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ABSTRACT 

Recently we have studied the instant-form quantization (IFQ) and the light-front quantization (LFQ) of the conformally 
gauge-fixed Polyakov D1 brane action using the Hamiltonian and path integral formulations. The IFQ is studied in the 
equal world-sheet time framework on the hyperplanes defined by the world- sheet time σ0 = τ = constant and the LFQ in 
the equal light-cone world-sheet time framework, on the hyperplanes of the light-front defined by the light-cone 
world-sheet time . The light-front theory is seen to be a constrained system in the sense of 
Dirac in contrast to the instant-form theory. However, owing to the gauge anomalous nature of these theories, both of 
these theories are seen to lack the usual string gauge symmetries defined by the world-sheet reparametrization invari-
ance (WSRI) and the Weyl invariance (WI). In the present work we show that these theories when considered in the 
presence of background gauge fields such as the NSNS 2-form gauge field 

  constant    

 ,B    or in the presence of 1U
 ,A

 
gauge field   ,C   and the constant scalar axion field  

= constant 

, then they are seen to possess the usual string gauge 
symmetries (WSRI and WI). In fact, these background gauge fields are seen to behave as the Wess-Zumino/Stueckel-
berg fields and the terms containing these fields are seen to behave as Wess-Zumino or Stueckelberg terms for these 
theories. 
 
Keywords: Light-Front Quantization; Hamiltonian Quantization; Path Integral Quantization; Constrained Dynamics; 

Constraint Quantization; Gauge Symmetry; String Gauge Symmetry; String Theory; D1-Brane Actions; 
Polyakov Action; Light-Cone Quantization 

Study of D-brane actions [1-19] is a domain of wider 
interest in string theories. Polyakov action does not in-
volve any square root and is in particular, simpler to 
study. Recently, we have studied IFQ of this action [12] 
for the D1 brane in the conformal gauge (CG), using the 
Hamiltonian [20] and path integral [21-25] formulations 
in the instant-form (IF) of dynamics (on the hyperplanes 
defined by the world-sheet (WS) time ) 
[26,27]. We have also studied its LFQ [13-19] using the 
light-front (LF) dynamics (on the hyperplanes of the LF 
defined by the light-cone (LC) WS time 

0 =

 = =   
constant

 
) [13-19,26-32]. 

The LF theory [13-19] is seen to be a constrained sys-
tem in the sense of Dirac [20], which is in contrast to the 
corresponding IF theory [12], where the theory remains 
unconstrained in the sense of Dirac. The LF theory is 

seen to possess a set of twenty six second-class contraints 
[13-19]. Further, the conformally gauge-fixed Polyakov 
D1 brane action (CGFPD1BA) describing a gauge-non-
invariant (GNI) theory (being a gauge-fixed theory) is 
seen to describe a gauge-invariant (GI) theory in the pre-
sence of an antisymmetric NSNS 2-form gauge field 

 ,B  [13].  
Recently we have shown [13] that this NSNS 2-form 

gauge field behaves like a Wess-Zumino (WZ) field and 
the term involving this field behaves like a WZ term for 
the CGFPD1BA [13]. We have also studied the Hamilto-
nian [20] and path integral [21-25] formulations of the 
CGFPD1BA with and without a scalar dilaton field in the 
IF [12] as well as in the LF [13-19] dynamics. In both the 
above cases the theory is seen (as expected) to be gauge- 
noninvariant (GNI), possessing a set of second-class 
constraints in each case, owing to the conformal gauge- 
fixing [1-8,12-19] of the theory. 

*Part of this work was presented as an Invited Contributed Talk by 
DSK at the International Light-Cone Conference LC2010: Relativistic 
Hadronic and Particle Physics, Valencia, Spain, June 14-18, 2010. The CGFPD1BA being GNI does not respect the usual 
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 (string) gauge symmetries defined by the WS reparametri-
zation invariance (WSRI) and the Weyl invariance (WI). 
However, in the presence of a constant 2-form gauge 
field B  it is seen [13] to describe a gauge-inavriant 
(GI) theory respecting the usual string gauge symmetries 
defined by the WSRI and the WI [13]. 

