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Abstract 
 
We calculate the transformation laws of the general linear superfield  , ,V x    and chiral superfields under 

1N   supertranslations  exp i Q Q        to all orders in the translation parameters  , . We use the 

superfield formalism with complete expansions of the component fields in the coordinate shifts 

 x i             . The results show in particular how a general supertranslation transforms each 

component field of a supermultiplet into a complete superfield. The results also provide complete parametri-
zations of orbits of component fields under supertranslations. 
 
Keywords: Supersymmetry, Supermultiplets, Supertranslations 

1. Introduction 

Quantum field theories with exact correspondences be-
tween bosonic and fermionic helicity states are not only 
basic ingredients for superstring theories, but have 
dominated both theoretical investigations and experi-
mental searches for particle physics beyond the current 
“Standard Model’’ of particle physics for over three dec-
ades now.  

The minimal version of supersymmetric extensions of 
the Standard Model extends the generators M , p  

of the Poincaré group by a set of fermionic generators 

Q  and Q  in the (1/2,0) and (0,1/2) representations of 

the proper orthochronous Lorentz group in four dimen-
sions. It has been recognized early on that this extension 
of the Poincaré algebra can be represented linearly (and 
in a reducible, but not fully reducible manner) on a set 
comprising 4 complex spin-0 fields, 4 Weyl spinors and 
one complex spin-1 field. This set constitutes the so 
called general linear multiplet or general linear superfield 
V  and its irreducible subsets had also been identified. 

It is sufficient to know the action of the supertransla-

tion generators Q  and Q on the components of V , 

or equivalently the action of the supertranslation 

 exp i Q Q      
 to first order in the parameters  , 

  , to construct supersymmetric action principles and 

the related supercurrents. Therefore the first order trans-
formation laws for the components of V  have been 
calculated a long time ago and can be found in many 
books and review articles on supersymmetry and with 
our current understanding this is all that is needed to 
discuss the physical implications of supersymmetry. Re-
cent research in supersymmetry focuses on important 
applications like new solutions and structure of super-
gravity theories [1-5], impact of supersymmetry on per-
turbative calculations [6], cosmological implications of 
supersymmetry [7-9] and in particular the interesting 
problem how supersymmetry can be reconciled with a 
cosmological constant and help to explain it [10,11]. The 
structure of superpotentials in theories with broken su-
persymmetry is also an active area of research with phe-
nomenological relevance [12-14]. 

From a mathematical point of view it is clearly desir-
able to also have the full transformation properties of the 
general linear multiplet readily available for reference. 
To provide such a reference is the purpose of this paper. 
To make these results also easily accessible for beginners 
in supersymmetry, the super-Poincaré algebra and the 
basic techniques of superspace calculations are also re-
viewed. Therefore the outline of the paper is as follows. 

Our conventions for spinor representations of the 
Lorentz group and the super-Poincaré algebra are intro-
duced in Section 2. Superspace is reviewed in Section 3 
and the full supertranslation properties of the component 
fields of the general linear multiplet are calculated in 
Section 4. *This work was supported by NSERC Canada. 



                                            R. DICK 
 

Copyright © 2010 SciRes.                                                                               JMP 

60 

Chiral superfields provide a particular irreducible re-
presentation within the reducible linear multiplet. Due 
to their practical relevance for the supersymmetrization 
of matter fields, the resulting supertranslation properties 
of the components of chiral superfields are listed in 
Section 5. 

Appendix 1 contains a translation of our results into 
the conventions of Wess and Bagger [15]. The relevant 
spinor indices are reviewed in Appendix 2.  

Our conventions for spinor representations and super-
space calculations differ from Wess and Bagger only 
with regard to the definition of superderivatives and the 
definition of the 2nd order epsilon spinors with lower 
indices. Sections 2 and 3 are included to make the paper 
self-contained and easily accessible and to clarify con-
ventions. However, the new results in Sections 4 and 5 
are not affected by the different definitions. The cogno-
scenti should therefore go straight to Section 4. 
 
