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ABSTRACT 

In an effort to cope with the fact that functional magnetic resonance imaging (fMRI) data are spatiotemporally corre- 
lated, we propose a novel statistical method with a view to improve the detection of brain regions with increased neu-
ronal activity in fMRI. In this method, we make use of information from neighboring voxels of a voxel, for estimation 
at the voxel. We examined performance of the method against the statistical parametric mapping (SPM) method using 
both simulated and real data. The proposed method is shown to be considerably better than the SPM in the context of 
receiver operating characteristics (ROC) curves. 
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1. Introduction 

Functional magnetic resonance imaging data analysis are 
evolving quickly in a fast growing community, because 
of the excellent temporal and spatial resolution of these 
data and the innocuous aspect of their acquisition in hu-
man brains. One of the major objectives of fMRI studies 
is to determine which areas of the brain are activated in 
response to a stimulus or task. Functional imaging data 
are based on the principles of magnetic resonance and the 
fact that increases in neural activity are accompanied by 
changes in regional cerebral blood flow (rCBF) and blood 
oxygenation. This blood oxygenation level dependent 
(BOLD) effect is the basis for most of the fMRI studies 
for mapping patterns of activation in the working human 
brain. Lueck et al. [1] and Friston et al. [2] are among the 
first to develop a statistical parametric mapping package 
(SPM) by using MATLAB (programming language) to 
map patterns of activation based on a fMRI data, which 
are available in the public domain  
(www.fil.ion.ucl.ac.uk/spm). 

fMRI data have a time sampling that allows for a pre-
cise estimation of the neuronal response to various ex-
perimental conditions. SPM is typically analyzed fMRI 
data to various conditions with a massively univariate app- 
roach, where a univariate general linear model (GLM) is 
fit independently at every voxel. In SPM, there is a major 
problem for fitting the univariate GLM, the successive 
fMRI scans of every voxel of the brain are not independent 

or spatiotemporally correlated. A solution to this problem 
was given by Worsley and Friston [3,4] which provided a 
general framework for the spatiotemporally correlated 
fMRI scans. In their framework, they estimate the error 
covariance matrix l ll

of size s × s from the 
fMRI data, by employing the restricted maximum likeli-
hood estimate method (ReMLE) [5]. They used 

λQ V

 1,2lQ l   constraints in the form of 1 sQ  I  and  

 2 :i jQ e i  j   where sI  is an identity of size s 
(total number of time points) of fMRI data, 1, ,i s   
and 1, ,j s   In the V matrix, they estimate global 
hyperparameters lλ  ( error variance components ) from 
the autoregressive model ( AR(1) + wn ) based on pooled 
data from all the interested voxels. They used this esti-
mated error covariance matrix  in SPM package in 
the form of 

V̂
1 2ˆ W V̂  to make independent successive 

fMRI scans of every voxel of the whole brain. Finally, 
they used this independent fMRI data for fitting the GLM 
of every voxel of the brain to get SPMs or activity map.  

The fMRI data are temporally correlated or autocorre-
lated and functional imaging data have some spatial cor-
relation. This spatial correlation is further enhanced by 
some operations with the analysis of SPM such as smoo- 
thing and re-slicing fMRI data, and also, fMRI data of 
low resolution from an individual voxel will contain 
some signal from the tissue around that voxel. This spa-
tiotemporal autocorrelation Valdes-Sosa [6] has led us to 
propose a method in which we incorporate estimation 
results at neighboring voxels of a voxel, v say, in the es-
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timation at voxel v. This proposed method is shown to 
improve the detection of brain regions with increased neu- 
ronal activity which is statistically more powerful as com-
pared to the ReMLE approach of SPM. 

