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ABSTRACT

This paper provides several generalizations of Gauss theorem that counts points on specia elliptic curves. It is demon-
strated how to implement these generalizations for computation of complex primes, which are applicable in several
protocols providing security in communication networks. Numerical examples illustrate the ideas discussed in this pa-

per.
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1. Introduction and Gauss Formula for
Counting Points

Knowledge of how to count the number of points on el-
liptic curve (EC) provides certain advantage in the design
of cryptographic systems for secure communication in
various applicational environments (transfer of funds in
banking, transmission of sensitive information between
inventor and hig’her attorney, national security agencies,
military applications, diplomatic communications, gover-
nmental operations, control of weapons of mass distrac-
tion, telemedicine etc.). In general, algorithms for count-
ing points on an EC are in the domain of algebraic [1,2]
and agorithmic number theories [3,4]. Only in special
cases it is possible to provide a closed-form solution [5].
Although validation of these algorithms requires applica-
tion of agebraic number theory, which is beyond the
scope of this paper, their description is rather easy to un-
derstand for cryptographers and application-oriented com-
puter scientists.

In this paper we provide severa generaizations of
Gauss theorem and then demonstrate how to apply them
in selection of complex prime parameters for the design
of the cryptographic systems. These generaizations are
based on intensive computer experiments (CE). As are-
sult, not all proofs that validate the agorithms are pro-
vided. Instead, we formulate various conjectures and
propositions that are supported by results of these CE.

1.1. Gausstheorem: Consider the elliptic curve (EC)

y* = (x*—x)(mod p), (1.1)

where p is area prime; let E denote the number of or-
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dered integer pairs (x, y) that satisfy Equation (1.1);
every such integer pair (X, y) is caled a point on the EC.
There are two magjor cases.
1). If pmod4=3, then EC (1.1) has p points { excluding
the point at infinity O [1]};
2). If pmod4=1; p=C?+F?, where C is odd; (1.2)
and
(C+F)mod4=1, (1.3)
then
E=p-2C; 1.4

{ excluding the point at infinity O} [4].

If Condition (1.3) holds, then the Gauss Formula (1.4)
can be applied to compute a complex prime (C, F). This
application is based on the observation that an ordered
pair of integers (C, F):=C+iF is a complex prime if and
only if itsnorm C?+F? isaprime[5].

However, not al complex primes have components C
and F that satisfy (1.3). For instance, (C, F)=(5,2) is the
complex prime; yet (5+2)mod4=3.

Therefore, the algorithm provided below is non-deter-
ministic, since its application is restricted by C. F. Gauss
Theorem [5].

1.2. Non-deterministic algorithm for computa-
tion of complex primes:

Stepl: Select aprime pmod4=1,;

Step2: Count the number of points E on EC

y* =(x°=x)(mod p) (1.1);
Step3: Compute

R:=|p-E|/2; S={p-C*; (15)
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Step4: If (R+S)mod4 1, then repeat Steps 1-4;
Step5: If Risodd, then (C, F):=(R, 9
ese (C, F):=SR. (1.6)

Remark1.1: Although this algorithm is not determinis-
tic, yet, after strialsit finds a complex prime (C, F) with
probability 1-1/2°.

Integers 61, 977, 1777, 1913, 1933, 4133 are examples
of primes, for which Condition (1.3) does not hold.

The following conjectures and propositions generalize
Gauss theorem and, as a byproduct, allow to design a
deterministic algorithm that computes complex primes
for every real non-Blum prime p { pmod4=1}. These pro-
positions and conjectures also provide insights that help
to understand how various criteria were derived and ap-
plied for integer factorization algorithms that were de-
scribed in papers [6,7] recently-published by the author
of this paper.

2. Generalizations of Gauss Theorem

As it is shown below, in certain cases the number of
points E(a) onEC
y* = X3 +axmod p (2.1
can be represented as
E(a)=p+2CxG(a C, F); (2.2
where G(a, C, F) isequd either Lor -1.
Remark2.1: In al following discussions, the point at
infinity O isexcluded from the counting.

