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ABSTRACT 

This paper provides several generalizations of Gauss theorem that counts points on special elliptic curves. It is demon-
strated how to implement these generalizations for computation of complex primes, which are applicable in several 
protocols providing security in communication networks. Numerical examples illustrate the ideas discussed in this pa-
per. 
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1. Introduction and Gauss Formula for 
Counting Points 

Knowledge of how to count the number of points on el-
liptic curve (EC) provides certain advantage in the design 
of cryptographic systems for secure communication in 
various applicational environments (transfer of funds in 
banking, transmission of sensitive information between 
inventor and his/her attorney, national security agencies, 
military applications, diplomatic communications, gover- 
nmental operations, control of weapons of mass distrac- 
tion, telemedicine etc.). In general, algorithms for count- 
ing points on an EC are in the domain of algebraic [1,2] 
and algorithmic number theories [3,4]. Only in special 
cases it is possible to provide a closed-form solution [5]. 
Although validation of these algorithms requires applica- 
tion of algebraic number theory, which is beyond the 
scope of this paper, their description is rather easy to un- 
derstand for cryptographers and application-oriented com- 
puter scientists. 

In this paper we provide several generalizations of 
Gauss theorem and then demonstrate how to apply them 
in selection of complex prime parameters for the design 
of the cryptographic systems. These generalizations are 
based on intensive computer experiments (CE). As a re-
sult, not all proofs that validate the algorithms are pro-
vided. Instead, we formulate various conjectures and 
propositions that are supported by results of these CE. 

1.1. Gauss theorem: Consider the elliptic curve (EC) 

  2 3 mody x x p

2 2p C F 

2E p C

,          (1.1) 

where p is a real prime; let E denote the number of or-

dered integer pairs (x, y) that satisfy Equation (1.1); 
every such integer pair (x, y) is called a point on the EC. 
There are two major cases: 

1). If pmod4=3, then EC (1.1) has p points {excluding 
the point at infinity O [1]}; 

2). If pmod4=1; , where C is odd; (1.2) 
and 

(C+F)mod4=1;            (1.3) 

then 
;              (1.4)  

2 2C F

{excluding the point at infinity O} [4]. 
If Condition (1.3) holds, then the Gauss Formula (1.4) 

can be applied to compute a complex prime (C, F). This 
application is based on the observation that an ordered 
pair of integers (C, F):=C+iF is a complex prime if and 
only if its norm   is a prime [5]. 

However, not all complex primes have components C 
and F that satisfy (1.3). For instance, (C, F)=(5,2) is the 
complex prime; yet (5+2)mod4=3. 

Therefore, the algorithm provided below is non-deter- 
ministic, since its application is restricted by C. F. Gauss 
Theorem [5]. 

1.2. Non-deterministic algorithm for computa-
tion of complex primes: 

Step1: Select a prime pmod4=1; 
Step2: Count the number of points E on EC 

  2 3 mody x x p  (1.1); 

Step3: Compute 

: 2R p E  2:S p C ; ;      (1.5) 
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Step4: If , then repeat Steps 1-4;  mod 4 1R S 
Step5: If R is odd, then (C, F):=(R, S)  

else  (C, F):=(S, R).                (1.6) 
Remark1.1: Although this algorithm is not determinis-

tic, yet, after s trials it finds a complex prime (C, F) with 
probability 1 1 2s

 E a
2 3 mod

.  
Integers 61, 977, 1777, 1913, 1933, 4133 are examples 

of primes, for which Condition (1.3) does not hold. 
The following conjectures and propositions generalize 

Gauss theorem and, as a byproduct, allow to design a 
deterministic algorithm that computes complex primes 
for every real non-Blum prime p {pmod4=1}. These pro- 
positions and conjectures also provide insights that help 
to understand how various criteria were derived and ap- 
plied for integer factorization algorithms that were de- 
scribed in papers [6,7] recently-published by the author 
of this paper. 

