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ABSTRACT 

In many applications a heterogeneous population consists of several subpopulations. When each subpopulation can be 
adequately modeled by a heteroscedastic single-index model, the whole population is characterized by a finite mixture 
of heteroscedastic single-index models. In this article, we propose an estimation algorithm for fitting this model, and 
discuss the implementation in detail. Simulation studies are used to demonstrate the performance of the algorithm, and a 
real example is used to illustrate the application of the model. 
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1. Introduction 

When it is difficult to specify a parametric model due to 
the lack of enough prior knowledge, researchers often 
consider a semi-parametric model as alternative, where a 
nonparametric component is added to encompass a wide 
range of models and ensure more flexibility. Single-in- 
dex model is such a typical example. It assumes that a 
univariate response depends on a vector of pre-
dictors

Y R
dX R via its linear combination, 

 TY X   

 ·

             (1) 

where β is a vector of unit length,   is an unknown 
univariate function, and ε is a random error such that 
  0E X   and   2var X  . Model (1) general-

izes the ordinary linear regression by leaving  ·  un-
specified. Meanwhile, it still maintains enough inter-
pretability, for β can be interpreted similarly as the coef-
ficients in a linear regression model. See [1-3] and refer-
ences therein for more discussions. 

The single-index model (1) assumes a homoscedastic 
variance, which may be limited in some applications. A 
natural generalization is to consider a heteroscedastic 
single-index model (hetero-SIM), which assumes 

 Y X  T T X     

 

          (2) 

where ·  and  ·  are two unknown univariate 
functions and ε is a random error such that   0E X   
and var   1X  . The model (1) is thus referred to as a 
homo-SIM, which is a special case of (2) when  ·  . 
[4] proposed an estimation algorithm to (2) when 

 and studied its theoretical property in detail.  · 0
In a homo-or hetero-SIM, because β can be estimated 

at root-n rate of convergence as showed in the aforemen-
tioned articles, the asymptotic properties of the estimates 
of  ·  ·  and   are similar to those in univariate 
nonparametric problems. Thus homo- or hetero-SIM are 
free of curse of dimensionality in high dimensional data 
analysis. They also provide a convenient way to visualize 
data by plotting Y against βTX. 

In many applications the population under study is not 
homogenous and a single-index model is not flexible 
enough to characterize its complex structure. The het-
erogeneity may result from various reasons, such as the 
omission of important categorical variables, the igno-
rance of hidden structural changes, and unknown seg-
mentation in the population. In these cases, the hetero-
genous population consists of several subpopulations. 
We may assume that how the response Y depends on 
predictor X varies for each subpopulation, and each sub-
population can be adequately modeled by  

   T TY X Xk k k k      1, ,k  

  ·

, where  c and c 
is the number of subpopulations. Therefore, the whole 
population is characterized by a mixture of regressions. 
This model is referred to as a finite mixture of hetero- 
SIMs. 

There are some similar models studied by researchers 
in a variety of areas, which include switching regression 
[5] in economics, clusterwise linear regression [6] in 
marketing, mixture-of-experts model [7] in machine 
learning, and mixture of Poisson regression models [8] in 
biology. However, in these models k  is either lin-
ear or known and  · k  is usually a constant. As a con-
trast, finite mixture of hetero-SIMs provides more flexi-
bility in modeling by allowing    ·k  and ·k  to be 
unknown. 
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The difficulty in model fitting lies in three aspects. 
First, we do not know which subpopulation each obser-
vation comes from; second, the functions 

  2~ ( ( ), ( )),T TY X x N x x   

  ·
 ·

k  and 

k  are unknown; third, the response depends on βk 
through a nonlinear relation. In this article, we embed 
finite mixture of hetero-SIMs into the framework of fi-
nite mixture models [9], and apply EM algorithm [10,11] 
to calculate the estimates. Notice that a finite mixture 
model is usually intended to model the joint distribution 
of all variables. But finite mixture of hetero-SIMs only 
concentrates on the conditional distribution of Y X , and 
the predictor X is treated as fixed constant. The second 
difficulty is tackled by applying local linear smoothing 
[12] to estimate   k ·  and  ·k . The third difficulty 
is solved by employing a variant of Newton-Raphson 
algorithm. 

