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ABSTRACT 

Estimation of parameters and random effects using true maximum likelihood methods is compared to the commonly 
used penalized maximum likelihood method. The simulated catch-at-age datasets have all conceivable noise in stock 
and fishing dynamics in addition to the observation error on the catch. Improvement is modest in simple models but 
refinements that are only possible with these methods provide additional precision. Unbiased estimation of natural mor- 
tality is made possible with these methods, but precision is low unless variation in fishing effort between years is large 
and other variation small, in particular the uncertainty in the recruitment. Relatively unbiased estimates of all other in-
put parameters and variances were obtained. Alternately the stock may be updated with the catches directly, rather than 
through the fishing mortality. This can be done exactly and such that bias in the final stock is small. Such a model will 
test a different error structure and may also be more appealing for presentation of results as the catches are in better 
agreement with the changes in the estimated stock. 
 
Keywords: Stock Assessment; Simulation; AD Model Builder; Integrated Likelihood; Natural Mortality; 

Random Effects; VPA 

1. Introduction 

During a review of the assessment modeling of the fish 
stocks of Iceland several questions on analytical approa- 
ch came to the fore. In the early Virtual Population Ana- 
lysis (VPA) work the stock was updated by subtracting 
the observed catch (C) each year, with a correction for 
the interaction of the fishing and the natural mortality 
that may be approximate as in Pope [1,2] but these calcu- 
lations can also be exact (see appendix). This approach is 
here referred to as the N – C model. In what is commonly 
referred to as statistical catch-at-age analysis the stock is 
updated using the estimated fishing mortality (F) for that 
fishing season and age class. If the logarithm of the stock 
ln(N) at a given age is denoted by n then the formula to 
update n for this age class to the next year is n – Z, where 
the estimated total mortality (Z) is the sum of the esti-
mated fishing and estimated (or assumed) natural mortal-
ity (M) of each age class in each year Z = F + M. This is 
here referred to as the n – Z model. The effect of the Pope 
approximation on the selection function has been studied 
[3] but little attention appears to have been given to the 
difference in the error structure of these approaches. By 
using not an approximation but exact N – C calculations 
(see Appendix), there is no distortion in the selection 
function so the focus here can be on the effect of the 

randomness in these two models. In the n – Z model any 
errors in the estimate of Z will be propagated through the 
stock equation from one year to the next and show up as 
correlations in the residuals. This error may be due to 
fluctuations in the selection by age (S) that do not fit the 
generally assumed so called separable F = E * S model of 
fishing effort by year (E) and selection by age, or indi- 
rectly due to variation in natural mortality and errors in 
the observed catch. The N – C model is not directly af- 
fected by errors in the estimated Z, but observation errors 
in the catch will be propagated unmitigated through the 
stock equation. The errors in reported catch may be due to 
misclassification by age (generally by age-length-keys), 
misreporting and gear induced mortality. 

With true likelihood methods (integrated likelihood, IL) 
such as Kalman filter [4,5] it is possible to get estimates 
of these unobserved internal errors and even correct for 
them. Earlier modeling of this stock had used the penali- 
zed maximum likelihood (PL) method where the point 
likelihood of both parameters and state variables is joint- 
ly maximized simultaneously, but this method has been 
demonstrated to produce biased estimates and poor pre- 
cision even when limited to problems where this appears 
to work [6] and Markov chain Monte Carlo simulations 
with these methods are of no value in this situation. A 
recently available public domain statistical package ADMB- 
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RE (Auto Diff Model Builder Random Effects) offers a 
general way of applying the IL method to problems of 
this kind [7,8] and produces exactly the same results on 
tested linear time-series problems as obtained with the 
Kalman filter and in close agreement when applied to 
simple catch-at-age models assuming normal errors in 
the observations in log-space. 

Another advantage of the IL methods is that certain 
other variances can be estimated that can not be obtained 
with direct PL methods, where these variances would ha- 
ve to be assigned some arbitrary fixed values. However 
in some datasets these errors still do not get estimated 
(the variance tends to zero) even with these advanced 
methods. The IL method on Icelandic haddock with catch 
at age data 1979-2008 and survey data for most of the 
period could not estimate the variance in the fluctuations 
in the fishing mortality by year and age around the E * S 
model. To further investigate this and the two model ap- 
proaches mentioned above both were run on simulated 
datasets in ADMB-RE to see how they compared and 
how frequent zero estimates of variances were. Also of 
interest was what gain in precision is obtained by appli- 
cation of these more advanced methods, and by incorpo- 
rating more detail in the models, that these methods al- 
low. The base model tested here has the features of a mo- 
del used in assessments at the Marine Research Institute 
in [9], but then with the PL method. Only the IL method 
allows for refinements. The most refined model estima- 
ted is the same as the model used to generate the data so 
model misspecification is not addressed here. 