2. The Proposed Method 

We propose regularizing the autocorrelations based on 
neighboring voxel as described in details in the next Sec-
tion (2.1). In practice the estimated autocorrelation pa-
rameters  vary considerably about their true values. 
Even when no correlation is present, it is well known that 
the standard deviation of the sample autocorrelation ϱ is 
about 

2, ξρ σ

1 n  by [7]. Some method of regularization that 
reduces this variability seems desirable. Purdon et al. [8] 
achieve this by spatial smoothing of the likelihood before 
estimating the autocorrelation parameters.  

We analyzed the fMRI data with regard to temporal 
correlation, the SPM does not consider any relationship 
among voxels to make independent data for fitting GLM. 
For the efficient analysis, SPM estimates a global value 
of ϱ by using model AR(1) + wn based on pooling the 
sample autocorrelations of the fMRI raw data that create 
bias result. In the fMRI data set, there were variations in 
the strength of correlation and SPM’s global ϱ cannot 
adapt to these local changes. This supports the need for 
local autocorrelation modeling based on neighboring vo- 
xels information in order to ensure unbiased result in the 
form of accurate detection of activation, p-values and 
valid inferences at every voxel. The estimates of pa-
rameters ρ̂  and the variance  of the white noise of 
model (3) of all the voxels of a middle slice from real 
fMRI data of Section 3.3 are shown in Figure 1. More-
over the variations in the estimated variance  values 
of all the voxel of a same slice in Figure 2 can also be 
clearly observe in the form of bird-view. Due to these 
variation of the parameters and incorporates the spatial 
correlation between neighboring voxels, we propose an 
accurate pre-whitening strategy with estimation made at 
every voxel in the brain. We will call this strategy a neigh- 
borhood method (NH). We compare our approach by 
modifying the SPM code to functional imaging with the 
ReMLE method which has been established by Friston et 
al. [4] and Worsley et al. [5]. 

2ˆξσ

2ˆξσ

2.1. Neighborhood Algorithm 

In our method, we denote an fMRI data set consisting of 
s time points or scans at n voxels as the s × n matrix Y. 
In mass-univariate GLM model [Friston et al. 1995], these 
data are explained in terms of a s × m design matrix X, 
containing the values of m regressors at s time points, 
and a m × n matrix of regression coefficients β, contain-
ing m regression coefficients at each of the n voxels. The 
model is written 

 

Figure 1. Estimated variance  and 2ˆ ξσ ρ̂  (histogram) val- 

ues of model (3) of all the voxels of a middle slice of real 
data. The x-axis represents voxel labels (top panel) and thê 
values (bottom panel). The estimates are from the NH me- 
thod. 
 

 

Figure 2. A bird-view of the estimated variance  values 

of model (3) of all the voxels of a middle slice of real data. 

2ˆ ξσ

 

β Y X ε                    (1) 

where  is a ε ns  error matrix. 
1) The GLM of the variable Y at voxel from n 

voxels is given by  
1v

1 1 1 1 1 ~ 0,,v v v v vβ ε ε N V Y X 1v      (2) 

where  is error covariance matrix. 1v

2) Estimate the values, 1 1 1v  where  
V

ˆˆv v  Y Y
1 1

ˆ
v̂ v 1vβY X

ˆ

 and regression coefficient  i.e., 1
ˆ
v

  1

1 1 1 1
T

v v v vβ


 1
T

vX X X Y  from model (2). 

3) Obtain 
2

1
1 1 2

11
s ξv

v v
v

σ



V ρ

ρ
by using the following sim- 

plest model of autocorrelation AR(1) proposed by Bull- 
more et al. [9] and [10-13]. 

    1 1 11v v vε t ρε t ξ t             (3) 
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Where 1 ,    2
1 ~ 0,v ξvξ t N σ 1ρ   is a coefficient of 

the model and sρ  is a square matrix whose  ,i j th 
entry is i jρ  , . i.e. , 1, , si j 

2 1

2

1 2 3

1

1

1

s

s

s s s

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ





  



 






    


sρ










 

In the model (3) scans are equally spaced in time and the 
errors from previous time point, , are mixed up 
with a white noise  into the error of the current 
time point, . 