2. Generalizations of Gauss Theorem 

As it is shown below, in certain cases the number of 
points  on EC 

y x ax p

 2 ,  ,  G a C F

1



mod 4 2F C  

  modx p 

mod 4 2C C

 modax p

1a  

           (2.1) 

can be represented as 

 E a p C  ;      (2.2) 

where G(a, C, F) is equal either 1 or . 
Remark2.1: In all following discussions, the point at 

infinity  is excluded from the counting. 
Conjecture2.1: Consider the elliptic curve (1.1), where 

p is a prime; if Condition (1.2) holds, then 

  1 2E p C    .   (2.3) 

Conjecture2.2: Consider elliptic curve (EC) 
2 3y x ;        (2.4) 

where p is a prime and let condition (1.2) holds; then for 
every F 

  1 2E p  .      (2.5) 

Conjecture2.3: Consider EC 
2 3y x ,          (2.6) 

where ; and let (1.2) holds; then 

   2 1E a p C F a    2 mod 4 2 C  

if

1 and 1;

1 and 1.

C

a

C a

  


      (2.8) 

Table 2.1. Generalized Gauss formula if EC is 

  (2.7) 

 

Corollary: Equation (2.7) implies that if Fmod4=0, 
then elliptic curves (1.1) and (2.4) have equal number of 
points {see Table 2.1}. 

Equation (2.7) can be also presented as 

 
( ) 2

mod 4 2

or mod 4 2

E a p

C F

 

 


 

2 3 mody x x p  . 

a p 1777 1913 6101 514229 919393 

 C;F 39;16 43;8 25;74 377;610 823;492

–1 #E(–1) 1855 1999 6151 514983 921039 

#E ) 1 (1 1855 1999 6051 513475 921039 

 
ples of random - 

s te B ri tha fir ul  
(2 n ). 

Remark2.2: Elliptic curve (1.1) considered by C.F. 
Ga

ble 2.1). The same property holds for 

The table ab
elec

ove pr
lum p

ovides 
mes 

exam
t con

ly
as (2.3),d non- m form

.5) a d (2.7

uss has a remarkable property: if p=1777, then 
E(–1)=1855 {C.F. Gauss was born in 1777 and died in 
1855}, (see Ta

  mod1777x x  : E(1)=1855. 

3. Points on Elliptic Curves 

In some applications and applets it is necessary to find at 
ular Diophanti

2 3y

least one solution of mod ne equations 

 22 mody x x a p (1.1); 

or 

 22 mody x x a p  (2.4). 

Several special cases are listed be here such so-
ons can be provided in closed forms. 

1: If 
4 1: 2 ;ka          (3.1) 

low, w
luti

Case

      

then for every 0k   

   12 3 1, 2 ,2k kx y   ;          (3.2) 

is on EC  22 mody x x a p  . 

22 wa  ;   

ery odd w 

 

Case2: If  

           (3.3) 

then for ev

  3 1 2,, 22w wx y  ;         (3.4) 

is the point on EC  

 2 2 mody x x a p          (3.5) 

Case3: Let 2 2x a xb  ; 

consider  2b ;                      (3.6) 

then 

:a x x 

 2 2 2 2y x x a x b   . 
Th bx, i.e., (x, b is on EC erefore, y = x) 

 2 modx x a p .         (3.7) 2y 

, if a=5, or a=6, or a 3, then respectively (5,10), Hence =–
(3,3), (3,6) are the points on (3.7). 
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4. Counting Points on Elliptic C
2da    

nt 
n EC n 

8 for an expl ation}. 

non-negative integer; p is a prime, 
F ; let  E d  denote the number 
). 