2. Simulated Catch-at-Age Data 

The input values for the simulated data were set similar 
to estimates obtained from the haddock stock of Iceland 
data, but with more variation and never zero variation. 
One would expect the N – C model to perform better 
when the observation error in the catch is small, but the n – 
Z model better when the fishing mortality is close to the 
separable E * S model. The variation in the fluctuations 
in the fishing intensity was therefore set equal to the ob-
servation error of the catch, for a reasonable comparison 
of these two models. 

Catch at age data were simulated over 41 years (t = 1 – 
41) starting of with a constant recruitment of 1 unit of 
fish (log recruitment r = 0) for the first years. There are 7 
age classes (a = 3 – 9) in the data. The generated initial 
first year stock was balanced with respect to the input 
natural mortality (M = 0.2) plus fishing effort (E = 1, f = 
ln(E) = 0) with no error and a Logistic selection function 
of the age giving 50% selection at age 5 (S50 = 5) in the 
catch and with slope b = 0.7 at age S50. The fishing in-
tensity is then 0.2E for the first recruited age class (a = 3) 
and 0.95E for the last (a = 9). There is no noise in the 
slope b, but year effects in the 50% selection age and in 

the log of the fishing effort  f  are both given by a first 
order auto-regressive process of the form: 

–1t tu ru et   

where   is iid N(0　 , 2 ) and u0 = 0 for both: 

 50, 50 ,expt SS S u t  

with 0.5s f   , ln( S ) = –1.5 and ln( f ) = –1. A- 
dditional noise in the fishing effort (d) is iid N(0, 2 ) 
with ln( d ) = –2. The selective fishing and total mortali- 
ty by age and year is 

   , , 50,1  expt a t a tF E b j S     

Zt,a = Ft,a + M 

The first two age classes are assumed not recruited to 
the fishery and invisible in the data so that the recruit- 
ment to age class 3 in year 4 is a Ricker function of the 
stock in year 1. The logarithm of the recruitment (r) for 
these first years was set 0. The spawning stock (B) was 
taken as the sum of the number of fish in age classes 5 - 
9 in the data (thus knife-edge maturation 2 years after 
recruitment and no fish weights in the model) 

 4 ,expt a t aB n   

The input parameters to the Ricker function are the 
logarithm of the spawning stock giving maximum re- 
cruitment: ln(Bmax) = –0.5, and the logarithm of maxi- 
mum recruitment: ln(Rmax) = 0.4. 

     3 max i max i max ln  ln ln 1tr R B B B B       

,1t tn r t   

where   is iid N (0, 2
r ) with ln( r ) = –0.5 

The log of the stock is simulated with additional noise 

1, 1 , , ,t a t a t a t an n Z       

where   is iid N (0, 2
n ) with ln( n ) = –2. 

This gives the log of the catch with observation error. 

   , , , , ,ln 1 exp  et a t a t a t a t a tc n Z F Z      

where is iid N (0, 2
c ) with ln( c ) = –2. 

No correlation structure was incorporated in the data 
generation or the models. 

3. Estimation Procedure 

The objective function (g) to be minimized is the sum of 
several terms each of which is summed over all appro-
priate t and a where they occur. For simplicity the sum-
mation symbols are left out here. Parameters  50, ,f S  

 and all variances (, ,f s b   ) are estimated back from 
the data. 

All models have the auto-regressive processes uS 
around S50 and uf around f that are state vectors (random 
effects) with the estimated variances 2

f  and 2
s  and 
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the identical objective function components: 

       22
1 ln 0.5ln 1   0.5 u 1g 2

1         

    2

1ln 0.5u t tg u u      

For the fishing effort the term guf is summed over all 
years, but for the selection pattern gus the first (same) 
value applies to the first 5 years and S50,t. is calculated as 
during the generation of the data. In the simpler models 
there is no error term dt,a estimated in the fishing effort 
so: 

 , expt fE f u  t  

The log of predicted recruitment r is calculated as 
during the data generation and the variance 2

r  estima- 
ted: 

    2

,1 ln 0.5r r t tg r n    r  

The catch is predicted as in the generation of the data 
and the observation error c  is estimated from: 

 

     2

, , , ,

ln

0.5 ln 1 exp

c c

t a t a t a t a t a c

g

n Z F Z c ,







    
 

This objective function term differs in the models 
introduced later and additional terms occur in refined 
models below. 