1 1vε t 
 1vξ t

 1vξ t
4) Calculate the error covariance matrix 1  as ˆ

vW
1 2

1 1
ˆ ˆ

v v
W V . Multiply the general linear model (2) by 

1 :  ˆ
vW

1 1 1 1 1 1 1

* * * *
1 1 1 1

ˆ ˆ ˆ
v v v v v v v

v v v v

β ε

or β ε

 

 

W Y W X W

, Y X
  (4) 

where  * 2
1 ~ 0,v sε N σ I , , , 

and regression coefficient 

*
1 1 1

ˆ
v v vW Y Y

*
1v

*
1 1 1

ˆ
v v vW X X

β  is then estimated as  

 * * * *
1 1 1 1

ˆ T
v v v vβ 

1 *
1

T
vX X X Y             (5) 

a) For a neighboring voxel  of , set initial val- 
ues of the estimates as: 

2v 1v

 

   

 

    

* 0 *
2 1

* 0 * 0
2 1 2 1 2 2

2
* 0 2
2 1 2

1

1/2
0 * 0
2 2

ˆ ˆ ,

ˆˆ ˆˆ ,

ˆˆ ˆ ,
ˆ1

ˆ ˆ .

v v

v v v v v v

s ξv
v v

v

v v

β β

ε β

σ





 






W Y W X

V ρ
ρ

W V

 

where  is computed based on  by using model 
(3). 

2
2ˆξvσ

 * 0
2ˆvε

b) Repeat updating ,  and  * 1
2

ˆ k
vβ

  * 1
2ˆ k

vε
  * 1

2
ˆ k

v
W  until 

convergence takes place (e.g.,    * * 1
2 2

ˆ ˆ 0.001k k
v vβ β   , 

   * * 1
2 2ˆ ˆ 0.001k k

v vε ε    and    * * 1
2, 2,

ˆ ˆ 0.001k k
v ij v ij

 W W , 

 

 

   
   

 

   

1*
2 2 2

1*
2 2 2

1* * * * *
2 2 2 2

* ** *
2 2 2 2

2
* 2
2 2 2

2

* 1 2
2 2

ˆ

ˆ

ˆ

ˆˆ ,

ˆˆ ˆ ,
ˆ1

ˆ ˆ( ) .

k
v v v

k
v v v

k T T
v v v v

k k
v v v v

sk ξv
v v

v

k k
v v

β

ε β

σ















 






X W X

Y W Y

c) If a voxel  has more than one voxels where esti- 
mation is already made, then we take averages of the es- 
timates from the neighboring voxels for the initial values 
of the parameters 

1v

 ,  , V, and W. In other words, the 
right-hand sides of the equations in step 4a are re- placed 
with the corresponding averages of the estima- tes. 

5) Apply step 4 to all the voxels of the brain that are 
involved in the data. 

6) Finally, to detect the effect or activity in terms of 
optimal *β̂  from step (4b), we test the null hypothesis 
that the effect is zero for every voxel of the brain. An 
effect of interest, such as a difference between stimuli, 
can be specified by *ˆCβ , where C is a row-vector of 
contrast of m conditions. It is estimated by *ˆE Cβ  

with standard deviation   12 * *ˆ T Tσ C C X XS  by 

using estimated error covariance matrix 1 2ˆ ˆ W V . The 
test statistic is the T-statistic  

T E S                  (6) 

which is an exactly t-distribution because S is a square 
root of 2χ  distribution with  degrees of free- 
dom (p is number of parameters ) whereas Worsley and 
Friston [3] used Satterthwaite approximation [14] for 
T-statistic and effective degrees of freedom in SPM be-
cause in their ReMLE method denominator of T is not a 
square root of 

j s p 

2χ distribution.  