The IF and LF Hamiltonian and path integral formula-
tions of this theory in the presence of the constant 2-form 
gauge field B  have been studied by us in Ref. [13]. In 
the present work, we consider the question of the string 
gauge symmetries associated with the Polyakov D1 brane 
action in the presence of some other background fields 
such as the  gauge field 1U  ,A  


 and the con-

stant scalar axion field  ,C  
h

 [19]. The Polyakov D1 
brane action in a d-dimensional curved background 

2= dS L

 
is defined by [1-8,12-19]: 

                  (1a) 

=
2

T
L hh G


   

X X 


              (1b) 

 = det  , =h h G     

1, 1, , 1

   , 1  ,  , = 01d IFQ 

 = ,  IFQ 

       (1c) 

  = diag

, = 0,1, . ,  = 2,3,i i 

            (1d) 

(1e) 

 , = , , . ,  = 2,3, , 1  ,  ,i i d      (1f) 

Here  ,    are the two parameters describing the 
worldsheet (WS). The overdots and primes would denote 
the derivatives with respect to   and  . T is the string 
tension. G  is the induced metric on the WS and 

 ,X     are the maps of the WS into the d-di-
mensional Minkowski space and describe the strings 
evolution in space-time [1-16]. h  are the auxiliary 
fields (which turn out to be proportional to the metric 
tensor   of the two-dimensional surface swept out by 
the string). One can think of  as the action describing 
d massless scalar fields 

S
X   in two dimensions moving 

on a curved background h . Also because the metric 
components h  are varied in above equation, the 2- 
dimensional gravitational field h  is treated not as a 
given background field, but rather as an adjustable quan-
tity coupled to the scalar fields [1-8,12-19]. The action 

 has the well-known three local gauge symmetries 
given by the 2-dimensional WSRI and WI [1-8,12-19] as 
follows: 

S

=X X X X      


 X X  
 

        (2a) 

=   

h h 

        (2b) 

=h h     

h h

         (2c) 

=h h         
         (2d) 

h h                  

where the WSRI is defined f

 (2e) 

or the two parameters 
 ,     ; and the WI and is specified by a func-

tion  ,    . In the following we would, however, 
-called orthonormal gauge where one sets 

= 1
work in the so
 . Also for the CGFPD1BA one makes use of the 
fact that the 2-dimensional metric h  is also specified 

ee independent functions as it is a symmetric 2 2by thr   
metric. one can therefore use these ge symmetries of 
the theory to choose h

gau

  to be of a particular form  
the IFQ (on the hyperplanes defined by 0 = =

 in
x t con-

stant) as follows: 

:=   ,  :=h h 
       (3)        

For the IF dynamics we take [1-12] 

 
           (4a) 

1   0
= =

  0 1
h 

 
  

           (4b) 

with 

1   0
= =

  0 1
h 

 
 

 = det = 1h h              (5) 

In LF formulation we use the Light-
ables defined by: 

Cone (LC) vari-

   0 1:= ;   := 2X X X      

In this case for the LFQ (on the hyperplane
by = = constant)x  we take: 

     (6)

s defined 

    0 1 2
=

1 2
 


:=

    0
h 

 
        (7a) 

  0 2
   := =

2   0
h 

 
  

           (7b) 

with 

 = det = 1 2h h           (8) 

Now the action S  in the CG (in the IF an
reads[1-3,9-16]: 

d LF) finally 

2= dN NS L                (9a) 

=
2

N T
L X  X 

        

= 0,1;   = 0,1,  ;   = 2,3, ,i i  

= , ;   = , ,  ;   = 2,3, , 25 LFQi i     

The action 

         (9b) 

 25 IFQ   (9c) 

  (9d) 

NS  is the CGFPD1BA. The above 
in IFQ [12] is seen to be an unconstrained system an
LF  is 

action 
d in 

Q [13,14] it seen to possess a set of 26 second-class 
constraints [13] implying that the corresponding theories 
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 =X X  
 are seen to be gauge anomalous and GNI and therefore 

they do not possess the local gauge symmetries defined 
by the WSRI and the WI. The Hamiltonian and path in-
tegral formulations of this CGFPD1BA defined by the 
action NS  have been studied by us Ref. [12]. When this 
above action is considered in the presence of a Scalar 
Dilaton ld in the IFQ as well as in the LFQ then also it is 
seen to possess sets of second-class constraints implying 
that it remains GNI theory which does not respect the string 
gauge symmetries: the WSRI and the WI [1-8,12-19]. 