3.1. Base Model n – Z 

The highest age stock (n·,9) and stock in the final year 
(n41,·) are both state variables (random effects). A tem- 
porary stock matrix n gets assigned these into the lower 
and left border values, and the stock back calculated de- 
terministically using the fishing mortality as in conven- 
tional VPA [2]: 

, 1, 1t a t a t an n Z   ,

,



                      (1) 

3.2. Base Model N – C 

Here the stock is not updated using fishing mortality but 
with the catch added backward in time (VPA) so Equa- 
tion (1) above is replaced by: 

  , 1, 1 ,ln exp expt a t a t a t an n M c M      (2) 

    , , , , ,exp 1 exp 1 expt a t a t a t a t aM Z F F Z       

In simulations  (see Appendix) can be calculated ac- 
curately (i.e. from the simulated true values, not the es- 
timated values of F and Z) in order for the results of the 
two models to be exactly comparable in this respect. This 
equation will then give exactly the same results as (1) 
when the catch is according to the fishing mortality and 
there is no observation error. The catch is added to the 

stock at the end of the year (back calculated) rather than 
subtracting it from the stock at the beginning of the year, 
to avoid negative logarithms in the calculations. 

The input variances for n and d do not occur as pa- 
rameters in the above base models and are thus not esti- 
mated back. They can be seen as bounded to the value 
zero. 

3.3. Refined Model n – Z* 

Same as model n – Z above except that instead of just the 
highest age and last year stock, here the whole stock is a 
state space matrix. The stock therefore does not get cal- 
culated so Equation (1) is dropped, but a term is added to 
the objective function to link up the stock and estimate 
the variation, where the predicted stock is calculated as 
during the generation of the data: 

    2

1, 1 , ,ln 0.5n n t a t a t a ng n Z n       

The parameter n  which includes variation in natural 
mortality (and migrations where plausible), is therefore 
estimated in this case, and in the models below. This was 
the model chosen to investigate the possibility of esti- 
mating M and what effect the size of the different input 
variances in the generated data had on its precision. 

3.4. Refined Model N – C* 

As N – C above except that as in the refined model above 
an objective function term replaces the stock Equation (2) 
and uses the catch to predict the stock change 

 

     2

1, 1 , , ,

ln

0.5 ln exp exp

n n

t a t a t a t a n

g

n M c M n



  



    
 

3.5. Full Model n – Z** 

Same as model n – Z* above with the addition of another 
state space matrix d (not including the last year and last 
age class). Now E (and F and Z) is calculated including d, 
and used in gc and gn. 

 , ,expt a t f t t aE f u d  ,  

This is exactly as during the generation of the data. 
Thus d can here capture the fluctuations in the fishing 
intensity as it deviates from the separable E * S model. 
Accordingly a term to estimate its variance is added to 
the objective function: 

   2

,ln 0.5d d t ag d   d  

3.6. Full Model N – C** 

Same as model N – C* above with the addition, as in the 
model n – Z** above, of a state space matrix d and the 
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same term gd for its variance is added to the objective 
function. However d is not used in the calculation of F 
(which in this model is not used to update the stock) but 
rather d may correct for the observation error in the catch 
which would otherwise be propagated in the stock equa-
tion: 

 

      2

, , , , ,

ln

0.5 ln 1 exp

c c

t a t a t a t a t a t a c

g

n Z F Z d c







      ,

 

 

      2

1, 1 , ,

ln

0.5 ln exp exp

n n

t a t a t a n

g

n M c M n



 



     
 

In fact the roles of d  and c   are in this case inter- 
changed compared to their roles in the generation of the 
data so they would be expected to get estimated close to 
their respective values in the input reversed (the same va- 
lue was used for both). 

3.7. Models n + Z*, N + C, N + C* and N + C** 

These models differ in that the predicted catch is related 
to the stock at the end of the fishing year so the fishing 
mortality gets estimated from: 

 

    2

1, 1 , , , ,

ln

0.5 ln exp 1

c c

t a t a t a t a t a c

g

n Z F Z c



 



    
 

A base n + Z model where the stock is updated deter-
ministically using F is identical to the n – Z model, but 
due to the observation error in the catch not so when the 
stock is updated using the catch (N + C) nor in the re-
fined models where there is noise in the stock equation 
(estimated n  > 0). 

3.8. Penalized Maximum Likelihood Models 

The base models n – Z and N – C were also estimated 
with penalized maximum likelihood (PL) where the state 
variables were treated as ordinary parameters to be esti- 
mated but penalized through the objective function terms 
gf and gs. One of the two AR(1) variances, either in the e- 
ffort or in the selection always get lower bound with this 
method so the ratio of these variances was bound at the 
correct value and a single variance estimated. For addi- 
tional comparison the terms gf and gs were dropped from 
the objective function and no auto-regression estimated 
(no penalty on yearly changes in effort and selection), re- 
ferred to as UL. 