One alternative approach to fit the mixture of regres-
sions is to proceed in two steps: first identify subpopula-
tions by a clustering method, and then fit a single-index 
model for each subpopulation. We argue that our pro-
posed algorithm is preferable to this two-step procedure. 
Firstly, if the clustering analysis is conducted based only 
on predictor X, it essentially classifies observations ac-
cording to the distribution of X. The obtained results of 
clustering may not be relevant to the truth, because the 
true subpopulations are defined with respect to the condi-
tional distribution of Y X

   or ,  

. Secondly, if the clustering 
analysis is conducted based on both response Y and pre-
dictor X, any assumptions on the joint distribution of Y 
and X implicitly impose some restrictions on how Y de-
pends X. In either case, we have to specify a distribution 
for a vector X Y X , whose dimension may be 
high. Besides, the predictors usually contain both con-
tinuous and categorical variables, which introduces extra 
difficulty in clustering analysis. But for finite mixture of 
hetero-SIMs, we only need to specify the distribution of 
the univariate random errors. 

The remaining part of this article is organized as fol-
lows. Section 2 discusses an algorithm for estimating a 
hetero-SIM. Section 3 focuses on how to estimate finite 
mixture of hetero-SIMs. More detailed discussions on 
implementation are contained in Section 4. Section 5 
demonstrates the performance of the proposed algorithm 
by some simulation studies. A real example is used to 
illustrate the application of finite mixture of hetero-SIMs. 
Section 6 ends this article with some concluding remarks. 

2. Heteroscedastic Single-Index Models 

This section discusses the estimation algorithm for a het-
ero-SIM (2). We only focus on the case where ε is nor-
mally distributed; see Section 6 for discussions on other 
distributions. It can be verified that the conditional mean 
   Tx x  E Y X  and the conditional variance  

      (3) 

 2,Nwhere  

 

 denotes a normal distribution with 
mean μ and variance σ2. 

 Suppose that the observations ,  ,  1, ,y x i n i i  
are independently sampled from model (3), and a non- 
negative weight wi is associated with each observation 
 ,  i iy x . We need to estimate a d-dimensional parameter 
β and two unknown functions μ and σ2. A natural ap-
proach is to find the estimates of β, μ, and σ2 by maxi-
mizing the weighted sum of log-densities, 

 
    

 
 

   2 Tx x  var Y X . Thus the model (2) can be 
equivalently represented as 

 

2

2

1

2

2

2
1

ˆ ˆ ˆ  , ,

arg max log ; ,

arg max log

n
T T

i i i i
i

T
n i i T

i iT
i i

w y x x

y x
w x

x

  

    

 
 

 







      
 
 





 

 2;  ,y  2,Nwhere     is the density function of   . 
This objective function is different from the commonly- 
used weighted squared loss function in that the hetero-
scedasticity is incorporated. Thus this estimate of β is 
expected to have better performance than that when the 
heteroscedasticity is ignored, which is demonstrated us-
ing simulation studies in Section 4. 

It is unrealistic to solve the optimization problem di-
rectly. A more computationally feasible approach is to 
treat β and  2, 

 
 

 as two groups of parameters, and 
then iteratively update the values of the parameters in 
one group when the other group of parameters remains 
fixed. When μ and σ2 are known, calculating β is a fi-
nite-dimensional nonlinear minimization problem, while 
when β is given, the estimation of μ and σ2 are univariate 
nonparametric problems. We derive the two components 
in detail in the following. 