Conjecture2.1: Consider the elliptic curve (1.1), where
pisaprime; if Condition (1.2) holds, then

E(-1)=p+2[(C+F)mod4-2]C. (23)
Conjecture2.2: Consider elliptic curve (EC)
y* = (> +x)(mod p); (2.4)

where p is aprime and let condition (1.2) holds; then for
every F

E(1)= p+2(Cmod4-2)C. (2.5
Conjecture?.3: Consider EC
y* =(x*+ax)mod p, (2.6)

where a=11; and let (1.2) holds; then
E(a)=p+2[(C+F(1-a)/2)mod4-2]C (2.7)
Corollary: Equation (2.7) implies that if Fmod4=0,
then elliptic curves (1.1) and (2.4) have equal number of

points{see Table 2.1}.
Equation (2.7) can be also presented as

E(@)=px2C |if
(C+F)mod4=2+landa=-1; (2.8)
orCmod4=2+landa=1.
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Table 2.1. Generalized Gaussformulaif EC is
y*=(x*£ x)mod p.

a p 1777 1913 6101 514229 919393
CF 39,16 438 2574 377,610 823,492

-1 #E(-D) 1855 1999 6151 514983 921039
1 #E(1) 1855 1999 6051 513475 921039

The table above provides examples of randomly-
selected non-Blum primes that confirm formulas (2.3),
(2.5) and (2.7).

Remark2.2: Elliptic curve (1.1) considered by C.F.
Gauss has a remarkable property: if p=1777, then
E(-1)=1855 {C.F. Gauss was born in 1777 and died in
1855}, (see Table 2.1). The same property holds for
y? = (x*+x)(mod1777) : E(1)=1855.

3. Paintson Elliptic Curves

In some applications and applets it is necessary to find at
least one solution of modular Diophantine equations

y* = x(x2 —a) mod p (1.1);
or
y* = x(x* +a)mod p (2.4).

Several specia cases are listed below, where such so-
lutions can be provided in closed forms.

Casel: If
a:=-2%" (3.1)
then for every k>0
(X, y) _ (22k+1’ 23k+1) : (32)
ison EC y* = x(x*—a)mod p.
Case2: If
a=2""; (3.3)
then for every odd w
(xy)= (2W, 2<3W*1>/2) : (3.4)
isthe point on EC
y* = x(x* +a)mod p (3.5)

Case3: Let x*—a=xb’;
consider a:=x(x—b’); (3.6)

then y* =x(x*-a)=x°b.
Therefore, y = bx, i.e., (x, bx) ison EC

y* =x(x*—a)mod p. (3.7)
Hence, if a=5, or a=6, or a=—3, then respectively (5,10),
(3,3), (3,6) are the points on (3.7).
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4. Counting Points on Elliptic Curveswith
a=+2"

In order to design an efficient algorithm that computes
complex primes, it is necessary to know how to count
points on EC (2.1), where |a| is not equal 1; { see Section
8 for an explanation} .

Consider an EC

y* =(x*+2x)mod p, (4.1)

where exponent d is a non-negative integer; p is a prime,
pmod4 =1; p=C?+F?;let E(d) denote the number
of points on the EC (4.1).

Elliptic curves with coefficients a=+2" have remark-
able cyclic properties.

Proposition4.1: If

Fmod8=0; (4.2

then E(d) is independent of exponent d, i.e, is the
same for al d; and

E(d)= p+2C(Cmod4-2). 4.3
Proposition4.2: If

Fmod8=4; (4.9
then
E(0)=E(2)=---=E(2K);
E(1)=E(3)=--=E(2k-1); (4.5)
and

E(d)=p+(-1)° 2(Cmod4-2)C. (4.6)

Proposition4.3: If Fmod4=2, then the number of points
onthe ECisequal

pt2Cifdisevenandp+2F ifdisodd. (4.7)

Proposition4.4: For every non-negative integer d the
following eguation holds

E(d)=E(dmod4). (4.8)

Proposition4.5: If Fmod4=2, and if d=2m<4, then for
m=0 and m=1 the following equations hold:

E(2m)=p+2(-1)"(Cmod4-2)C;  (4.9)
if d=2m+1<4, then
E(2m+1)= p+(-1)"(Fmod8-4)F.  (4.10)

Table 4.1 illustrates al cases considered in Proposi-
tions4.1-4.5.

5. Counting Pointson Dual EC

Proposition5.1: Let G(d) be the number of points on
the dual EC
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y* =(x*~2x)mod p; (5.1)
then for every non-negative integer d
G(d)=E(d+2). (5.2)
Proof is provided in [7].
Tables4.1 and 5.1 illustrate Proposition 5.1.
6. Counting Points: Detailed Description

In this section we provide a detailed description on how
to count the points on the EC (5.1).