3.9. Programming 

All models used the same code to generate the data from 
the input parameters and the input seeds to the random 
number generator. The PL models were run in ADMB. 

The base IL models used exactly the same programs as 
the PL models but were run in ADMB-RE with the only 
change that the state variables were then declared as ran- 
dom_effects_vector. The estimation process starts with 
all parameters and state variables at their true values. Ac- 
tually in ADMB-RE what is declared as random_effects 
can not be assigned initial values, so in fact all random_ 
effects were estimated as deviations from the simulated 
true values that are generated in the same program, but 
this is not presented as such here. The n – Z** model has 
both the whole stock n and the fishing mortality devia- 
tions d from the E*S model declared as a random_ ef-
fects_matrix. The n – Z* model uses the same program as 
n – Z**, but then d is fixed at zero. The base models n – 
Z and N – C where the stock is deterministically calcu-
lated were checked to give the same results as the n – Z* 
and N – C* models when the noise n  in the stock rela- 
tion term gn was bounded close to zero (but such runs ta- 
ke a much longer time than the simpler models). Bounds 
on all ln( ) were ±2 and on both ρ set 0.03 - 0.97. The 
program code is accessible online at http://www.hafro.is/ 
~thg/langtn/re/cai/. 

4. Results 

For different methods and models Table 1 lists the input 
values used in generating the datasets and the estimates 
of corresponding parameters. Table 2 presents the per- 
centage of runs where the estimates of the given parame- 
ters were lower bound. From the runs where the esti- 
mates were not lower bound the mean and the standard 
deviation around this mean was calculated and the mean 
of the Hessian estimated standard deviation as reported 
and its CV. The median of the parameter estimates is also 
given and the upper and lower 10 percentile. 

The estimate of the final stock (in the last year) is of 
greatest interest to management. The deviations from the 
true values are known in these simulations so as a per- 
formance statistic the bias (mean log of the deviation) 
and the standard deviation of the estimated log of the 
final stock around the mean (coefficient of variation of 
the final stock) was chosen for presentation in Table 3 
and the mean of the reported Hessian standard deviations 
of the log of the final stock as output (CV of final stock). 

The base n – Z model with the IL method is relatively 
unbiased in all parameters except for a slight negative 
bias in the ρ in the AR(1) processes, in particular for the 
selection where also ρ is lower bound in 16% to 33% of 
the cases. There is a consistent negative bias in the log of 
the final stock of around –0.02 to –0.04 in the highest age, 
but compared to the realized CV of the results of around 
0.25 this is negligible. Relating the fishing mortality to 
the stock at the end of the fishing year under the n – Z* 
model (that is n + Z*) gives almost identical performance, 
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Table 1. Estimated parameters by different models. Method is integrated likelihood unless PL (Penalized Likelihood) is spe- 
cified. Input values (log of the input variances also given). From datasets where not at lower bound: Mean deviation and 
standard deviation (from mean), mean reported standard deviation and CV. Median deviation and upper and lower 10% tile 
(for variances given in logarithms). 

Parameters  Mean f Mean S50 ρf ρs σb lnBmax lnRmax σr σc σf σs σn σd 

input 0 5 0.5 0.50 0.70 –0.50 0.40 0.606 0.135 0.368 0.223 0.135 0.135Model 
method ln(inp)        –0.5 –2 –1 –1.5 –2 –2 

n – Z, PL 0.02 0.03 –0.02 0.30 0.03 –0.03 0.00 –0.01 0.09 –0.11    

n – Z 0.03 0.04 –0.05 –0.03 0.00 –0.01 0.00 0.01 0.12 –0.01 0.04   

n – Z* 0.03 0.06 –0.03 –0.02 0.00 –0.01 0.01 –0.02 0.06 –0.01 0.02 0.03  

n – Z** 0.02 0.06 –0.07 –0.03 0.00 0.00 0.01 –0.01 0.01 –0.01 0.01 0.00 0.00 

N + C 0.01 0.08 –0.06 –0.03 –0.01 0.03 0.02 0.01 0.13 –0.01 0.01   

N + C** 

mean 
dev. 