When μ and σ2 are given, we calculate β by 

 
2

2

2
1

ˆ arg min log

T
n i i T

i iT
i i

y x
w x

x

 
  

 

      
 
 

  

There is no closed form for the solution of β to this 
nonlinear optimization problem. A popular way of cal-
culating a numerical solution is to apply Newton-Raph- 
son algorithm. Denote the objective function as  Q   
and it can be derived that 

 
 

   

   
 

 

2
1

2
2

2
2

2

2

                           

T
n i i T

i iT
i i

T T
i i i T

i
T

i

y xQ
w x x

x

y x x
x

x

 
 

  

   
 

 





        
 

  


 

  
    
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where  2 and  

Q

are the first derivatives of μ and σ2, 
respectively. The second derivative (Hessian matrix) of 
   has a complicated expression, which involves the 

second derivatives of μ and σ2. To simplify the calcula-
tion, we consider the expectation of the Hessian matrix 
of  Q   instead. Because 

    2
 0,  T T

i i iE y x E y x             2 ,T
i ix   

the expectation of the Hessian matrix can be written as 

 

 
 

 
 

2

1

2

2
                       

n
T

i i iT
i

i

T
i

Q
E w x x

x


 

 

 



 
 

   
     




2 2

2

2
2

T T
i

T
i

x x

x

 

 

    


    

 

There is no need to calculate the second derivatives of 
μ and σ2 in the above expression. Notice that the similar 
idea is used in fitting a generalized linear model. The 
formula for updating the estimate of β is thus 

   
1

Q Q2

ˆ
T

E
 

 
 

    
   


   

  

 
 

       (4) 

Because μ and σ2 are unknown, they are substituted by 
the corresponding estimates. 

Now let us discuss how to estimate μ and σ2 when β is 
given. In this case, we need to find the estimates of μ and 
σ2 by 

 

 

2

2

2 .

T
i i

T
i

T
i

y x

x

x

 

 

 

 
 



2

1

ˆ ˆ, arg min

                                       log

n

i
i

w 


  



 



,  1, , ,i i


 

Because β is known, it is essentially a univariate non-
parametric problem to estimate functions μ and σ2 from 
the following model, 

   i iy u u   i n  
Tu x

 

where i i , the weight associated with  ,  i iy u
 0,  1N

is 
wi, and εi are iid . There are many literatures on 
this univariate heteroscedastic regression problem; see 
[13-15] and references therein for more discussions. One 
possible approach is to estimate μ and σ2 using local like-
lihood method following the discussion in Section 4.9 of 
[12]. However, it is computationally intractable. [15] 
proposed an algorithm that is much computationally eas- 
ier and meanwhile preserves the efficiency of the esti- 
mates. 

[15] recommended to first estimate the mean function 
by local linear smoothing [12]. Therefore,  ˆ ˆu a  , 

where 

       2

1 1
, 1

ˆˆ, arg min
n

i i i
a b i

a b y a b u u K u u h


      

where K1 is a kernel function and h1 is a bandwidth. Be-
cause    2 2 u E Y U U u      , the variance 
function can be treated as a mean function and can also 
be estimated via local linear smoothing. Hence, calculate 
the squared residuals and estimate   22ˆ ˆi ir y u 

 2 ˆˆ u  , where 

       22
2 2

, 1

ˆˆ ˆ, arg min
n

i i i
i

r u u K u u h
 

   


      

where K2 is another kernel function and h2 is a bandwidth, 
which may not be the same as K1 and h1 used for esti-
mating the mean function μ. The first derivatives of μ and 
σ2 are needed in evaluating (4). They are estimated by 

  ˆˆ u b  2' ˆˆ u  and   ,respectively. 
In order to fit a hetero-SIM, we assemble the two 

components discussed above together. The initial value 
of β, β(0) can be chosen as the least squares estimate of a 
linear regression model. In each iteration step, we first 
estimate  m  and  with given , then cal-
culate β(m) using equation (4), and last evaluate 

 2 m  1m 

  mQ  . 
The iterations proceed until the difference between the 
values of  Q   in two successive iterations is smaller 
than a pre-specified tolerance value. An alternative way 
to check convergence is to compare the values of β in 
two successive iterations. 