3. Experimental Results 

3.1. Simulated fMRI Data 

In order to evaluate our proposed method, we generated a 
Gaussian artificial signals in a 4-D fMRI human brain 
data by using the Fayyaz et al. [15] models (7) and (8) 
for four region of interest (ROI) of the brain, with the 
size of 6 × 5 × 5 voxels per volume. This 4-D fMRI hu-
man brain data contain 80 volumes and each volume has 
BOLD/EPI acquisitions consisting of 35 slices (image 
volume size in voxels: x = 128, y = 128, z = 35) which 
means each volume of the data is a matrix of size 128 × 
128 × 35 The co-ordinates of each ROI or volume of ar- 
tificial signals are shown under the columns lx , l  and 

l  in Table 1. Moreover, for better visualization of four 
ROIs, we showed three image of slices of a volume of 
the data in Figure 3. In this figure, the regions inside 
black circles demonstrated artificial activation areas in 
the dimension of 

y
z

 l lx y . 
2vX X X Y

Y X

V ρ
ρ

W V

 
il l i ilβ ε  Y X                 (7) 

 2; ~ ,5 , 1, ,150il li N μ i    il ilZ Y a a  (8) 

where ilY   is fMRI response or time points matrix of size 
150 × 4 and  is matrix of artificial signals of size ila
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Table 1. Artificial activation in four different regions of 
interest (ROI). 

ROI Voxels Co-ordinates Mean SD 
Artificial activa-

tion 

  xl yl zl    

1 150 51 - 56 65 - 69 14 - 18 729.66 99.51 N(20, 52) 

2 150 74 - 79 65 - 69 14 - 18 733.54 105.23 N(20, 52) 

3 150 63 - 69 95 - 99 18 - 22 984.44 183.90 N(15, 52) 

4 150 63 - 69 31 - 35 4 - 8 844.10 130.07 N(20, 52) 

 

 

Figure 3. Three slice views of a volume of fMRI data and 
the regions inside black circles demonstrated artificial acti- 
vation areas in the dimension of (xl × yl). 
 
150 × 4 corresponding to the co-ordinates of  , ,l l lx y z  
four ROIs. The fluctuations of weak and strong artificial 
signals il of Gaussian distribution with means μ = (15, 
20) and variance of four different ROI are also 
shown in Figure 4. 

a
 2 25σ  

This 4-D fMRI human brain data consist of 80 vol-
umes or time points or scans and we made this data in the 
form of alternative blocks of 40 non-active (rest: no arti-
ficial signals) and 40 active (task: artificial signals by 
using model (7) and (8) volumes, beginning with non- 
active volumes. 80 acquisitions or volumes were made: 8 
blocks and 10 reps in each block for rest and task con- 
ditions. In the 10 repetitions block, we assume a task 
stimulus, and rest conditions for the next 10 repetitions 
block. Successive blocks alternated between rest and task 
settled up a blocked paradigm as shown Figure 5, and 
the design matrix X of size 80 × 2 represented as. 

2 20

0 0 1 1 0 0 1 1

1 1 1 1 1 1 1 1
T




 


    
    

X  




here elements 0’s and 1’s repeated alternatively 10 

3.2. Analysis of Simulated fMRI Data 

ed and ana-

w
times in the first row of X for rest and task conditions and 
all 1’s in second row used only for computation of GLM. 

The simulated fMRI data were preprocess
lyzed using SPM latest package (SPM8b; Welcome De-
partment of Cognitive Neurology London) which is 
based on MATLAB. To avoid the errors, preprocessing 
steps are necessary before the GLM analysis of any real 
or simulated fMRI human brain data. Our simulated data 

 

Figure 4. Artificial signals at four ROIs. 
 

 

Figure 5. Design paradigm of simulation data. 
 
lso based on a real fMRI experiment of a subject at res- a

ting state. In the preprocessing steps, (1) the whole im-
ages data were realigned according to the first volume for 
the correction of head motion, (2) the images were cor-
rected for difference in slice timing, (3) images were 
normalized to the Montreal Neurological Institute (MNI) 
template using parameters defined from the normaliza-
tion of the anatomical scan to the MNI template and fi-
nally, (4) images were smoothed with a Gaussian kernel 
of 8 mm full-width at half-maximum to reduce noise. For 
the rest and task conditions of the design matrix X, GLM 
analysis to estimate *β̂ was performed at every voxel of 
this preprocessed sim ted fMRI data by using ReMlL 
approach of SPM and NH method. 