This action is thus seen to lack the local gauge sym-
metries. This is in contrast to the fact that the orig

 

 fie

inal 
action S  had the local gauge symmetries and was 
therefore GI. The theory defined by the action NS , on 
the othe hand describe GNI. This is not surprising at all 
because the theory defined by 

r 
NS  is afterall ( for-

mally) gauge-fixed theory and consequently not expected 
to be GI anyway. Infact, the IF th y defined by 

con

eor NS  is 
seen to be unconstrained [12] whereas the LF theory is seen 
to possess a set of 26 second-class constraints [13-19]. In 
both the cases theory does not respect the usual local 
string gauge symmetries defined by WSRI and WI. 

We now consider this CGFPD1BA in the presence of a 
constant background antisymmetric 2-form gauge field 
B  studied earlier by Schmidhuber, de Alwis and Sato, 
Tseytlin and Abou Zeid and Hull and others defined by 

,13]: 
2= d  , =

[1-8
I I I C BS L L L L               (10a)  

= =
2

C N T
L L X X

          (10b)          

=
2

B T
L B

       
                 (10c) 

 2   0 1
,  =

 
(10d) = 1 ,  = constant

1 0
     

  0
=

0

B
B

B

 
  

    (10e) :=  , B X X B 
     

 IFQ         01 10= =B B B     (10f) 

             (10g) = =B B  LFQB

 ,   = 2,3,i i 

3, , 25 LFQ

sess (only) one
27 first-class con-

st

 , 25 IFQ   (10h) , = 0,1,   = 0,1,  

  (10i) , = ,  ,   = , ,  ,   = 2,i i     

The above action is seen to pos
class constraint in IFQ and a set of 

 first- 

raints in LFQ [13-19]. Accordingly the theory in both 
the cases is seen to three local gauge symmetries given 
by the two-dimensional WSRI and the WI: 

=X X X X      
          (11a) 

      

=h h h   

         (11b) 

h             (11c) 

=h h h h    
                  (11d) 

 =B B B B          

=B B
   

    (11e) 

                  (11f) 

 h h       

It is important to recolle
field B

               (11g) 

ct here that the 2-form gauge 



 a constant anti-symmetric tensor field in the world- 
heet s . In Ref. [13], we have studied the Hamiltonian 
and path integral formulations of this theory under the 
gauge 0B

 is a scalar field in th
is

pace

e target-space whereas it 

  [13]. 
In this work we investigate the string gauge symme-

tries of PD1BA CGF  describing a GNI theory in the 
presence of a  1U  gauge field   ,A A     and a 
constant scalar axion field   ,C C    [19] and show 
that the CGFP A describing a GN eing a 
gauge-fixed theory) is seen I theory when 
considered in the presence of above background fields. 

We also show that the 

D1B I theory (b
 to describe a G

 1U  gauge field  ,A    and 
the constant scalar axion field  ,C    are both seen to 
be mino [19] and

een to b
have like the Wess-Zu  (WZ) fields  the 

term involving these fields is s ehave like a WZ 
term for the CGFPD1BA [19]. Here the field A  is a 
scalar field in the target space and a vector field in the 
WS space and the axion field C is a constant scalar field 
in both the target space as well as in the WS space [19]. 

We find that the resulting theory obtained in the above 
manner describes a GI system respecting the usual string 
gauge symmetries defined by the WSRI and the WI. It is 
seen that the axion field C and the  1U  gauge field 
A , in the resulting theory behave like the WZ fields and 

the term involving these fields behave e a WZ term 
 the CGFPD1BA [19]. 
The situation in the present case is seen to be exactly 

analogous to a theory whe

s lik
for

re one considers the CGFPD1- 
BA in the presence of a 2-form gauge field BB  as studied 
by us in Ref. [13], where the field B  behaves like a 
WZ field and the term involving this field be es like a 
WZ term for the CGFPD1BA [13]. 