3. Finite Mixture of Hetero-SIMs 

A finite mixture of hetero-SIMs can be used to model a 
heterogeneous population. Suppose that the observations 
 ,  ,  1, ,y x i n 

 

i i  are independently sampled from a 
population consisting of c normal subpopulations, 

    2
1

~ π ,
c T T

k k k k kk
Y X x N x x   


 

0 π 1

 

where βk’s are vectors of unit length, πk’s are positive 
values such that k  π 1

π π 

 and kk
, and μk’s and 

σ2
k’s are unknown univariate functions. For the purpose 

of identifiability, we assume that 1 c  and 

k k k k  , if  ’. It is convenient to represent the 
above finite mixture model in terms of a hierarchical 
model by introducing an unobserved variable Z to indi-
cate which subpopulation an observation is sampled 
from, 

 1~ multinomial π , ,  πcZ 

 
 

    2,  ~ , .T T
k k k kY Z k X x N x x      

The marginal distribution of Y (averaging out Z, but 
still conditionally on X) is exactly the distribution of Y in 
the finite mixture of hetero-SIMs. Although the distribu-
tion of Y depends on X via several different linear com-
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binations, within each subpopulation, the response is 
adequately modeled by a hetero-SIM. 

An appropriate estimate of θ is the MLE that maxi- 
mizes   . 

ght © 2012 SciRes.                                                                                  

The conditional mean of Y X  has the following ex- 
pression 

It is difficult to estimate the unknown parameter θ by 
maximizing    directly. The popular approach to 
fitting a finite mixture model is to apply EM algorithm 
[9-11]. The EM algorithm consists of an expectation step 
(E-step) and a maximization step (M-step). We derive the 
detail in the following. 

 
k

E Y X x   
1

π
c

T
k k k x 




 2π, ,  ,

 

which resembles projection pursuit regression [16]. 
However, there are two major differences between pro-
jection pursuit regression and finite mixture of hetero- 
SIMs. Firstly, the latter also models the conditional vari-
ance of Y, while the former does not. Secondly, the latter 
assumes an underlying heterogeneous structure, while the 
former only focuses on the prediction of the response. 
Hence the latter model can be used for clustering analysis, 
while the former cannot. As we can see latter, the fitting 
of finite mixture of hetero-SIMs utilizes a variant of EM 
algorithm, which is quite different from the fitting of 
projection pursuit regression. 

By including the unobserved variable Z, the “com- 

plete” data are 

For convenience, denote    
 1, , c

, where 
,  1π π , ,πc      , 1 c , ,     

 2T T
k k ix   




 and 

1 . Notice that π and β are finite-di- 
mensional parameters, while μ and σ2 are unknown func-
tions. The log-likelihood function is 

2 2 , ,   2
c

   
1 1

log π ; ,
n c

k i k k i
i k

y x  
 

 


   

  ,  ,  ,    1, ,  i i iy x z i n  . The joint 

density function of Y and Z (conditionally on X) is 

     

    2

, ,

               π ;  ,T T
z z k i z k i

f y z x f y x z f z

y x x    




 

   fwhere z x f z

 

    
1

2

1

log π

            log ; ,

n

c zi
i

n
T T

i zi k i zi k i
i

y x x



    







 because Z is independent of X. 
Therefore, the complete loglikelihood function is 

   
 







 c

 

In the E-step, the (conditional) expectation of the 
complete log-likelihood function under the current value 
of θ* is calculated. The expectation of 

 

 is 

    * 2

1 1 1 1

log π log ; ,
c n c n

T T
c ik k ik i k k i k k i

k i k i

E p p y x x      
   

         
   

where  *, ,p P z k y x ik i i i 

    
    

is the conditional prob-
ability that the ith observation is sampled from the kth 
subpopulation, 

* * * * *

* * * * *

π ; ,

π ; ,

T T T
k i k k k k

ik T T T
k i k k k k

y x x
p

k
y x x

    