0.03 0.08 –0.06 –0.03 0.00 –0.01 0.02 –0.03 0.07 –0.01 0.02 –0.01 –0.01

n – Z, PL 0.15 0.30 0.17 0.14 0.06 0.13 0.13 0.08 0.02 0.04    

n – Z 0.15 0.30 0.15 0.22 0.06 0.13 0.13 0.08 0.02 0.05 0.11   

n – Z* 0.14 0.30 0.14 0.24 0.06 0.13 0.13 0.08 0.02 0.04 0.10 0.03  

n – Z** 0.14 0.30 0.15 0.24 0.06 0.13 0.13 0.07 0.04 0.04 0.10 0.03 0.04 

N + C 0.15 0.31 0.15 0.25 0.06 0.13 0.13 0.07 0.02 0.04 0.10   

N + C** 

s.d. 

0.14 0.30 0.15 0.24 0.06 0.13 0.13 0.08 0.03 0.04 0.10 0.04 0.04 

n – Z, PL 0.11 0.28 0.12 0.22 0.05 0.12 0.12 0.07 0.01 0.03    

n – Z 0.14 0.30 0.15 0.89 0.06 0.13 0.13 0.07 0.01 0.04 0.14   

n – Z* 0.13 0.28 0.15 1.40 0.05 0.13 0.12 0.07 0.02 0.04 0.15 0.03  

n – Z** 0.14 0.29 0.15 1.38 0.05 0.12 0.12 0.07 0.06 0.04 0.15 0.03 0.04 

N + C 0.14 0.30 0.15 1.61 0.06 0.12 0.14 0.07 0.02 0.04 0.15   

N + C** 

mean 
rep. 
s.d. 

0.14 0.29 0.15 0.17 0.06 0.13 0.12 0.08 0.03 0.04 0.15 0.04 0.49 

n – Z, PL 0.21 0.28 0.18 0.85 0.12 0.27 0.14 0.12 0.13 0.14    

n – Z 0.19 0.26 0.13 1.90 0.11 0.28 0.14 0.11 0.07 0.09 0.52   

n – Z* 0.19 0.25 0.12 1.10 0.10 0.27 0.14 0.11 0.13 0.11 0.47 0.12  

n – Z** 0.19 0.51 0.12 1.20 0.09 0.28 0.14 0.11 0.63 0.05 0.74 0.22 1.30 

N + C 0.19 0.27 0.13 1.50 0.13 0.31 0.14 0.11 0.07 0.11 0.45   

N + C** 

CV 
rep. 
s.d. 

 

0.19 0.26 0.12 2.60 0.10 0.27 0.14 0.11 0.17 0.11 0.44 0.32 0.05 

n – Z, PL 0.02 2.94 0.49 0.82 0.68 –0.55 0.39 –0.51 –1.52 –1.40    

n – Z  0.01 2.99 0.45 0.40 0.70 –0.53 0.39 –0.51 –1.36 –1.04 –1.47   

n – Z* 0.03 5.03 0.46 0.27 0.70 –0.53 0.40 –0.55 –1.67 –1.03 –1.61 –1.82  

n – Z** 0.03 5.03 0.44 0.27 0.70 –0.52 0.40 –0.54 –1.96 –1.05 –1.59 –2.01 0.03 

N + C 0.03 5.06 0.45 0.38 0.70 –0.48 0.39 –0.50 –1.32 –1.04 –1.66   

N + C** 

median 

0.03 5.03 0.44 0.30 0.70 –0.53 0.40 –0.56 –1.60 –1.04 –1.67 –2.12 –2.16

n – Z, PL –0.17 4.62 0.24 - 0.65 –0.69 0.24 –0.69 –1.62 –1.64    

n – Z –0.17 4.67 0.20 - 0.61 –0.66 0.25 –0.69 –1.45 –1.22 -   

n – Z* –0.14 4.73 0.26 - 0.61 –0.65  0.25 –0.71 –1.80 –1.22 - –2.10  

n – Z** –0.16 4.70 0.21 - 0.63 –0.65 0.25 –0.71 –2.17 –1.20 - –2.40 - 

N + C –0.18 4.74 0.24 - 0.61 –0.62 0.25 –0.65 –1.39 –1.21 -   

N + C** 

Lower 
10% tile 

–0.16 4.66 0.22 - 0.63 –0.66 0.26 –0.75 –1.84 –1.26 - –2.85 - 

n – Z, PL 0.20 5.36 0.69 0.92 0.82 –0.36 0.59 –0.35 –1.43 –1.20    

n – Z 0.21 5.37 0.63 0.78 0.79 –0.35 0.58 –0.34 –1.26 –0.89 –0.91   

n – Z* 0.22 5.51 0.63 0.80 0.79 –0.34 0.58 –0.39 –1.56 –0.90 –1.04 –1.60  

n – Z** 0.20 5.46 0.63 0.78 0.77 –0.34 0.59 –0.37 –1.66 –0.89 –0.98 –1.74 –1.72

N + C 0.22 5.52 0.62 0.75 0.78 –0.32 0.57 –0.34 –1.24 –0.89 –1.03   

N + C** 

Upper 
10% tile 

0.21 5.48 0.62 0.77 0.76 –0.35 0.59 –0.39 –1.41 –0.89 –1.01 –1.79 –1.81
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Table 2. Percentage of the 600 datasets (see Table 1) yield- 
ing lower bound estimates for parameters. 