The CGFPD1BA in the presence of a constant back-
ground scalar axion field C and an U

hav

 1  gauge field A  
is defined by [1-8,19]: 

 2= d  , =I I I CS L L L         (1  AL 2a)

  = =
2

C N T
L L X X         (12b)      

 
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 C F=
2

A T
L      

 
 
 

     (12c) 

 2= 1  , = consta   

 =

nt        (12d) 

  0 1
=  , 

1 0
F A A
           (12e) 

 
  

 01= =  IFQF          01f F      (12f) 

  LFQF             (12g) 

1, ,   = 2,3,i i 

3, , 25 LFQ  (12i) 

 of 

are the canonical 

0 1, ,

= =f F

, = 0,1,    = 0,    , 25  IFQ   (12h) 

 , = ,  ,    = , , ,   = 2,i i     

In IFQ the theory is seen to possess a set
class constraints: 

3 first- 

 0
1 2 3= 0 ,  = 0,  = 0cE TC          (13) 

where  0 1, ,P E     and C  
momenta conjugate respectively to X A A  a

atrix b

2 (14b) 

= 0

nd C. 
Now th Poissio rackets of the con-
straints i  is seen to be singular implying that the con-
straints i  form a set of first-class constraints and that 
the theory described by the above action is a GI theory 
[13-19]. The LFQ of this theory alsorevels that the LF 
theory possesses a set of 29 first-class constraints: 

1 = 0                              (14a) 

 = 0TC                       

e m of the n 

3 c                              (14c) 

 
2

X   
            (14d) 4 = 0

T
P

      

 = 0X 



  

 
5 2

T
P

   
   

            (14e) 

  0,  
2

i
i i

T
P X

 
        

= = 2,3, , 25.i   (14f) 

where P , P , iP , c ,   and 
menta canonically conjugate respectively 

  are th
to 

e mo-
,X X  , 

, ,iX C A  and A . 
Accordingly the theory in both the cases seen to oss s 

three local gauge symmetries given by the two -
p e
dimen

 =X X  
        

h h               (15c)

=h h h

sional WSRI and the WI defined by [1-19] 

=X X X X      
           (15a) 

          (15b) 

=h h   

h    
     

          (15d) 

=A A A A      


=

          (15e) 

A A
                     (15f) 

 =C C C C      

=C C
 

          (15g) 

    

h h

               (15h) 

        

The above theory is thus see
three local gauge symmetries d
sional WSRI and the WI in bot

In conclusion, the Polyakov
di

              (15i) 

n to be GI possessing the 
efined by the two-dimen-

h the IF and LF dynamics. 
 D1 brane action in a d- 

mensional courved background h  defined by S  is 
GI and it possesses the well-known three local string 
gauge symmetries. 

However, under conformal gauge-fixing, the CGFP- 
D1BA is no longer GI as expected nd it also does not 
possess the local string gauge symmetries being a 
gauge-fixed theory. 

 a  

Hovever, this GNI theory when con-
sidered in the presence of a contant background scalar 
axiom field C and an  1U  gauge field A  it is seen 
to become a GI theory possessing the three local string 
gauge symmetries [19]. 

The scalar axion field C and the  1U  gauge field 
A  are seen to behave  the WZ fields and the term  like
 AL  involving these fields is seen to behave like a WZ 
term for the CGFPD1BA [19], which in the absence of 
th seco
stra
does 

is term is seen to possess a set of nd-class con-
ints and consequently describes a GNI theory which 

not respect the local string gauge symmetries. 
The situation in the present case is analogous to a the-

ory where one considerers the CGFPD1BA in the pres-
ence of a constant 2-form gauge field B  which be-
haves like a WZ field and the term involving this field 
be

heory,” 

[2] L. Brink and les of String The-
ory,” Plenum 

y Particle 

haves like a WZ term for the CGFPD1BA [13]. 
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