    



 

   (5) 

In the M-step, an updated value of θ is calculated by 
maximizing *

cE      obtained in the E-step. Some 
calculations yield the updated value of θ, 

1

1
π̂ ,

n

k
i

p
n 

 ik               (6) 

and 

 2

1

ˆ ˆ ˆ  , ,

arg max log ;

k k k

n

ik i k k i
i

p y

  

  


 
ˆ

k

    2,T T
k k ix x 

 (7) 

The estimates  , ˆk , 2ˆk are calculated from fitting 
a hetero-SIM as discussed in Section 2. Notice that the 
associated weights are pik. 

The initial values of pik and βk are needed to start itera-
tions. In each iteration step, first calculate using (6), 

then estimate βk, μk, σk
2 in (7), and last calculate pik by (5). 

The value of  c 

 0
k

 can be used to check if the algo- 
rithm converges or not. More detailed discussions of im- 
plementation are contained in the next section. 

4. Implementation 

In the previous two sections, the algorithm for fitting a 
finite mixture of hetero-SIMs has been derived. In this 
section, we first list the steps to fit the model, and then 
explain each step in detail. 

When the number of subpopulations, c, is known, fit a 
finite mixture of hetero-SIMs following the steps below. 

1) Initialization: 
 , ; a) choose initial values of 1, ,k c 

 0p 1, ,i nb) calculate  for 

π̂k

ik   1, ,k c 

 1π m
k

; . 
2) Iteration: for given βk

(m) and pik
(m), 

  using (6); a) calculate 
 1m

kb) calculate    and σ2
k
(m+1)  and their deriva-

tives; 
 1m

k
  using (4); c) calculate 

 1m
ikp   using (5); d) calculate 

   1 m 
     

. e) calculate 
1m m3) Check convergence: if       , 
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where ℓ is a pre-specified tolerance value, stop and out-
put ; otherwise go back to Step 2) for another it-
eration. 

 1m 

 0
A good choice of initial values usually leads to fast 

convergence. We recommend to set k  as the esti-
mated indexes from projection pursuit regression, or as 
the basis estimated by a sufficient dimension reduction 
method. Notice that sufficient dimension reduction can 
be used to estimate the linear space spanned by 

1 c , , 

 0
k

 without specifying a parametric model; see 
[17-19] and references therein for more discussions. Be-
cause of the risk that the iterations stop at local maxima, 
it is always wise to start with different initial values and 
report the best results. When the initial value   is 
given, we fit a simple linear regression of yi on k xi 
and calculate residuals rik. The initial value of pik is cal 

 0 T

 culated as    0 ;  0,1  ik ikp r ;  0,1ikr 

T
k i

. 

In the iteration step, local linear smoothing needed by 
Step 2b) is the most computationally intensive part. To 
speed up calculation, the linear binning algorithm [12] is 
used to implement local linear smoothing. The value of 
bandwidth usually influences the performance of esti- 
mating μk and σk

2. There are many literatures on how to 
choose an optimal bandwidth automatically and adap-
tively from data; see [12,20] and reference therein. When 
a bandwidth selector is determined, we can select a 
bandwidth automatically whenever it is needed. The 
plug-in bandwidth selector [20] is used in the simulation 
studies. Although achieving good performance, it is 
computationally intensive, and may not be necessary. 
Simulation studies show that the performance of esti-
mating βk is less sensitive to bandwidth than that of esti-
mating functions. Thus it is possible to first estimate βk 
using a fixed rough bandwidth throughout the iteration 
steps and then fit μk and σk

2 using a more refined band-
width after the algorithm converges. Specifically, we 
recommend the rule-of-thumb bandwidth [21], which is 
simple and works well in simulation studies. 