A volume table of SPM {t} maps

ula

 of the effect β or ar-
tificial activity from the whole data were constructed 
corresponding to the hypothesis “task > rest” at p < 0.001 
(uncorrected) level of significance by using the SPM 
method as shown in Table 2 and by using the NH 
method as shown in Table 3. A standard volume table of 
SPM {t} map showed only top three significant voxel of 
each cluster or region with three digits of p-values and 
remaining all significant voxels with the full length of 
p-values (p < 0.001) we showed in the Figure 6. In stan-
dard SPM package (SPM8b), any hypothesis must be 
tested at set-level, cluster-level and voxel-level in the 
form of adjusted p-values. The columns in volume tables 
show, from left to right (1) set-level: the chance (p) of 
finding this (c) or a greater number of clusters in the search 
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the SPM method where p-values adjusted for search volume in 

-level voxel-level 

 
Table 2. Results of the test of simulated fMRI data by using 
four ROIs. 

set-level cluster

p c ROI corp  kE uncorp  FWE corp   FDR corp   T uncorp  { , , }l l lx y z

0.  0.00 0.00 0.00 0.00 1  0.00 52 68 16 00 4 1  103 1.93

      0.00 0.00 11.74 0.00 51 69 15 

      0.00 0.00 11.56 0.00 54 66 18 

  2 0.  7 0.  

0.  6 0.  

0.  6 0.  

00 2 00 0.00 0.00 10.89 0.00 76 68 18 

      0.00 0.00 10.08 0.00 75 68 15 

      0.00 0.00 8.07 0.00 79 69 16 

  3 00 9 00 0.00 0.00 13.32 0.00 65 96 20 

      0.00 0.00 11.53 0.00 68 98 19 

      0.00 0.00 10.48 0.00 65 97 18 

  4 00 6 00 0.00 0.00 10.98 0.00 63 31 6 

      0.00 0.00 9.86 0.00 64 34 8 

      0.00 0.00 9.83 0.00 68 33 4 

 
able 3. Results of the test of simulated fMRI data by using the NH method where p-values adjusted for search volume in 

-level voxel-level 

T
four ROIs. 

set-level cluster

p c ROI corp  kE uncorp  FWE corp   FDR corp   T uncorp  { , , }l l lx y z

0.  0.00 0.00 0.00 0.00 1  0.00 55 65 15 00 4 1  128 4.55

      0.00 0.00 13.98 0.00 55 64 14 

      0.00 0.00 13.76 0.00 56 66 17 

  2 0.  8 0.  

0.  97  0.  

0.  9 0.  

00 9 00 0.00 0.00 12.17 0.00  75 66 15 

      0.00 0.00 12.04 0.00 78 67 16 

      0.00 0.00 11.01 0.00 66 69 17 

  3 00 00 0.00 0.00 16.48 0.00 65 96 20 

      0.00 0.00 13.20 0.00 67 98 20 

      0.00 0.00 11.12 0.00 65 98 19 

  4 00 1 00 0.00 0.00 13.86 0.00 64 32 7 

      0.00 0.00 11.83 0.00 65 35 8 

      0.00 0.00 10.81 0.00 68 34 5 

 
 , ,l l lx y z

sents the m

: coordinates in the ROIs space instead of 
epre-

 

MNI space. In the tabular data the bold numbers r
ost “significant” voxel within the cluster at 

the level p < 0.001 (uncorrected) and there are four sig-
nificant cluster  4c  which are our ROI3, ROI1, ROI4 
and ROI2 respectively. The number of voxels in the ac-
tivated ROIs clearly shows that the NH method increases 
substantially the statistical significance of the four acti-
vated regions. Finally, in the analysis of simulated data, 
the NH method detects, over four ROIs, 20%, 19%, 29% 
and 27% more activated voxels as shown in Table 3 than 
the SPM method as shown in Table 2. 