Conjectureb.1: If prime pmodd=1; p=C?+F?, where
C is odd; and Fmod4=2, then the number of points
G(d) onEC

y* =(X’~2'x)mod p isequal

G(d)= p+2C(2-Cmod4)(-1)“™?; (6.1
if diseven;
however, if d is odd, then there are two cases:
G(d)=p+2F or p—2F . (6.2)
a). if d=4k+1; then
G(d)=p+F(4—+Fmod8); (6.3
b). if d=4k+3, then
G(d)=p—F(4—Fmod8). (6.4)

The following formula summarizes all cases of Con-
jecture 6.1 for odd d:

G(d) = p+F (4—Fmodg)(-1)“"***  (6:5)
Conjecture6.2: If

Fmod8=4, (6.6)
then for every integer k

—-2Cif Cmod4=1
G(2k)= prem - ; (6.7)
p+2Cif Cmod4=3
and
2Cif Cmod4=1
G(2k+1)=] P EMOCREE g
p-2Cif Cmod4=3
Conjecture6.3: If
Fmod8=0, (6.9
then for every d
G(d)= p-2C(2-Cmod4). (6.10)

Proposition6.4: For every integer b, d and non-Blum
prime p elliptic curves

y* = (> +b*x)mod p;
and
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Table4.1. Number of pointson EC y?=(x*+2%)modp.

P c F d=0 d=1 d=2 d=3
53 7 2 67; p+2C 49; p—2F 39; p—2C 57; p+2F
73 3 8 79; p+2C 79 79 79
97 9 4 79; p-2C 115; p+2C 79 115
257 1 16 255; p-2C 255 255 255
317 11 14 339; p+2C 345; p+2F 295; p-2C 289; p-2F
977 31 4 1039; p+2C 915; p-2C 1039 915
1933 13 42 1907; p-2C 1849; p-2F 1959; p+2C 2017; p+2F

4133 17 62 4099; p-2C 4257; p+2F 4167; p+2C 4009; p-2F

Table5.1. Number of points on EC y?=(x*~2%)modp.

P c F d=0 d=1 d=2 d=3
109 3 10 103; p-2C 129; p+2F 115; p+2C 89; p—2F
977 31 4 1039; p+2C 915; p-2C 1039 915
1933 13 42 1959; p+2C 2017; p+2F 1907; p-2C 1849; p-2F
4133 17 62 4167; p+2C 4009; p-2F 4099; p-2C 4257; p+2F

y* = (x* £b"™x)mod p (6.11)

have the same number of points. Proof is provided in [7].

7. Computation of Complex Primes:
Deterministic Algorithm

Since the complex integer (C, F) isaprimeif and only if
itsnorm

N:=C?+F? (7.0)
isaprime, in a naive approach we can first select a non-
Blum prime p, and then find its representation as a sum
of two integer squares (7.1). The complexity of such an

algorithm is of order O(\/B) Instead we can apply the

generalization of Gauss Theorem described above; {for
further details see Table Al in the Appendix}.

Stepl: Select aprime pmod4=1;

Step2: Count the number of points E(a) on EC

y? = x> +ax(mod p), where a=+1; (7.2
Step3: Compute C :=|p-E(a)|/2; and
F:=\/p-CZ%thenp=C?+F2=(C,F). (7.3)

Example7.1: Let p=433494437;, a=-1;
then E(-1)=433459015; and (C, F)=(17711,10946).
8. Complexity Analysis

Schoof-Elkies-Atkin (SEA) algorithm counts points on
eliptic curves y* = x> +axmod p with expected runn-

ing time T =0(log* p) if |a|#1 [1]; {the SEA is not
applicableif |4 =1}. Therefore, if p=0(2"),
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then T = O[(Iog 21°°°)4] = 0(102).

9. Conclusions and Unsolved Problem

In this paper we considered families of modular equa
tions (called the EC) and corresponding algorithms that
counts the number of integer points on each of these ECs.
For al these cases we provided closed-form solutions
with one exception {see Section A3 in Appendix, where
we provided that case as a Challenge to the readers of
this paper} .

Finally, we provided a deterministic algorithm with
polynomial time complexity that computes a complex
prime (C, F) for every rea prime p. In [9] is demon-
strated how to implement the complex primes in crypto-
graphic systems based on double moduli reduction, where
one modulus is a real prime and another modulus is a
complex prime.
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APPENDIX

Al. Computer experiments

Table Al. Generation of Gaussian primesvia EC y*=x>+ax(modp).