Another concern in Step 2b) is that some misclassified 
observations or outliers may severely deteriorate the 
performance of the estimates, because the estimated 
nonparametric functions are forced to adjust to the false 
pattern induced by them. Noticing that misclassified ob-
servations or outliers usually have extremely small den-
sities, we recommend removing 5% of observations with 
the smallest densities when fitting μk and σk

2. Our ex-
perience shows that the performance becomes more ro-
bust after trimming. 

In Step 2c), the estimates of mean and variance func-
tions, as well as their first derivatives, are needed to up-
date βk. Because the performance of the estimates of the 
first derivatives may exhibit erratic behaviors near the 
boundary, we recommend removing 1% of observations 

near both sides of the boundary. Notice that the boundary 
means the smallest or the largest values of x

T

, and 
thus they are determined in each iteration. 

The number of subpopulations, c, is usually unknown 
in practice, and needs to be determined from data. A 
subjective method is to choose c by examining the plots 
of yi against k ix 1, ,k c for   . If c is underestimated, 
some plots must demonstrate a clear lack-of-fitting. 
When c is overestimated, some subpopulations are fur-
ther divided, in which case some βk are very close to each 
other. In fact, the dimension of the linear space spanned 
by  , ,1 c 

 
 

 chosen by sufficient dimension reduc-
tion methods may serve as an estimate of c, which is 
usually determined by a series of hypothesis testing; see 
[17,18] and reference therein. 

5. Examples 

Example 1. Consider the following hetero-SIM 

 
2

2

2e 0.3 e

T
T

X
XTY X




 
 

     

 , ,1 5x x   , 1,  1,  0,  0,  0 2
T Xwhere  and 

 ~ N 0,  1

ˆ

. The elements of X are independently sam-
pled from uniform (−2, 2). We randomly generate 300 
samples each of size n = 400 from this artificial model. 
The algorithm derived in Section 2 is used for model 
fitting. In this example, we only demonstrate the per-
formance of estimating β, and omit the discussions on 
mean and variance functions, because after β is estimated, 
it becomes a univariate problem to estimate both func-
tions, which have already been elaborated in [15]. 

The performance of an estimate  is measured by 
 ˆ,A  

 ˆ,A
, the angle (in degree) between this estimate and 

the true value β. It is clear that  

 ˆ,A

 varies from 0˚ 
to 90˚, and the smaller the better. We first fit the 300 
samples separately with different fixed bandwidth h = 0.2, 
0.3, 0.4, 0.5, 0.6 and calculate    for each esti-
mate. Additionally, we fit the samples with the plug-in 
bandwidth [20] that is calculated from data in each itera-
tion step whenever it is needed, which is referred to as h 
= “auto”. The left plot in Figure 1 demonstrates the in-
fluence of bandwidth using side-by-side boxplots. It is 
observed that the influence of bandwidth to the estima-
tion of β is not severe. A wide range of bandwidth yields 
similar performance. It is unnecessary to choose an op-
timal bandwidth whenever it is needed. 

In order to demonstrate the efficiency in estimating β 
gained by considering the heteroscedastic variance, we 
fit the 300 samples by assuming a homoscedastic vari-
ance. The performance of estimating β is displayed using 
side-by-side boxplots in the right plot of Figure 1. The 
influence of bandwidth is not severe. The performance is 
worse than that from hetero-SIM as expected. 
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 ˆ,A

2. It is observed that there is no much difference between 
these two methods. Therefore, it is enough to use a rough 
bandwidth in the estimation of β. 

The proposed algorithm achieves high efficiency in 
estimating β in that the estimate of β cannot be better 
even if the mean and variance functions are known. 
When the mean and variance functions are known, the 
only unknown parameter is β, which can be estimated by 
repeatedly applying (4). Using this method we fit the 300 
samples and calculate 

Example 2. Consider a finite mixture of two hetero- 
SIMs. 

   1 1 1 1
T TY X X     , with probability 0.6,   . We compare the per-

formance of estimating β in this case with that from a 
hetero-SIM with h = “auto” in the left plot of Figure 2. 
The straight line indicates where the two methods yield 
the same performance. It suggests that there is no much 
difference. 