A comparison of the two methods is also made with all 
the uncorrected p-values (p < 0.001) o

Figure 6. The uncorrected p-values (p < 0.001) of all acti-

vo e (2) cluster-level: the chance (p) of finding a 

vated voxels which are tested at voxel-level by using the 
SPM method (dotted line) and the NH method (solid line). 

 
lum

cluster with this many ( EK ) or a greater number of vox-
els, corrected  p  d uncorrected  uncorp  for 
search volume (3 l-level: the chance ( ding 
(under the null hypothesis) a voxel with this or a greater 
height (T-statistic), corrected family-wise error 
 

cor

) vox
an

e p) of fin

FWE corp  , corrected false discovery rate  FDRp
, 

cor  
and uncorrected  uncorp for search volume and (iv)

f activated voxel 
which are tested at voxel-level. The SPM method de-
tected 310 voxels whereas the NH method detected 405 
voxels from the total 600 voxels of our four ROIs; the 
p-values of all the voxels are shown in Figure 6. The 
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figure shows that the NH method has smaller p-values of 
activated voxels than the SPM. The p-values by the NH 
method are dispersed over a much wider range than the 
SPM method which is reflected in the ROC curves de-
scribed in the Section (3.3) with larger true positive rate 
and smaller false positive rate for the NH method. 

3.3. ROC Curve 

We will make use 
characteristics (ROC

of the well-known receiver operating 
) curve analysis Kim et al. [16] and 

ctivated voxels and 1 false posi-
tiv

Fayyaz et al. [15] to compare the SPM and NH methods. 
A ROC curve is a graphical representation of the true 
positive rate (TPR) or sensitivity versus the false positive 
rate (FPR) or (1-specificity) for a binary classifier system 
over a range of its discrimination threshold. The TPR and 
FPR values obtained by using the number of true positive 
(TP) and false positive (FP) activated voxels at specific 
threshold level in a volume of SPM {t} maps. A volume 
of SPM {t} maps of both methods corresponding to any 
p-value or threshold level (T-statistics) can be obtain 
with the use of SPM package (SPM8b). The TP and FP 
activated voxels are obtained from the volumes of SPM 
{t} maps of both methods by applying the lower four 
sequentially threshold levels as shown in Table 4. More- 
over, these obtained TP voxels of simulated data demon-
strated those voxels which activated within our prede-
fined areas of ROI whereas FP voxels activated some-
where else in the brain. 

In the Table 4, the measures of NH method would 
yield 496 true positives a

e activated voxel, with a true-positive rate (sensitivity) 
of 496/599 = 0.8280 and a false-positive rate (1-speci- 
ficity) of 1/33 = 0.0303. Similarly, 49 true positives and 
9 false positives had level between 5.0 and 5.99. Thus, if 
any value of level greater than 4.99 were taken as an in-
dication of NH method, this measure would yield 496 + 
49 = 545 true positives activated voxels and 1 + 4 = 5 
false positive activated voxels, with a true-positive rate 
of 547/599 = 0.9098 and a false-positive rate of 5/33 = 
0.1515. And similarly so on for SPM and HM method for 
the other levels, 4.00 to 4.99, and 3.00 to 3.99. 

We plotted true positive verses false positive rates and 
fitted a simple logarithmic curve ( ˆ b

r ry ax ) to the four 
bi

e of acti
variate pairs of sensitivity and (1-specificity) for each 

method, with xr = false-positive rat vated voxels, 
yr = true-positive rate of activated voxels. The fitted lo- 
garithmic curves represented as the ROC curves of each 
method as shown below in Figure 7 where solid line 
curve is for the NH and dots line curve is for the SPM 
method. The area under the ROC curve from each of the 
two methods is 95.11% and 89.25% respectively for the 
NH and the SPM method. The ROC curve and Table 4 
demonstrating the superiority of the NH method because 

Table 4. ROC curve analysis with the SPM and NH methods. 