Elliptic curves with coeffic ents 2a  

n4.1: If 

od8=0;               (4.2) 

ponent 

posit

Fmod8=4;             (4.4) 

then 

 2 2E k  ; 

mod 4 2

tion4.3: If Fmod4=2, then the number of points 
e EC is equal 

 if  is F d o

holds 

 mod 4E d .        

g equations hold: 

modC

 mod8 4 .F F

nsidered in Proposi-

5. Counting Points on Dual EC 

urves with 

In order to design an efficient algorithm that computes 
complex primes, it is necessary to know how to cou
points o  (2.1), where |a| is not equal 1; {see Sectio

an
Consider an EC 

 2 3 2 moddy x x p ,        (4.1) 

where exponent d is a 
2 2pm

of points on 
od4 = 1; p C 

the EC (4.1
i d  have remark- 

able cyclic properties. 
Propositio

Fm

then  E d  is independent of ex d, i.e., is the 
same for all d; and 

 E d  2 mod 4 2p C C   .    (4.3) 

Pro ion4.2: If  

 0E E  

   1 3E E  2 1E k   ;       (4.5) 

and 

    1 2
d

E d p C   .C      (4.6) 

Proposi
on th

2  if  is  and 2p C d even p .dd   (4.7) 

Proposition4.4: For every non-negative integer d the 
following equation 

 E d    (4.8) 

Proposition4.5: If Fmod4=2, and if d=2m<4, then for 
m=0 and m=1 the followin

    2 2 1
m

E m p   4 2 C ;    (4.9) 

if d=2m+1<4, then 

   2 1 1
m

E m p       (4.10) 

Table 4.1 illustrates all cases co
tions 4.1-4.5. 

Proposition5.1: Let  G d  be the number of points on 
the dual EC 

 2 3 2 moddy x x p  ;        (5.1) 

ativethen for every non-neg  integer d 

   2G d E d  .  

Proof is provided in [7]. 
ition 5.1. 

6. Counting Points: Detailed Descr  

 on how 
to coun

here 
ints 

        (5.2) 

Tables 4.1 and 5.1 illustrate Propos

iption

In this section we provide a detailed description
t the points on the EC (5.1). 

Conjecture6.1: If prime pmod4=1; 2 2p C F  , w
C is odd; and Fmod4=2, then the number of po
 G d  on EC 

 2 3 2 moddy x x p  i

   

s equal 

   mod 4 2d
G d p 2 2 mod 4 1C C   ;   (6.1) 

if d is even; 
however, if d is odd, then there are two cases: 

  2  or  2G d p F p F   .    

   (6.3) 

b). if d=4k+3, then 

G(d)=p–F(4–Fmod8).        (6.4) 

The following 
: 

    (6.2) 

a). if d=4k+1; then 

G(d)=p+F(4–Fmod8);      

formula summarizes all cases of Con-
jecture 6.1 for odd d

   mod 4 1 2
4 mod8 1

d
F F

     (6.5) ( )G d p 

Fmod8=4,              (6.6) 

then for every integer k 

 
2 if mod 4 1

2
C C

G k
p

Conjecture6.2: If  

2 if mod 4 3C C

p  
 



;       (6.7) 



 
2 if mod 4

2 1
2 if mod 4

p C C
G k

p C C

and 

1

3

 
    

njecture6.3: If 

Fmod8=0,        

then for every d  

.      (6.8) 

Co

       (6.9) 

 G d    2 2 mod 4p C C .     (6.10) 

 For e
ves 

Proposition6.4:
prime p elliptic cur

very integer b, d and non-Blum 

 2 3 moddy x b x p  ; 

and 
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Table 4.1. Number of points  y2=(x3+2dx)modp. 

p C F d=0 d d=2 d=3 

 
on EC

=1 

53 7 2  57; p+2F 67; p+2C 49; p–2F 39; p–2C

73 79; C 79 

295 C 289; F 

C 1039 

1933 1  2017;  

C 4009; 2F 

3 8 p+2 79 79 

97 9 4 79; p–2C 115; p+2C 79 115 

257 1 16 255; p–2C 255 255 255 

317 11 14 339; p+2C 345; p+2F ; p–2 p–2

977 31 4 1039; p+2C 915; p–2 915 

13 42 907; p–2C 1849; p–2F 1959; p+2C p+2F

4133 17 62 4099; p–2C 4257; p+2F 4167; p+2 p–

 
Ta ber of po y2=(x3–2d

p C F d=0 d=1 d=2 d=3 

ble 5.1. Num ints on EC x)modp. 

