left\{ r^{ix+g}, sr^{n-(ix+g-b_{1})} : 0 \le i \le l-1 \text{ and } 0 \le g \le d-1 \right\}.$$

In the notation of Lemma 5, $a_1 = 1$ and $x = a_k + d - 1$ and S_c is a total dominating set. Since $r \in \Omega$ and for each *i* with $0 \le i \le l - 1$, we have paths $r^{ix}, r^{ix+1}, \cdots, r^{ix+(d-1)}$ and $sr^{n-(ix-b_1)}, sr^{n-(ix+1-b_1)}, \cdots, sr^{n-(ix+d-1-b_1)}$. Also note that $r^{ix+(d-1)}$ and $r^{ix+(d-1)+a_k} = r^{(i+1)x}$, $sr^{n-(ix+d-1-b_1)}$ and $sr^{n-(ix+d-1+a_k-b_1)} = sr^{n-((i+1)x-b_1)}$ are connected. Hence the induced subgraph $\langle S_c \rangle$ is connected.

3. Subgroups as Efficient Domination Sets

In this section, we obtain some E-sets in $G = Cay(D_{2n}, \Omega)$. Moreover we have identified certain subgroups of D_{2n} which are also efficient domination sets in G.

Theorem 7 Let $n \ge 3$ be an integer, $m = \left\lfloor \frac{n-1}{2} \right\rfloor$ and

k, t be integers such that $1 \le k \le m$, $1 \le t \le n$ and d is an integer such that d(2k+t+1) divides n. Let

$$\Omega = \left\{ r^{d}, r^{2}d, \dots, r^{k}d, r^{(n-kd)}, r^{n-(k-1)d}, \dots, r^{(n-d)}, sr^{d}, sr^{2}d, \dots, sr^{t}d \right\}$$

and $G = Cay(D_{2n}, \Omega)$. Then $\gamma(G) = \frac{2n}{2k+t+1}$. In this

case, G has an E-set.

Proof. Let
$$l = \frac{2n}{d(2k+t+1)}$$
 and $x = d(2k+t+1)$. In

the notation of Lemma 4, d_i 's and d'_i 's are same, $a_i = id$ for all $1 \le i \le k$ and $b_j = jd$ for all $1 \le j \le t$. Let x = d(2k+t+1) and $l = \left\lceil \frac{n}{x} \right\rceil$. By Lemma 4, $S = \left\{ r^{ix+g}, sr^{n-(kd+ix+g)} : 0 \le i \le l-1, 0 \le g \le d-1 \right\}$

is a dominating set and hence $\gamma(G) \le \frac{2n}{2k+t+1}$. Since G is 2k+t regular, by Theorem 1, one can conclude that S is an E-set in G.

Remark 8 Note that Theorem 3 identifies all subgroups of the dihedral group D_{2n} . Now we us identify some of the subgroups as efficient dominating sets.

Theorem 9 Let
$$n \ge 3$$
 be an integer, $m = \left\lfloor \frac{n-1}{2} \right\rfloor$ and

k, t be integers such that $1 \le k \le m$, $1 \le t \le n$ and 2k+t+1 divides n. Let $H = \langle r^a, sr^{n-b} \rangle$ be a subgroup of the dihedral group D_{2n} , where a = 2k+t+1 and b, $0 \le b \le k-1$ Then, there exists a generating set Ω of D_{2n} such that H is an efficient dominating set for the Cayley graph $G = Cay(D_{2n}, \Omega)$.

Proof. Let

$$\Omega = \left\{ r, r^2, \cdots, r^k, r^{n-k}, r^{n-(k-1)}, \cdots, r^{n-1}, sr, sr^2, \cdots, sr^t \right\},\$$

 $l = \frac{n}{2k+t+1}$ and x = 2k+t+1. By taking d = 1 in

Theorem 7,

$$S = \left\{ r^{0}, r^{x}, \cdots, r^{(l-1)x}, sr^{n-k}, sr^{n-(k+x)}, \cdots, sr^{n-(k+(l-1)x)} \right\}$$

is an efficient dominating set of G.

Remark 10 Under the assumptions of Theorem 9, S.x is an efficient dominating set for the Cayley graph $G = Cay(D_{2n}, \Omega)$ for all $x \in D_{2n}$.

4. E-Chains in Cayley Graphs

Theorem 7 and 9 provide a tool to produce E-sets and visualize some of the subgroups as E-sets in

 $Cay(D_{2n},\Omega)$. We use this tool to obtain an inclusive E-chain and inductive subgroups E-chain of Cayley graphs on the dihedral group.