Parameter 

ρ σ 
Model 
method 

f s c f s n d 

n – Z, PL 2 12 0 1 - - - 

n – Z 2 16 0 0 13 - - 

n – Z* 1 32 0 0 21 0 - 

n – Z** 2 33 11 0 21 1 13 

N + C 1 26 0 0 22 - - 

N + C** 4 30 0 0 10 4 13 

 
but is slightly more complicated so such results were not 
considered further. 

With the Penalized Maximum Likelihood method the 
precision is poorer (in spite of the bound on the ratio of 
σs/σf at the correct value). In 1% of cases the estimate still 
gets lower bound. The ρ for selection is highly posi- 
tively biased. The estimated precision of the final stock 
and variances is overestimated. Refinement in the models 
is not plausible with this method. With the IL method the 
precision improves (realized CV decreases) with more 
refinement in the models (n – Z* and n – Z**). Variances 
then get increasingly estimated at the lower bound and 
their precision is then underestimated on average. On ins- 
pection precision is estimated too poor when variances 
are estimated too small, but overestimated for high va- 
lues. The highest estimates deviate significantly from the 
true value based on the reported precision.  

In the base n – Z and N – C models the reference case 
always gets a nonzero estimate of the yearly variation in f 
but the yearly variation in S50 is bound at the lower limit 
in some cases. Other variances that are included in these 
base models do get nonzero estimates most of the time 
and the internal variation is mostly reflected in a higher 
estimate of σc. In the full models all parameters and 
variances are estimated back. In the n – Z** model all 
variances are relatively unbiased (estimates at the lower 
bound not included) and the reported precision is in good 
agreement with the realized mean precision. The esti- 
mates of the variances σc and σd are inversely correlated 
and never both lower bound. 

When the stock was updated with the Pope approxi- 
mation by subtracting the catch at the middle of the fish- 
ing year (τ = 0.5) the precision is similar to other meth- 
ods but the final stock is positively biased by around 0.25. 
If τ is calculated accurately from the simulated true va- 
lues of F and Z and results differ only in the fourth sig- 
nificant digit to those obtained with τ calculated from the 
estimated values. The N – C model then has a negative 
bias in the final stock that increases with age (8% - 17%). 

Table 3. Final stock precision. Method is integrated likeli-
hood except for lines marked UL (unconstrained effort) or 
PL (Penalized Likelihood). Same 600 datasets as in Table 1. 