109 3 10 C 89; p–2F 103; p–2C 129; p+2F 115; p+2

9  103 2C 91 C 

1

40 C 425 2F 

77 31 4 9; p+ 5; p–2 1039 915 

1933 13 42 1959; p+2C 2017; p+2F 1907; p–2C 849; p–2F 

4133 17 62 4167; p+2C 4009; p–2F 99; p–2 7; p+

 
2 3 od 4 my x x   (6.11) 

a s. Proof is provided in [7]. 

7. Computation of Complex Primes: 

nd only if 

2

en find its representation as a sum 
of two integer squares (7.1). The c

  md od p     b then T

Copyright © 2012 SciRes.     

h ve the same number of point

Deterministic Algorithm 

Since the complex integer (C, F) is a prime if a
its norm 

2:N C F               (7.1) 
is a prime, in a naïve approach we can first select a non- 
Blum prime p, and th

omplexity of such an  

algorithm is of order  .p  Instead we can apply the 

generalization of Gauss Theorem described above; {for 
further details see Table A1  the Appendix}. 

Step1: Select a prim =1; 
 in

e pmod4

   (7.2) 

Step2: Count the number of points E(a) on EC 

re 1a   ;  2 3 mody x ax p  , whe

Step3: Compute  : 2C p E a  ; and 

2 2: ; then , 2F p C p C C F  

a  
then E(–1)=433459 C, F)=(17711,109

8.

ts on 
od

F  .   (7.3) 

Example7.1: Let p 1  ; =433494437; 
015; and ( 46). 

 Complexity Analysis 

Schoof-Elkies-Atkin (SEA) algorithm counts poin
elliptic curves 2 3 my x ax

4

p  with expected runn- 

ing time  O logT p  if 1a   [1]; {the SEA is not 

applicable if  Therefore, if  1000O 2p  , 

9. Conclusions and Unsolved Problem 

   12lo 10   

per we consid i
the nding algorit s that 

s the number of integer points  each of these ECs. 
these cases we provided c sed-form solutions 

with one exception {see Section A3 in Appendix, where 
aders of 

oints on elliptic curves based on my al-
gorithms. Results of computer experiments provided in 

g these applets. 

, Boca Ra- 

 . 
41000g 2  

In this pa ered fam lies of modular equa-
tions (called  EC) and correspo hm
count on
For all lo

we provided that case as a Challenge to the re
this paper}. 

Finally, we provided a deterministic algorithm with 
polynomial time complexity that computes a complex 
prime (C, F) for every real prime p. In [9] is demon- 
strated how to implement the complex primes in crypto- 
graphic systems based on double moduli reduction, where 
one modulus is a real prime and another modulus is a 
complex prime. 
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APPE DIX 

ments 

e A1. Generation of Gaussian primes via EC y2=x3+ax(modp). 

od4 Fmod4 

N

A1. Computer experi

Tabl

EC p E(a) C F (C+F)m

1a    10 T} 0 00249 1001359 555 832 3 {GG
1a   100 53 1   9

1a  
a  

1a   4  4  

02 000947 347 38 1 {GGT} 2 

 3276509 3278599 1045 1478 3 {GGT} 2 

1  10006001 9999999 3001 1000 1 {GGT} 0 

 33,494,437 33,459,015 17,711 10,946 1 {GT} 2 

Legend: GT a Gauss T T=via Gener s Theorem.

 
imes using EC y =x3–2x(modp). 

p 

=vi heorem; GG alized Gaus  

Table A2. Generation of Gaussian pr 2

 2E   C F 

780,291,63 14,674 7 p+2F; 780,320,985 23,769 

77,777, 777 p+2C; 77,778, 955 19 9 19 6 

59,60 249 p+2C 363 20 7 12 0 

99,1 p–2 1  2  

677, 071, 7,08 7,31

4,644,783,353, ; 59,604,645,200,773, 8,710,05 6,667,90

94,853,094,755,497 C; 99,194,852,763,595,215 65,580,141 67,914,296

 
A2. Genera

 

lizations 

Consider 

 mod , 2dy x x b p b  ;      (A1) 

CaseA1: If 2 is a generator or there exist
h that 

er 

   2 2 mod 42 mdzy x x 

and find E(dzmod4), {see (5.1) and (5.2
ExampleA1: Let p=73, b=37, d=2; th

e, 
E(dzmod4)=E(70mod4)=E(2); (6.5). 