2. The Super-Poincaré Algebra 
 
The basic methodology for calculations with linear su-
per-multiplets in four dimensions was developed some 
35 years ago by Wess, Zumino, Salam, Strathdee and 
Ferrara [16-19]. This section and the following section 
provide a brief but concise introduction to the calcula-
tional techniques of supersymmetry and its linear repre-
sentations in four dimensions. 

We use 00 1    for the Minkowski metric and 

standard notation    with 

   

   

0 0 1 1

2 2 3 3

1 0 0 1
, ,

0 1 1 0

0 1 0
,

1 0 1

i

i

 

 

   
          

   
   

             

 

 

 

for the Pauli matrices. 
Complex conjugation turns undotted indices into dot-

ted indices and vice versa, 

  ,a


     

and hermiticity of the Pauli matrices implies for the 
complex conjugate matrices 

. 
                     (1) 

We pull spinor indices with the two-dimensional epsi-
lon spinors 

12 12
12 12

1, 1,

, ,

, .

  
  

  
  

       

       

       

 
 

  
  

           (2) 

The Equations (1) then imply that the conjugate Pauli 
matrices with upper spinor indices are 

.   
    

 
                (3) 

Numerically, we have with the upper index positions 
for the barred matrices and lower index positions for the 
unbarred matrices 

0 0 , .i i       

Although not formally required, use of upper indices 
for barred Pauli matrices and lower indices for un-
barredPauli matrices is a useful and very common con-
vention. 

Relations for Pauli matrices are meticulously compiled 
in [15]. For convenience, we recall those relations which 
are directly relevant for the derivation of supertransla-
tions to all orders,  

2 ,   
        

               (4) 

  2 ,
 

     
                   (5) 

  2 ,
 

     
        

 
           (6) 

  2 ,Tr 
           

           (7) 

and 0123 .i         
              (8) 

The factor 0123 1    was included to allow for ready 

use of both conventions for the four-dimensional epsilon 
tensor. 

We will briefly recall below that pulling spinor indices 
with the 2nd order epsilon spinors is motivated by the fact 
that this yields Lorentz invariant spinor products 

,  
                      (9) 

where the anti-commutation property of spinors was used. 
Conjugation also implies re-ordering of spinor quantities, 
such that conjugation of (9) yields 

. 
  

           
 

 
        (10) 

The vector representation matrices of the Lorentz al-
gebra, 

  ,L
  

    
      

appear as structure constants in the Poincaré algebra. The 
spinor representations of a proper orthochronous Lorentz 
transformation 

1
exp exp

2 2

i
M L 

 
          
   

 

are given by 

  exp
2

i
U S


    
 

 

and 

  exp ,
2

i
U S


    
 

  

with generators 

   

   

,
4

.
4

i
S

i
S

 

     

 

     

    

    
 


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The relations 

   0123

1
,

2
Tr S S i                (11) 

   0123

1
.

2
Tr S S i                (12) 

are used in the derivation of supersymmetric Maxwell or 
Yang-Mills actions.  

The spinor products (9,10) are invariant because the 

matrices  U   and  U   are (2, )SL   matrices, 

    ,U U
  

 
      

    .U U
 

  
    


  
            (13) 

Stated differently, the epsilon spinors are Lorentz in-
variant. 

We can now write down the super-Poincaré algebra in 
the form 

   , ,M M i L M i L M
 

      
      

 , ,M p i L p


   
     

  ,,M Q S Q


   
      

 , ,M Q S Q
 

  
    

 
          (14) 

 
   

, 2 2 ,

, 0, , 0,

, 0, , 0.

Q Q p p

Q Q Q Q

p Q p Q


    

   

   

  

 

       

  





 

The (2, )SL   property (13) reads in first order 

   S S  
  

 

and implies that Equation (14) can also be written as 

 , .M Q Q S


   
   



 
 

The super-Poincaré algebra satisfies all the pertinent 
super-Jacobi identities as a consequence of the represen-
tation properties of the vector and spinor representations 
of the Lorentz algebra. The particular super-Jacobi iden-
tity 

     , , ,, , ,M Q Q M Q Q M Q Q        
             

holds as a consequence of the fact that the Pauli matrices 
have the same form in every inertial frame, 

 

 

 

1

4
1

.
4

L
   

     

 
    


    

     

     

    

  





 

       (15) 

This can be verified from Equations (5,6) by commut-
ing the   matrices into the middle positions in the 
products on the right hand side. It can also be verified as 
a direct consequence of Equation (8). 
 