Age classes 
Model, method

3 4 5 6 7 8 9 

Bias in ln(N) ‰ 

n – Z, PL 003 –012 –020 –022 –043 –050 –045

n – Z –001 –013 –014 –012 –028 –033 –032

n – Z* –008 –010 –014 –013 –019 –028 –030

n – Z** –023 –024 –024 –022 –029 –035 –038

n + Z** –031 –030 –031 –029 –037 –045 –050

N – C, PL –072 –073 –071 –072 –101 –112 –125

N + C, PL 044 024 015 013 –006 –013 –019

N + C 030 021 016 016 009 –004 –016

N – C –099 –081 –077 –084 –122 –144 –169

N – C* Pope 283 298 306 303 266 258 231

N – C* –110 –100 –092 –100 –130 –150 –169

N + C* 026 020 014 014 009 –002 –010

N – C** –132 –108 –086 –096 –120 –126 –141

N + C** 008 006 003 001 –007 –017 –024

CV (around observed mean) ‰ 

n – Z, UL 477 431 415 434 467 507 471 

n – Z, PL 351 305 285 286 305 330 312 

n – Z 333 291 274 278 299 326 297 

n – Z* 332 287 262 249 251 269 254 

n – Z* est M 489 383 343 313 307 320 290 

N + Z* 335 293 269 263 265 286 264 

n – Z** 332 287 262 249 250 267 254 

N – C, PL 361 313 283 268 268 278 264 

N + C, PL 349 304 276 268 276 288 278 

N + C 334 291 266 259 263 278 265 

N – C* 323 284 262 248 237 255 240 

N + C* 335 290 265 255 259 276 260 

N + C** 334 289 263 252 255 272 257 

Mean reported CV ‰ 

n – Z, PL 307 246 214 202 202 209 227 

n – Z 351 285 252 240 244 256 280 

n – Z* 319 274 254 246 245 248 254 

n + Z* 320 260 236 231 234 242 254 

n – Z** 299 262 240 230 225 224 225 

N – C, PL 264 222 201 193 189 188 189 

N + C, PL 314 255 232 229 232 238 248 

N + C 355 293 272 272 282 292 305 

N + C* 335 276 259 259 265 272 282 

Standard deviation of reported CV ‰ 

n – Z, PL 028 025 024 024 025 026 027 

n – Z* 028 027 027 027 029 031 033 

n – Z** 034 030 031 035 039 042 045 
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The bias is somewhat less in the refined N – C** model 
where the observation error in the catch is estimated and 
accounted for. In the N + C models where the fishing 
mortality (F) is related to the stock at the end of the fish- 
ing year, the bias is only to the same small degree as in 
the n – Z models. The PL method has better precision 
with the N + C than n – Z model. 

Table 4 shows the sensitivity of the precision in the 
final stock to the input variation in the simulated data. 
Changes in the σ for recruitment are mostly reflected in 
the precision in the first ages, but the reverse is true for 
the observation error in catch and the deviations from the 
E * S model. 

The estimate of M (natural mortality) obtained from 
the n – Z model with the PL method and the IL method 
with model refinements is given in Table 5. The preci- 
sion in M is extremely poor with the reference case used 
above so the reference case for studying M was chosen 
with lower variation in both the recruitment (r) ln(σ) = –1 
and selection (s) ln(σ) = –2, but higher in the effort by 
year  f  ln(σ) = –0.5. The estimate of M obtained with 
the PL method is rather meaningless due to the high 
variation and negative bias. The IL method is only sli- 
ghtly biased in the base n – Z model, and the refined 
models are less biased and provide additional 9% impro- 
vement in the accuracy in M. 

The sensitivity in the estimate of M and its precision in 
model n – Z*, obtained by varying the size of the differ- 
rent input variances in the generated data is shown in 
Table 6. Solving for M is singular when there is no bet- 
ween years variation in fishing effort and accordingly the 
precision in M improves as σ for f increases. When other 
variation is small an increase is reflected up to 100% in 
better precision in M, but for very high variation the pre- 
cision degrades again. Conversely, an increase in all 
other variation degrades the precision in M, as expected. 
The biggest impact is from σ for r where a change over a 
wide range is reflected 45% in the precision in M. The 
deviations in recruitment affect a cohort at all ages whe- 
reas the variances for n or d affect a single year-age 
group. A change in σ for either of these is reflected by a 
15% - 18% change in the precision in M, but for selec- 
tion (s) the change is only about 4%. This variation was 
put only on the age at 50% recruitment and not in the 
slope of the selection function (b), which is more highly 
correlated with the estimate of M. Estimating M severely 
reduces the precision in the final stock, in particular in 
the first age groups shown in Table 3 and doubles the 
standard deviation of its reported CV. 

5. Discussion 

Ignoring the auto-correlation over time in the fishing mo- 
rtality can lead to very poor precision in the final stock 

Table 4. Sensitivity in observed CV in final stock to input 
variation increase to ln(σ) + 0.5. Reference case n – Z* 
model in Table 1, 300 datasets. 

σ 3 4 5 6 7 8 9 

r 18.1 13.1 10.7 8.7 8.9 5.8 7.2 

f 14.2 15.0 15.6 16.2 15.3 15.9 16.9

c 8.7 10.1 11.5 12.0 18.3 18.6 18.6

n 4.2 6.4 7.8 5.8 3.8 3.1 3.0 

d 9.4 7.5 10.3 14.5 16.2 22.5 14.8

s 5.2 5.2 3.7 2.1 0.9 1.2 1.7 

 
Table 5. Estimates of M given as proportion of the input 
value 0.2 by different methods and models. Reference case 
σf higher and σr and σs lower by 0.5 than in reference case 
runs above, 600 datasets. 

Model, 
method 

Mean M S.d. M
Mean 

est. s.d. 
Mean 

CV of s.d. 
10% 50% 90%

N – Z, PL –0.2 0.9 0.7 0.71 –2 0.07 0.97

N – Z 0.94 0.49 0.45 0.31 0.29 0.93 1.52

N – Z* 0.99 0.46 0.44 0.27 0.42 0.98 1.52

N – Z** 0.98 0.45 0.42 0.28 0.39 0.98 1.49

 
Table 6. Sensitivity of the estimate of M to the input varian- 
ces. Model n – Z*, IL, 300 datasets. Reference case as in Ta- 
ble 4. 

