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Abstract 

Tilted Bianchi type VI0 cosmological model is investigated in a new scalar tensor theory of gravitation pro-
posed by Saez and Ballester (Physics Letters A 113:467, 1986). Exact solutions to the field equations are 
derived when the metric potentials are functions of cosmic time only. Some physical and geometrical proper-
ties of the solutions are also discussed. 
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1. Introduction 

In recent years, there has been a considerable interest in 
the investigation of cosmological models in which the 
matter does not move orthogonally to the hyper surface of 
homogeneity. These are called tilted cosmological models. 
The general behaviors of tilted cosmological models have 
been studied by King and Ellis [1], Ellis and King [2], 
Collins and Ellis [3], Bali and Sharma [4,5], Bali and 
Meena [6].  

Bradely and Sviestins [7] investigated that heat flow is 
expected for cosmological models. Following the devel-
opment of inflationary models, the importance of scalar 
fields (mesons) has become well known. Saez and Ball-
ester [8] have developed a new scalar tensor theory of 
gravitation in which the metric is coupled with a dimen-
sionless scalar field in a simple manner. This coupling 
gives satisfactory description of the weak fields. In spite 
of the dimensionless character of the scalar field, an an-
ti-gravity regime appears. This theory suggests a possible 
way to solve the missing matter problem in non-flat 
FRW cosmologies. Sing and Agrawal [9], Reddy and 
Rao [10], Reddy et al. [11], Mohanty and Sahu [12,13], 
Adhav et al. [14], Tripathy et al. [15] are some of the 
authors who have studied the various aspects of Saez and 
Ballester [8] scalar tensor theory. 

We derived the field equations for Bianchi type VI0 
metric in Section 2. We solved the field equations in Sec-
tion 3. We mentioned some physical and geometrical 
properties of the solutions in Section 4 and also men-
tioned the concluding remark in Section 5. 

2. Field Equations 

Here we consider the Bianchi type VI0 metric in the form  

2222222222 dzeCdyeBdxAdtds qxqx     (1) 

where A, B and C are functions of cosmic time t only 
and q is a non-zero constant. 

The field equations given by Saez and Ballester [8] for 
the combined scalar and tensor fields are  
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and the scalar field satisfies the equation      
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  is the Einstein tensor; n, an 

arbitrary exponent; and , a dimensionless coupling 

constant; j
iT is the stress tensor of the matter. The en-

ergy momentum tensor for a perfect fluid distribution 
with heat conduction given by Ellis [2] as 
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where p is the pressure,   is the energy density, iq  is 

the heat conduction vector orthogonal to iu . The fluid 

vector iu has the components  
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the tilt angle. Here comma and semicolon denote ordi-
nary and co-variant differentiation respectively.  

With the help of Equations (3-7), the field Equation (2) 
for the metric (1) in the commoving co-ordinate system 
take the following explicit forms: 
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Hereafterwards the suffix 4 after a field variable 
represents ordinary differentiation with respect to time. 
 
3. Solutions 
 
Equations (8-13) are six equations with eight unknowns 
A, B, C, p,  , V,   and 1q , therefore, we require two 

more conditions. 
First we assume that the model is filled with stiff fluid 

which leads to 
p                    (14) 

We also assume that  
nBA                     (15) 

In order to derive exact solutions of the field Equa-
tions (8-13) easily, we use the following scale transfor-
mations: 

neA  , eB  , eC  , dt = ABCdT   (16) 

The field Equations (8-13) reduce to  
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In view of Equation (14), Equation (17) and Equation 
(21), Equations (18,19), yield  

  21 KTK                (23) 

and 

 nKTK 21                 (24) 

where  01 K , 2K are arbitrary constants. 

Thus the corresponding metric of our solution can be 
written as 

 2222222222 dZedYeTdXTdTTds qxqxnn    

(25) 
 
4. Some Physical and Geometrical  

Properties of the Solutions 
 
On integration Equation (22) yields 
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where  03 K , 4K  are arbitrary constants. 

Using Equations (23,24) and Equation (26) in Equa-
tions (19, 20), we get 
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Substituting Equations (23),(26) and (27) in Equation 
(17) we get 
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Further substituting Equations (23), (27) and (28) in 
Equation (21), we get 
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The spatial volume for the model (25) is given by  

Vol. =   1
21

 nKTK            (30) 

From Equations (27-29) we find that the pressure, en-
ergy density, tilt angle, heat conduction vector of the 
fluid distribution are constants at time T=0 and gradually 
decreases in the course of evolution. Equation (26) 
shows that the scalar field V changes with time and at 
time T=0, the scalar filed is found to be a constant. Equ-
ation (30) implies the anisotropic expansion of the uni-
verse with time. It is interesting to note that the model 
does not admit singularity throughout evolution.  
 
5. Conclusions 
 
In this paper we have solved Saez and Ballester field 
equations for the tilted Bianchi VI0 cosmological model. 
It is observed that the pressure, energy density, tilt angle, 
heat conduction vector of the fluid distribution are con-
stants at time T=0 and gradually decrease with the in-
crease of the age of the universe. It is interesting to note 
that the models we have constructed here is free from 
singularity at time T=0 and for 0  the Saez and 
Ballester [8] theory approaches general relativity. This 
supports the analysis that the introduction of scalar field 
avoids initial singularity. 
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