3. 1N   Superspace 
 
The Poincaré algebra is realized on spacetime coordi-
nates x  through derivative operators  

  .,M i x x p i                    (16) 

In a nutshell, superspace is based on the observation 
that this construction can be extended to the su-
per-Poincaré algebra by supplementing Minkowski 

spacetime with fermionic coordinates   and    and 
corresponding fermionic derivatives 

, .   
          

 
             (17) 

The super-Poincaré algebra is then realized on the su-

perspace coordinates  , ,x      by amending the 

representations (16) of the bosonic operators with the 
realizations 

, ,Q i Q i   
                  

       (18) 

for the fermionic operators and complementing the Lor-

entz generators to include the action on Q  and Q , 

      .M i x x S S
 

         
          





 

A superfield  , ,V x    maps a spacetime point x  

into the algebra over   which is generated by the five 

elements  1, ,  , subject to the relations (35,36) in the 

Appendix A.2. Note that this definition explicitly refers 
to the fermionic arguments of V . Supertranslations are 
based on the concept that there are infinitely many in-

carnations of the four fermionic generators   and    
and that we can freely move between these infinitely 
many copies of the same algebra. In particular, if 

 1, ,   and  1, ,   generate the same algebra, we 

require that  1, ,      also generates the same 

algebra. This requirement is equivalent to an-
ti-commutation properties 

, ,                   

and the corresponding conjugate equations, i.e. the alge-

bra generated by  1, ,   is a subalgebra of a corre-

sponding infinite-dimensional algebra. 
The relations in Appendix A.2 imply that the expan-

sion of every superfield with respect to the fermionic 
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elements   and    can be written in terms of four 

scalars        , , , ,x M x N x D x  four Weyl fermions 

       , , , ,x x x x     and a vector field  A x , 

         
         2 2 2 2 2 2

, ,

.

V x x x x A x

M x N x x x D x


             

              

  The commutation relations 

 
, , , ,

,

i Q i Q

i Q Q x i

   

  

              
                 

 

 

imply for unitary supertranslations 

 
 

, , exp , ,

, , ,

x i Q Q x

x i

             

               
 

and therefore 

   
  

, , , , exp

, , .

V x x i Q Q V

V x i

            

               
  (19) 

We can calculate the transformation properties of the 
component fields by comparing 

         
       
 

2 2 2 2

2 2

, ,V x x x x A x

M x N x x x

D x


                 

              

 

with the expansion of the right hand side of (19) with 

respect to the fermionic variables   and   . 

 

4. Supertranslations of the General Linear  

  Multiplet 

 
Equation (19) implies in particular that supertranslations 
shift the argument x  of component fields to 

 .X x i                     (20) 

We can calculate the transformation properties of the 
components of the supermultiplet V  to all orders in the 

translation parameters  ,  , by expanding the right 

hand side  

    
    

, ,V X x i

x i

               

             
 

of Equation (19) to all orders in   and  . 
The first step requires the expansion of the component 

fields with respect to the coordinate shifts   

  ,x i               

e.g.  

       

    

  
   

  
    
     

1

2

6

1
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X x i x

x

i

x

x

x i x

 


   
 

   

 
  

   

   
   

 


             

                    

                 

            

                  

                     

            

    

   

   

 

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2 2

1
2

4
1

2

4
1

,
16

x

x

i
x

x




   
 

 


             

                 

               

         

and corresponding expansions for combinations of the 
other eight component fields with various factors, which 
are different in each case due to the presence of fer-
mionic variables in the extra factors. Altogether, this 
includes 35 more relations, e.g. 