 Activated voxels 1 - Specificity Sensitivity 

Threshold
level 

FP TP TPR FPR 

(T-statistic
v  alues)

SPM H SPM H SPM H SPMN N  N NH

≥6.00 3 1 327 496 0. 0. 0. 0.1250 0303 7730 8280

5. 4 4 45 49 0.2917 0.1515 0.8794 0.9098

4.00 - 1

10 18

423 599 

00 - 5.99

 4.99 7 0 30 32 0.5833 0.4545 0.9504 0.9633

3.00 - 3.99 21 22 1 1 1 1 

Total 24 33     

 

 

Figure 7. ROC curves for the NH method (solid line) and 
SPM method (dotted line). The markers represented the

has: (1) larger true positive rate; (2) lo- 
er false positive rate; (3) larger number of true positive 

 and the NH methods with 
 from a visual block design ex-

.5T 

 
points of four bivariate pairs of sensitivity and (1-specificity) 
of each method. 
 
the NH method 
w
activated voxel; (4) a larger area under the ROC curve by 
the NH than by the SPM and finally; (5) the closer the 
curve follows the left-hand border and then the top bor-
der of the ROC space, the more accurate the test. 

3.4. Real fMRI Data 

We also compared the SPM
real fMRI data obtained
periment, which is available in the public domain at  
http://cnl.web.arizona.edu/spm.htm. The three condition 
(“study”) block images data were acquired on a GE 1
Sigma 5× Wholebody Echospeed Horizon System. The 
whole brain BOLD/EPI acquisition consisted of 17 slices, 
each 5 mm thick, with a 1 mm skip (image volume size 
in voxels: x = 64, y = 64, z = 17 voxel size: 3.44 mm × 
3.44 mm × 6 mm; field of view (FOV) is 220). The ac-
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quisition took 160 seconds, with the scan-to-scan repeti-
tion time (TR) set to 2 secconds. A total of 80 acquisi-
tions were made: 8 blocks of 20 seconds each (i.e., 8 
blocks of 10 reps each). During each 20 second block, it 
was presented 4 stimuli of bird pictures, in each for 5 
seconds. Successive blocks alternated between hard and 
easy learned birds and a control condition of familiar birds 
(crows and swans), starting with learned birds. The pattern 
was as in Table 5.  

A “2D” T1 anatomical (same plane and section as the 
BOLD image; Series 2) and a “3D” image (124 Sagi- 
tta

 of Real fMRI Data 

ps of the condition 
ethod of the above 

od, we assume that each voxel is highly 
neighboring voxels partly due 

k design of a real fMRI data. 

B Block 8

lslices, Series 4) were also acquired to be used as struc-
tural images. 

3.5. Analysis

We obtained a volume of SPM {t} ma
(“easy and hard > control”) for each m
real fMRI data by using the same preprocessing steps (1) 
to (5) as discussed in the Section (3.2) corresponding to 
FWE-corrected p < 0.05 and contrast C = [1 –2 1] value. 
Results are overlaid on a volume rendered brain. The 
area of activated voxels of each method clearly observed 
in views of dorsal, lateral and ventral surface of the brain. 
Yellow and red areas reflect the “easy and hard” condi-
tion causing higher brain activities than the control con-
dition as shown in Figure 8. Finally, our proposed me- 
thod has more activated regions with substantially in-
creased statistical significance, which makes it possible 
to decide with more confidence if a certain brain region 
is activated or not. 