   2 2 2 2
T TY X X     , with probability 0.4, 

 1 2 3 4 5,  ,  ,  ,  Xwhere x x x x x

 
,  

In practice, it is usually enough to use a rough band-
width to estimate β. We first calculate the rule-of-thumb 
bandwidth for each component of X, and use their aver-
age as the bandwidth for fitting a hetero-SIM, which is 
referred to as h = “rot”. The performance of estimating β 
in this case is compared with that when the mean and 
variance functions are known in the right plot of Figure 

1 0,  0,  0,  1,  1 2
T   2  1,  1,  0,  0,  0 2

T  and , 

      2 2 2
1 13exp 2u ,  0.2 0.4exp 2 ,u u u u        

      2 2 2
2 22 5exp ,  0.3 exp ,u u u u u        

and ~ 0,  1N

400n

. The elements of X are independently 
sampled from uniform(−2, 2). We randomly generate 300 
samples each of size   from this model. 

 

 

Figure 1. The side-by-side boxplots compare the performance of estimating β with different bandwidths, where β is estimated 
using hetero-SIM in the left plot and β is estimated using homo-SIM in the right plot. 
 

 

Figure 2. The two plots compare the performance of estimating β when mean and variance functions are known with that 
when they are unknown. In the left plot, the plug-in bandwidth is used, while in the right plot, the rule-of-thumb bandwidth 
is used. 
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We first examine the influence of bandwidth on the 

estimating of βk. The samples are fitted using the algo-
rithm discussed in Section 3 with bandwidth h = 0.2, 0.3, 
0.4, 0.5, 0.6, “auto”, and “rot”; see Example 1 for the 
meaning of “auto” and “rot”. The results are summarized 
in Figure 3, where the lines marked by 1, 2, 3, 4, 5 cor-
respond to the 5%, 25%, 50%, 75%, and 95% percentiles. 
The performances of estimating β1 and β2 share a similar 
pattern. For most samples (at least 75% of samples), the 
performance is not severely affected by bandwidth. But 
when the bandwidth is too large or too small, the prob-
ability that the algorithm stops at local maxima increases. 
It is the reason why the algorithm sometimes fails to es-
timate parameters consistently. However, this probability 
can be greatly reduced if we start the iterations with dif-
ferent initial values and choose the best result. 

Figure 4 shows the scatter plot of yi against the pro- 
jections of β1

Txi and β2
Txi for one typical sample. In both 

plots the two subpopulations are distinguished by dots 

(or circles) and triangles. The solid lines indicate the es-
timated mean function  T

k k ix   and the two dash  

     1.96T T
k k i k k ixlines are x   

p p

     

. Although the two 
subpopulations are mixed together, the algorithm suc-
cessfully estimates μk and σk accurately. We can cluster 
the observations according to the values of pik. One ob-
servation is claimed to be in the first subpopulation if 

1 2i i , and in the second subpopulation otherwise. In 
Figure 4, the dots and filled triangles indicate correctly 
classified observations, and circles and unfilled triangles 
indicate misclassified observations. The majority of ob-
servations are correctly classified. In fact most misclassi-
fications occur when the observations are close to where 
the two response surfaces intersect. 

The performance of estimating μk and σk can be meas-
ured by mean absolute deviation error, 

1

1

ˆ ˆ,
mn

m i i
i

D g g n g u g u



   
 

 

 

Figure 3. The plots compare the performance of estimating βk with different bandwidths. The lines marked by 1, 2, 3, 4, 5 
correspond to 5%, 25%, 50%, 75%, 95% percentiles, respectively. 
 