Si
2 2

s an integer z 
suc

 2 modz b p ;            (A2) 

then consid

od p  

)}. 
en  

 352 37 mod73 , i.e. z=35.  

Therefor

nce 2 273 3 8  , then E(2)=79. 
 a generator oCaseA2: If b is r there exists an integer w 

  (A3) 

2 (mod )b p . 

Now consider 

 1 mod 42 2( 2 )(mod )d p wy x x p   ;    (A4) 

and find E(d(p–w–1)mod4). 
jectures A1-A3 address the cases where an  

such that 

2(mod )wb p ,           

then 
 1d p wd  

CaseA3: Con
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Table A3.1. # of points E 3–3dx

53 89 101 113 137 257 353 449 653 

(3,0) on y2=(x )modp; if d=1, then E(3,1)=p+2F. 

p 

(C, F ,22) ) (7,2) (5,8) (1,10) (7,8) (11,4) (1,16) (17,8) (7,20) (13

d  p p  =0 –2C –2C p+2C p+2C p+2C p–2C p–2C p+2C p+2C 

 
2. # of points =(x3 d=1, the  E(3,1)= –2F.

p 5 149 173 197 233 281 317 401 677 

Table A3. E(3,0) on y2 –3 x)modd p; if n p  

(C, F ,26) ) (1,2) (7,10) (13,2) (1,14) (13,8) (5,16) (11,14) (1,20) (1

d  p  =0 +2C p–2C p+2C p+2C p–2C p–2C p–2C p–2C p+2C 

 
integer solution z of io 2) does  exi  

ConjectureA1: If (CF  

E(3,0);           (A6) 

and 

Tables A3.1 and A3.2}. 
ConjectureA2: I

2p C ; {see Table A4}; 

Equat
 gcd

n (A
, b)=1, t

 not
hen the

st.
re are four 

distinct counts for d=0,1,2,3:  

E(3,0)=p+(Cmod4–2)(1–Fmod4);    (A5) 

E(3,2)=2p–

E(3,3)=2p–E(3,1);           (A7) 

{see 
f gcd(CF,b)>1, then there are two 

distinct counts: 2p C  and 
namely: 

a).      ,0b ; 

  2 mod 4 2 ;p C C      (A9) 

od4=0},  

2 .   (A10) 

od4=2, then for every d 

   3, 2 mod 4 2E d p C C   ;  

 

,1E b E b p E               (A8) 

b). if gcd

,3 2

(CF, b) = 1,  
  then

  ,0 , 2E b E b

c). if Fmodb=0 or {b|C and Fm
then  

    , 0 , 2 2 mod 4E b E b p C C  

ConjectureA3: If b|C and Fm

  (A11) 

if Fmod4b=0, then for every d 

 3, 2 mod 4 2E d p C C   .

 of ConjectureA3. 

U ed lem

We leave to the readers to figure out a formula for E(3,1) 

     (A12) 

Table A5 illustrates all cases
 
 

A3. nsolv  Prob  

provided that (A7) holds and E(3,1) is equal either 
2p F  or 2p F , {see above Tables A3.1 and A3.2}. 

 
Table A4. E(3,0)=E(3,2); E(3,1)=E(3,3). 

p =1,3 C F d=0,2 d

61 5 6 p+2C p–2C 

97 9 4 p–2C p+2C 

157 11 6 p–2C p+2C 

241 15 4 p+2C p–2C 

613 17 18 p+2C p–2C 

853 23 18 p–2C p+2C 

1933 13 42 p+2C p–2C 

 
Table A5. E(3,0)=E(3,1)=E(3,2)=E(3,3). 

p  C F d=0,1,2,3

109 3 10 p–2C 

181 9 10 p+2C 

193 7 12 p+2C 

277 9 14 p+2C 

313 13 12 p–2C 

421 15 14 p–2C 
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