EC p E(a) Cc F (C+F)mod4 Fmod4
a=t1 1000249 1001359 555 832 3{GGT} 0
a=1 1000253 1000947 347 938 1{GGT} 2
a=t1 3276509 3278599 1045 1478 3{GGT} 2
a=xt1 10006001 9999999 3001 1000 1{GGT} 0
a=-— 433,494,437 433,459,015 17,711 10,946 1{GT} 2
Legend: GT=via Gauss Theorem; GGT=via Generalized Gauss Theorem.
Table A2. Generation of Gaussian primes using EC y?=x>-2x(modp).
p E(-2) C F
780,291,637 p+2F; 780,320,985 23,769 14,674
77,777,677,777 p+2C; 77,778,071,955 197,089 197,316
59,604,644,783,353,249 p+2C; 59,604,645,200,773,363 208,710,057 126,667,900
99,194,853,094,755,497 p—2C; 99,194,852,763,595,215 165,580,141 267,914,296

A2. Generalizations
Consider

y* =x(x*~b*)(mod p),b>2; (A1)

CaseAl: If 2 isagenerator or there exists an integer z
such that
2* =b(mod p); (A2)
then consider

y2 _ X(X2 _ 2dzmod4)(mod p)

and find E(dzmod4), {see (5.1) and (5.2)}.
ExampleAl: Let p=73, b=37, d=2; then
2® =37(mod73), i.e. z=35.
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Therefore,
E(dzmod4)=E(70mod4)=E(2); (6.5).
Since 73=3?+8?, then E(2)=79.
CaseA2: If b isagenerator or there exists an integer w
such that

b" =2(mod p) , (A3)
then
b? = 2%P Y (mod p) .
Now consider
y? = x(¢ - 2°P My mod p) ;. (A4)

and find E(d(p—w-1)mod4).
CaseA3: Conjectures A1-A3 address the cases where an
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Table A3.1. #of points E(3,0) on y*=(x*-3%)modp; if d=1, then E(3,1)=p+2F.

p 53 89 101 113 137 257 353 449 653
(C,F) (7,2 (5,8 (1,10 (7,8) (11,4) (1,16) (17,8) (7,20) (13,22
d=0 p—2C p—2C p+2C p+2C p+2C p—2C p—2C p+2C p+2C

Table A3.2. # of points E(3,0) on y>=(x*~3%)modp; if d=1, then E(3,1)=p-2F.

p 5 149 173 197 233 281 317 401 677
CRn @12 (109 (@182 (114 (138 (516 (1114 (1200 (1,26
d=0 p+2C p—2C p+2C p+2C p2C p—2C p—2C p2C p+2C

integer solution z of Equation (A2) does not exist.
ConjectureAl: If ged(CF, b)=1, then there are four
distinct counts for d=0,1,2,3:

E(3,0)=p+(Cmod4—2)(1-Fmod4);  (A5)
E(3,2)=2p-E(3,0); (A6)

and
E(3,3)=2p-E(3,1); (A7)

{see TablesA3.1and A3.2}.

ConjectureA2: If gcd(CF,b)>1, then there are two
distinct counts: p+2C and p-2C; {see Table A4};
namely:

a). E(b,1)=E(b,3)=2p-E(b,0); (A8)
b). if gcd(CF, b) = 1,
then

E(b,0)=E(b,2)= p+2C(Cmod4-2);  (A9)
¢). if Fmodb=0 or {b|C and Fmod4=0},
then

E(b,0)=E(b,2)= p—2C(Cmod4-2). (A10)

ConjectureA3: If b|C and Fmod4=2, then for every d

E(3,d)= p-2C(Cmod4-2); (A11)
if Fmod4b=0, then for every d
E(3,d)= p+2C(Cmod4-2). (A12)

Table ASillustrates al cases of ConjectureA3.
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A3. Unsolved Problem

We leave to the readers to figure out aformulafor E(3,1)
provided that (A7) holds and E(3,1) is equa either
p+2F or p-2F,{seeaboveTablesA3.1and A3.2}.

Table A4. E(3,0)=E(3,2); E(3,1)=E(3,3).

p c F d=0,2 d=1,3
61 5 6 p+2C p—2C
97 9 4 p—2C p+2C
157 11 6 p—2C p+2C
241 15 4 p+2C p—2C
613 17 18 p+2C p—2C
853 23 18 p—2C p+2C
1933 13 42 p+2C p—2C
Table A5. E(3,0)=E(3,1)=E(3,2)=E(3,3).
p c F d=0,1,2,3
109 3 10 p—2C
181 9 10 p+2C
193 7 12 p+2C
277 9 14 p+2C
313 13 12 p-2C
421 15 14 p-2C
IJCNS