 

Figure 4. The scatter plots of yi against the projection of i  for a typical example. The solid lines correspond to 

, and the dash lines correspond to are 

T

kβ x

 T

k k iμ β x      . 1 96 σT T

k k i k k iμ β x β x . 
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where g = μk or σk, and i m  are nm = 101 
equally-spaced points in interval (−2.5, 2.5). The results 
are summarized in Figure 5, where the samples are fitted 
with the rule-of-thumb bandwidth. The performance 
shows the algorithm accurately estimate μk and σk. We 
also calculate the misclassification rate as the average 
proportion of the misclassified observations. The first 
quartile, median, and the third quartile are 0.048, 0.055, 
and 0.065, respectively. As we can observe from Figure 
4, most misclassifications occur when the observations 
are close to where the two response surfaces intersect. 
Because these observations fall on both response surfaces, 
it is unlikely to correctly classify them according to the 
conditional distribution of 

 , 1, ,u i n 

Y X . Other information or 
assumptions are needed to handle these observations. 

Example 3. We consider 1985 Automobile Data, 
which is available at the UCI Machine Learning Reposi-
tory. This dataset contains many different attributes on 
205 cars. The objective of our analysis is to explain how 
the price of a car depends on its features. After removing 
cases with missing values, there are 195 observations left. 
Because some variables are highly linearly correlated 
with other variables, we remove them if the correlation 
coefficients exceed ±0.8. Therefore, in the following 
analysis the response is the logarithm of price 

dard deviation. 
The rule-of-thumb bandwidth is h = 0.31. We fit a 

model with two subpopulations. The proportions for the 
two subpopulations are 1  and 2π 0.634 π 0.366 , 
respectively. The estimates of βk are listed in Table 1. 
The angle between β1 and β2 is about 40˚. 

 3x  and horsepower 7 The curb weight x  are the 
two most important features in determining the price of a 
car. The horsepower characterizes the performance of a 
car, while the engine size reflects the overall size of a car 
because it is highly positively linearly correlated with the 
length and width. The first subpopulation weights per-
formance more than the overall size, and the second 
subpopulation is just the opposite. 

6. Conclusions and Discussions 

In this article, we propose a finite mixture of hetero- 
SIMs, and discuss its estimation algorithm in detail. Al-
though we assume that the random errors are normally 
distributed, it is not an essential assumption. The algo-
rithm can be easily generalized to exponential family of 
distributions to allow binary or Poisson responses.  

The finite mixture of hetero-SIMs is a semi-parametric 
model, where πk and βk are parametric components and μk 
and σk are nonparametric components. It is conjectured 
that the estimates of βk can achieve root-n rate of con-
vergence as in a single-index model. The rigorous theo-
retical deviation needs much more efforts and will be 
reported elsewhere later. 

 y  and 
the predictors are wheel base  1x , height 2 x , curb 
weight  3 x , bore  4 x , stroke  5 x , compression ratio 

6 x , horsepower  7x , and peak rpm 8 x . In the be-
ginning of analysis, each predictor is standardized by 
subtracting its mean and then being divided by its stan-  

 

 

Figure 5. The plots demonstrate the performance of estimating μk and . The lines marked by 1, 2, 3, 4, 5 correspond to 5%, 

25%, 50%, 75%, 95% percentiles, respectively. 

2

kσ

 
Table 1. Estimates of βk for automobile data. 

 x1 x2 x3 x4 x5 x6 x7 x8 

β1 0.01 −0.08 0.53 −0.03 0.07 0.16 0.82 −0.06 

β2 0.22 0.00 0.88 −0.16 −0.12 0.07 0.35 0.01 
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The selection of number of subpopulations c is not 

fully explored in this article. We simply recommend 
choosing c according to sufficient dimension reduction. 
Popular methods for determining c in a finite mixture 
model are the information criteria such as AIC and BIC; 
see [9] for more discussions. Because of the present of 
nonparametric components, AIC and BIC are not directly 
applicable for finite mixture of hetero-SIMs. 

There are also many other potential applications of the 
proposed model. For example, when testing the good-
ness-of-fit for a hetero-SIM or a finite mixture of linear 
regressions, it is appropriate to choose finite mixture of 
hetero-SIMs as the alternative. We will explore along 
these interesting directions in the future. 
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