4. Dicussion 

In the NH meth
spatio-correlated with the 
to the smoothing of the data images and we make use of 
the information from neighboring voxels of a voxel, for 
estimation at the voxel. Whereas in the SPM, the error 
covariance matrix, V, does not consider any spatio-corre- 
lation among the voxels and hyperparameters of, V, also 
do not vary over voxels [3,4]. Due this phenomenon some 
weak signals can not be detected with the use of ReMLE 
approach of SPM. On the other hand, we admit more 
heterogeneity of the covariance matrix or variance-cova- 
riance structure in the NH method. The distinction of the 
ROC curves between the NH and the SPM methods be-
comes more apparent for simulate data as we discussed 
in the Section (3.3). 
 

Table 5. Bloc

Block 1 lock 2 Block 3 Block 4 Block 5 Block 6 Block 7

20 sec 20 sec 20 sec 20 sec 20 sec 20 sec 20 sec 20 sec

10 TRs 10 TRs 10 TRs 10 TRs 10 TRs 10 TRs 10 TRs 10 TRs

4 easy 

 
(a) 

 
(b) 

Figure 8. Regions are rendered in yellow and red colors o
the MNI template of SPM o tivated regions of the brain
as a result of “higher active  and hard conditions 

matrix V which is re-
e

n 
 f ac

” of easy
than the control condition. Active regions detected with the 
use of the SPM method (a), and the NH method; (b) corre-
spond to p < 0.05 (FWE-corrected). 
 

Worsley et al. [3] used pre-whitening strategy with a 
patially varying error covariance s

p ated at every voxel to estimate regression coefficient β 
in (2) without using information from neighboring voxels. 
Zhang et al. [17] and [18,19] used the matrix 1 2V  to 
estimate regression coefficient β of whitened model and 
then applied Durbin-Watson (AR(1) correlation test) on 
the residuals of whitened model to improve on the accu-
racy of the autocorrelation model. The variation of the 
autocorrelation coefficient (ρ) calls for the need for auto-
correlation modeling with initial estimates borrowed from 
neighboring voxels in order to attain more accurate in-
ferences at every voxel. 

Finally, In the analysis of simulated data, the NH 
method detects (405 – 310)/405 = 23% more activated 
voxels over all the ROIs as shown in Tables 2 and 3 than 
the SPM method, and real data detects 40% more acti-
vated voxels. The proposed method detects voxels more 
accurately of the simulated data even in case of weak but 
true artificial signals than the SPM with a better ROC 
performance. The true positive rate and higher activation 
of voxels of simulated data showed validity of the pro-
posed method and it is more apparent as far as the real 
data are concerned. The ROC curves and the p-values of 
activated voxels show that the NH method is superior 
than the SPM method based on the true simulated activa-
tions.  4 4 4 4 l control 4 hard  control 4 easy  control 4 hard  contro
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heterogeneity of the parameters, in particula
riance structure of the noise in the

the assumption that the parameter es-

 ReMLE approach of 
SP

im through the National Research Found-
26895). 

. P. Deiber, P. Cope, 
a, C. Kennard and

S. Frackowiak, “The Colour Centre in the Cerebral Cor-
tex of Man,” N 32, 1989, pp. 386-

5. Conclusions 

In this paper, we proposed a method in an effort to cope 
with the r the 

 error variance-cova
fMRI data. Under 
timates do not change abruptly between neighboring vox-
els, we employed an estimate-transfusion approach bet- 
ween neighboring voxels by using the estimates from neigh- 
boring voxels as initial values of the estimates for their 
new neighboring voxels. Since the intial values may af-
fect the final result of the estimate Wu [20] and Kim [21], 
it is desirable that we apply the estimate-transfusion ap-
proach to obtain the estimates that are affected by the 
estimates from neighboring voxels. 

In both of the experiments, one with artificial data and 
the other with real data, we showed superiority of the 
proposed NH method over the traditional SPM method in 
the context of the ROC curve. In the

M, we assume a variance-covariance structure contains 
hyperparameters which do not vary over voxels. This may 
possibly deteriorate the detection accuracy of the activated 
voxels when the signals are relatively small. This kind of 
undesirable phenomenon can be avoided by applying the 
NH method. 
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