Theorem 11 Let
$$n \ge 3$$
 be an integer, $m = \left\lfloor \frac{n-1}{2} \right\rfloor$

and k be an integers such that $1 \le k \le m$, $G_0 = Cay(D_{2m}, D_{2m} - \{e\}),$

$$\Omega_{i} = \left\{ r, r^{2}, \dots, r^{k}, r^{n-kd}, r^{n-(k-1)}, \dots, r^{n-1}, sr, sr^{2}, \dots, sr^{n-b_{i}} \right\}$$

and $G_i = Cay(D_{2n}, \Omega_i)$ $(i \ge 1)$ Assume that $|\Omega_i| + 1$ divides n and $|\Omega_{i+1}| + 1$ divides $|\Omega_i| + 1$. Then the finite family of graphs $\mathbb{G} = \{G_i, i \ge 0\}$ is inductive subgroups E-chain.

Proof. Let $\lambda_i = |\Omega_i| + 1$. By the assumption λ_{i+1} . divides λ_i . Define the map $\zeta_i : V(G_i) \to V(G_{i+1})$ by $\zeta_i(v) = v$ for all $v \in G_i$. By Theorem 9, G_i has an efficient dominating set and it is of the form

$$S_{i} = \left\{ r^{0} = e, r^{\lambda_{i}}, r^{2\lambda_{i}}, \dots, r^{\left(\frac{n}{\lambda_{i}}-1\right)\lambda_{i}}, sr^{n-(k+\lambda_{i})}, sr^{n-(k+\lambda_{i})}, sr^{n-k}, sr^{n-k}, sr^{n-(k+2\lambda_{i})}, \dots, sr^{n-\left(k+\left(\frac{n}{\lambda_{i}}-1\right)\lambda_{i}\right)} \right\}$$

and also S_i 's are subgroups. It implies that

 $\zeta_i(S_i) \subseteq S_{i+1}$ for every $i \ge 1$. Hence the family of graphs $\mathbb{G} = \{G_i, i \ge 0\}$ is inductive subgroups E-chain.

The construction of an inclusive E-chain of Cayley graphs is based on the following lemma.

Lemma 12 Let $n \ge 3$ be an integer, $m = \left\lfloor \frac{n-1}{2} \right\rfloor$, k, t

be integers such that $1 \le k \le m$, $1 \le t \le n$ and d is an integer such that d(2k+t+1) divides n. For $i \ge 1$, let

$$\Omega_{i} = \left\{ r^{d}, r^{2}d, \cdots, r^{k}d, r^{2^{i}n-d}, r^{2^{i}n-2d}, \cdots, r^{2^{i}n-kd}, sr^{d}, sr^{2}d, \cdots, sr^{t}d \right\}$$

and $G_i = Cay(D_{2^i n}, \Omega_i)$. Then G_{i+1} is a covering of G_i .

Proof. Define the surjective map

 $f_i: V(G_{i+1}) \to V(G_i)$ by $f_i(r^j) = r^{j \mod 2^i n}$ and $f_i(sr^j) = sr^{j \mod 2^i n}$ for all j, where $0 \le j \le 2^{i+1}(n-1)$. Note that f_i is a group homomorphism from $D_{2^{i+1}n}$ onto $D_{2^i n}$. Let $\tilde{u}, \tilde{v} \in G_{i+1}$. Suppose \tilde{u} and \tilde{v} are adjacent in G_{i+1} . Then, there exists r^k with

 $1 \le k \le \left\lfloor \frac{n-1}{2} \right\rfloor$ or sr^t with $1 \le t \le n-1$ such that

 $\tilde{u} = \tilde{v}.r^k$ or $\tilde{u} = \tilde{v}.sr^k$. Since f_i is a group homomorphism and

 $\begin{array}{l} f_i\left(r^k\right) = r^{k \mod 2^i n} = r^k, f_i\left(sr^t\right) = sr^{t \mod 2^i n} = sr^t, \text{ we have } \\ f_i\left(\tilde{u}\right) = f_i\left(\tilde{v}\right) \cdot r^k \quad \text{or } f_i\left(\tilde{u}\right) = f_i\left(\tilde{v}\right) \cdot sr^t \quad \text{and so } f_i\left(\tilde{u}\right) \\ \text{and } f_i\left(\tilde{v}\right) \quad \text{are adjacent in } G_i \quad \text{Consider the map } \\ f_i \big/_{N(\tilde{v})} : N(\tilde{v}) \rightarrow N(v) \quad \text{for any vertex } \tilde{v} \in V\left(G_{i+1}\right) \\ \text{and } v \in V\left(G_i\right) \quad \text{Claim } f_i \big/_{N(\tilde{v})} \quad \text{is bijection. Any element } x \quad \text{in } N(\tilde{v}) \quad \text{as either one vertex of the form } \\ x = r^e \quad \text{or } x = sr^e , \quad \text{where } 0 \leq j \leq 2^{i+1}(n-1) \quad \text{Let } \\ x, y \in N(\tilde{v}). \quad \text{Then we have following three cases:} \end{array}$

Case 1. Let $x = r^{e_1}$ and $y = r^{e_2}$ with $e_1 \neq e_2$. Suppose $f_i(x) = f_i(y)$, *i.e.* $r^{e_1 \mod 2^i n} = r^{e_2 \mod 2^i n} \Rightarrow r^{(e_1 - e_2) \mod 2^i n} = e \cdot i.e.$

 $o(r) = (e_1 - e_2) \mod 2^i n < n$, which is a contradiction to o(r) = n. Therefore $f_i(x) \neq f_i(y)$.