     

   

 

   

 

2 2 2 2

2 2

2

2 2 2 2

2
1

2 4
1

4
1

4

.
8

i
X x x

i
x x

x

x

i
x

 
 







   
 




           

          

        

               

         

 

Substitution of all the expansions in terms of standard 
words in the Grassmann variables into Equation (19) 
yields the full supertranslation properties of the compo-
nent fields, which are reported in Equations (21-29). The 
transformation equations of the component fields are 
organized by contributions from the nine component 
fields   ,x   ,x   ,x   ,A x   ,M x   ,N x   ,x  

  ,x  and  D x , instead of organization by expan-

sion in the supertranslation parameters   and  . In 

this way, supertranslations act on the component fields 
like matrices which have Grassmann valued differential 
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operators as entries. The reader can easily re-organize the 
transformation equations in terms of supertranslation 
parameters. The supertranslation equations are 

       
     

     

2 2

2 2 2 2 ,

x x x x

A x M x N x

x x D x




    

   

     
      (21) 

     

 

   

   

   

   

 

2

2

2 2

2 2

2

2

2

2
2

2

2 ,

x i x x

i
x

i
x A x

i
A x M x

i M x x

i
x x

D x




 
 

 
 

 
 




 
 

       

        

        

      

       

           

 

    (22) 

     

   

   

   

   

   

2

2

2

2 2

2 2

2

2

2

2

2

2 ,

i
x i x x

i
x x

i
A x A x

N x i N x

i
x x

x D x

 
 

 
 

  
  




 
 

           

        

        

      

          

    

   (23) 

     

     

   

     

2 2

2 2 2

2 2 2

2 2

1

4 2
1

4 2
1

4

,
2

i
M x x x

i
x A x M x

i M x M x

i
x x D x













         

        

       

         

    (24) 

     

     

   

     

2 2

2 2 2

2 2 2

2 2

1

4 2
1

4 2
1

4

,
2

i
N x x x

i
x A x N x

i N x N x

i
x x D x













        

        

       

       

      (25) 

   

   

   

   

   
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2
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A x x

i
x x

x x

i
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x A x

i
A x A x

A x A x

i M x i N x x

i

 

 
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
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
  


  

 
    


  

  

      

           

              

            

       

         

      

          

      

   

   

2

2

2

2

2 .
2

i
x x

x i x

i
x D x


  

 


  

        

       

            

    (26) 

For conversion of the last equation into standard 

words in the Grassmann variables   and  , note that 

from Equation (8) 

   

 
0123

0123

1

2 2

.

i
F x F x

F x

    
    




               

     
 

The remaining transformation equations are 

     

   

   

   
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 
 
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 
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


 
 

 
 

           

       

        

          

       

       

        

           

 

   (27) 
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   
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i
x
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
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 
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


  
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        

            

          

         

         

         

        

        

  (28) 
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.
2
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x x
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i
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i
x D x

 
 

 
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





      

              

        

           

     

 (29) 

These transformation laws are compatible with the re-

ality constraints    †, , , ,V x V x      which define 

the vector multiplet, 

           † †, , ,x x x x A x A x         

           † †, , .M x N x x x D x D x      

 
5. Supertranslations of the Chiral Multiplet 
 
Besides the superderivatives (18) one can also define 
supercovariant derivatives [18,19] 

, ,D i D i   
                   

       (30) 

such that  

     , 0, , 0, , 2 ,D D D D D D i 
      

        

and 

       , 0, , 0, , 0, , 0.Q D Q D Q D Q D      
       

The condition for chiral superfields 

   , , 0i x 
             

is therefore invariant under supertranslations . 
The basic solutions 

 0, 0,D D x i  
          

imply [15] 

     
   2

, , ,

.

x x i x i

x i F x i

               

          
 

The relation 

   2 2 21

2
 

                
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1

4

.
2

x x i x
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i
x F x







         

      

        

     (31) 

The chiral superfield corresponds to the following 
substitutions in the general superfield V , 

         0, , ,x A x i x M x F x        

       0, 0, ,
2

i
N x x x x 

          

   21
.

4
D x x    

It is clear from the construction, but can also be 
checked explicitly that these constraints are compatible 
with the transformation laws (21-29) of the full linear 
multiplet. 