Case 2. Let $x = r^{e_1}$ and $y = sr^{e_2}$. Suppose

 $f_i(x) = f_i(y), i.e. \quad r^{e_1 \mod 2^i n} = sr^{e_2 \mod 2^i n}$ This means $r^{(e_1 - e_2) \mod 2^i n} = e$ or $s = sr^{(e_1 - e_2) \mod 2^i n} = e$, which is a contradiction. Therefore $f_i(x) \neq f_i(y)$.

Case 3. Let $x = sr^{e_1}$ and $y = sr^{e_2}$ with $e_1 \neq e_2$. Suppose $f_i(x) = f_i(y)$, *i.e.*

$$sr^{e_1 \operatorname{mod} 2^i n} = sr^{e_2 \operatorname{mod} 2^i n} \Longrightarrow r^{(e_1 - e_2) \operatorname{mod} 2^i n} = e \cdot i.e.$$

 $o(r) = (e_1 - e_2) \mod 2^i n < n$ which is a contradiction. Therefore $f_i(x) \neq f_i(y)$. Hence distinct elements of $N(\tilde{v})$ are distinctly mapped onto N(v) and so $f_i / N(\tilde{v})$ is a required bijection. **Theorem 13** Let $n \ge 3$ be an integer, $m = \lfloor \frac{n-1}{2} \rfloor$,

k, t, be integers such that $1 \le k \le m$, $1 \le t \le n$ and d is an integer such that d(2k+t+1) divides n. For $i \ge 1$ let

$$\Omega_{i} = \left\{ r^{d}, r^{2}d, \cdots, r^{k}d, r^{2^{i}n-d}, r^{2^{i}n-2d}, \cdots, r^{2^{i}n-kd}, sr^{d}, sr^{2}d, \cdots, sr^{t}d \right\}$$

and $G_i = Cay(D_{2^i n}, \Omega_i)$. Let S_i be an efficient dominating set for G_i . Then the finite family of graphs $\mathbb{G} = \{G_i, i \ge 1\}$ is an inclusive E-chain.

Proof. Since by above Lemma, G_{i+1} is a covering of G_i , $(i \ge 1)$. Since by Theorem 2, $f_i^{-1}(S_i) \subset S_{i+1}$. Hence the finite family of graphs $\mathbb{G} = \{G_i, i \ge 1\}$ is an inclusive E-chain.

5. Acknowledgements

The work reported here is supported by the Special Assistance Programme (F510-DRS-I/2007) of University Grants Commission, India awarded to the Department of Mathematics, Manonmaniam Sundaranar University for the period 2007-2012.

REFERENCES

- S. Lakshmivarahan, J. S. Jwo and S. K. Dhall, "Symmetry in Interconnection Networks Based on Cayley Graphs of Permutation Groups: A Survey," *Parallel Computing*, Vol. 19, No. 4, 1993, pp. 361-407. doi:10.1016/0167-8191(93)90054-O
- [2] E. J. Cockayne, R. M. Dawes and S. T. Hedetniemi, "Total Domination in Graphs," *Networks*, Vol. 10, No. 3, 1980, pp. 211-219. <u>doi:10.1002/net.3230100304</u>
- [3] I. J. Dejter and O. Serra, "Efficient Dominating Sets in Cayley Graphs," *Discrete Applied Mathematics*, Vol. 129, No. 2-3, 2003, pp. 319-328. doi:10.1016/S0166-218X(02)00573-5
- [4] R. J. Huang and J.-M. Xu, "The Bondage and Efficient Domination of Vertex Transitive Graphs," *Discrete Mathematics*, Vol. 308, No. 4, 2008, pp. 571-582. doi:10.1016/j.disc.2007.03.027
- [5] J. Lee, "Independent Perfect Domination Sets in Cayley Graphs," *Journal of Graph Theory*, Vol. 37, No. 4, 2000, pp. 219-231.
- [6] T. Tamizh Chelvam and I. Rani, "Dominating Sets in Cayley Graphs on Z_n," *Tamkang Journal of Mathematics*, Vol. 37, No. 4, 2007, pp. 341-345.
- [7] T. Tamizh Chelvam and I. Rani, "Independent Domination Number of Cayley Graphs on Z_n," *The Journal of Combinatorial Mathematics and Combinatorial Computing*, Vol. 69, 2009, pp. 251-255.
- [8] T. Tamizh Chelvam and I. Rani, "Total and Connected

Domination Numbers of Cayley Graphs on Z_n ," Advanced Studies in Contemporary Mathematics, Vol. 20, 2010, pp. 57-61.

[9] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, "Fundamentals of Domination in Graphs," Marcel Dekker, New York, 1998.

[10] K. Conrad, "Dihedral Groups II," 2009. http://www.math.uconn.edu/~kconrad/blurbs/grouptheory /dihedral2.pdf