We find the following supertranslations of the com-
ponents of the chiral multiplet, 

       

     

2 2 2

2 2

1

4

,
2

x x i x x

i
x x F x







             

          
  (32) 

       

     

   

2 2

2 2 2

2

2

1
2

4

2 ,

x i x x x

S x x

F x i F x





 




          

           

      

   (33) 

     

   

   

2 2

2 2

2 2 2

1

2
1

.
4

F x x i x

x F x

i F x F x







          

     

        

       (34) 

Please note that this presentation does not involve the 

usual rescaling    2x x    of the spinor compo-

nent of the chiral superfield, which is required for ca-
nonically normalized kinetic terms in supersymmetric 
Lagrangians. 
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6. Conclusions 
 
The supertranslation properties of the component fields of 
a general linear supermultiplet and of a chiral multiplet 
were reported to all orders in the translation parameters 

  and   in (21-29) and (32-34), respectively. On the 

one hand, one can think of these results as explicit pa-
rametrizations of orbits of supertranslations in the space 
of component fields of a supersymmetric theory. On the 
other hand, one can consider the transformed fields as 

superfields in the variables  , ,x   , because e.g. 

   
  

     

0,
0

, ,

, ,

, , , , ,

x x

V x i

i V x iD V x

 





 
 

     

                 

 
          




 

and higher order derivatives with respect to the   and 

  variables at 0  , 0   can also be expressed as 

supercovariant derivatives with respect to   and  . 

For example, the transformed vector field is 

   
  

0,
0

, , , ,

, , .

A x A x

V x i


  





      

                   

 



 

We have 

  

 
 

 
 

,

,

,

,

, ,

, ,

, , ,

X x i

X x i

V x i

i V X
X

i
X

i V X
X



 
 

  
 

 
 

 
 

  
 

 
             


    

           

  
     

  
          











 

and therefore 

       1
, , , , .

2
A x D D V x 
          

  

From this point of view, (21-29) and (32-34) tell us 
explicitly how supertranslation of the components of V  
induces corresponding superfields. 
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Appendix 
 
A.1. Translation of Our Results Into the  

Conventions of Wessand Bagger 
 
Our superspace realizations (18) and (30) are related to 
the realizations in Wess and Bagger [15] according to 

   , ,WB WBQ iQ Q iQ         

   , .WB WBD iD D iD         

With these conventions the component field expan-
sions for chiral superfields agree and the generators for 
supertranslations are also the same (cf. (4.11,4.12) in 
[15]), 

      ,WB WBi Q Q Q Q            

i.e. our results for supertranslations to all orders also di-
rectly apply as generalizations of the first order trans-
formation laws reported in [15]. 

Note that Wess and Bagger use an operator represen-
tation of the super-Poincaré algebra with the same sig-

nature of the Minkowski metric but  WBp i p      . 

This comes from the familiar sign difference between 
field theoretic and quantum mechanical operator realiza-

tions of Noether charges. If  x x    is a field op-

erator, the momentum operators 

 
3 0

0

P d x  

 
         


L
L  

satisfy 

   ,P x i x        

and generate translations according to 

         
    

exp exp

exp exp .WB

x i P x i P x

x x i p x i p

           

            
 

Similar relations hold for Lorentz and gauge charges. 
Another way to look at the sign difference is through 
Jacobi identities. If the generators aX  satisfy the Lie 

algebra, 

 , ,c
a b ab cX X iC X  

then the adjoint matrix representation is given by 

  .
c c

a abb
X iC   

 
A.2. Spinor Identities 
 
There are several useful identities for products of spinors 
which are used in the determination of the general linear 
multiplet and its transformation laws.  

The following identities are a direct consequence of 
the anti-commutation properties of spinors and the defi-
nitions (9) and (10) of spinor products, 

 1 2 1 2
1 2

2

1

2
1 1

,
2 2

   

  


            

        
      (35) 

1 2 21
,

2
           

                 (36) 

2 21 1
, .

2 2
     

                     
  

    

Please note that 2  in the first line in Equation (35) 

denotes the 2  component of the spinor  , but in the 

second line it is 2    . In every equation in super-

symmetry it is clear from the context what 2  means. 

In all equations in previous sections of this paper 2  

always refers to 2    . 
The following relations also use the properties (3-7) of 

the Pauli matrices, 

,                     (37) 

,                      (38) 

1
,

2
   

                     (39) 

2 21
.

2
                       (40) 

 
 
 
 
 
 