Change in 
ln (　　 σ)  　

from ref. case
Mean M S.d. M

Mean 
est. s.d. 

Mean 
CV 

of s.d. 
10% 50% 90%

f + 1a 1.09 0.52 - - - - - 

f + 0.5 1.02 0.34 0.33 0.237 0.60 1.00 1.44

Ref. 0.98 0.46 0.44 0.250 0.42 0.97 1.48

f – 0.5 0.91 0.68 0.67 0.286 0.13 0.89 1.65

r +0.5 0.97 0.58 0.56 0.250 0.20 0.95 1.60

r – 0.5 0.98 0.35 0.34 0.264 0.58 0.97 1.43

r – 1 0.99 0.28 0.28 0.250 0.63 0.98 1.33

c + 0.5 0.97 0.50 0.46 0.282 0.35 0.96 1.54

c – 0.5 0.99 0.43 0.43 0.300 0.35 0.96 1.54

s + 0.5 0.97 0.47 0.44 0.272 0.39 0.96 1.51

s + 1 0.98 0.48 0.44 0.272 0.39 0.96 1.51

d + 0.5 0.98 0.51 0.48 0.270 0.39 0.98 1.58

n + 0.5 0.98 0.50 0.48 0.250 0.38 0.96 1.57

f – 0.5, r – 1 0.95 0.43 0.41 0.293 0.46 0.95 1.51

a7% of runs not completed. 
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(given in Table 3 line marked UL). The base model with 
the PL method and the ratio of the variances in f and 　s 
fixed at the correct value does not differ greatly from the 
IL method. There is considerable bias in ρs and slightly 
poorer precision in parameters and the final stock by 
about 2%. The output CV of the final stock is also un- 
derestimated. The improvement in precision in the final 
stock comes with the estimation of the internal variances 
σn and σd that is only possible with the IL method. Test- 
ing of other additional parameters with the PL method 
may be meaningless as seen from the estimation of M. In 
real datasets the variance of the catch observation error 
generally differs by age (higher for older/youngest age 
groups). With the IL method a random walk by age or 
variation from a common mean can be tested and is re- 
jected (associated variance estimated zero) in all 300 da- 
tasets (and so at no cost). An independent variance can 
also be estimated for each age at a cost of slightly redu- 
ced precision. With the PL method, however, the varian- 
ce for one age will generally tend to zero with infinite 
likelihood, so some functional form by age and other 
constraints are needed in order to get reasonable results, 
but the outcome may then depend on what assumptions 
are made. 

Using the Pope approximation has little effect on the 
precision. The approximation is close at the lowest age 
but the subtracted catch at the highest age is about 2% 
too much. This slight skewing of the selection function 
leads to a 25% positive bias in the final stock in Table 3. 
The exact N – C model turned out to be rather negatively 
biased. As the observation error in the catch is log-nor- 
mal the total subtracted catch is too large by exp ( ) 
and an attempt was made to correct for this by dividing 
the catch by this factor in the stock equation, but with no 
success. The stock is in effect back calculated to avoid 
drifting into logarithms of negative numbers. To balance 
this asymmetry the fishing mortality F was related to the 
stock at the end of the year in the catch equation. This 
had little effect in the n – Z model but slightly poorer 
precision. The bias in the N – C model was eliminated 
and this model is referred to as N + C. With this model 
there is less difference between the PL and IL methods and 
between the N + C and N + C** model which has almost 
as good precision as the n – Z** model (1% poorer). 

2 / 2c

The N – C models get the changes in the stock better 
in line with the actual catches, which may make for a 
more appealing presentation. Another approach to this 
has been suggested (D. Fournier pers. comm.) where the 
predicted catch is derived from the change in the stock, 
so gc minimizes the square of: 

  , 1, 1 , ,ln t a t a t a t a t aN N F Z c   ,  

This caused computational problems (the difference 
drifts to zero) in several datasets. This could be sideste- 

pped, but then produced an implausible stock in 10% - 
15% of the datasets and surprisingly resulted in a non-po- 
sitive Hessian in another 10% of cases, so a full compa- 
rison could not be made, but bias and precision appeared 
to deteriorate slightly. 

Survey series with constant (or known) effort and stan- 
dardized methods and gear have been conducted around 
Iceland, but survey effort is low compared to fishing ef- 
fort and variation in effort and selection pattern is larger 
than in the catch data. The relationship of the survey in- 
dex to stock size may be nonlinear. For these reasons no 
survey data were simulated in this exercise as the assu- 
mptions that need be made are case specific and will lar- 
gely determine the outcome. However, surveys provide 
indices of the stock also at young ages that are not, or 
poorly observed in the catch and therefore in particular 
reduce the uncertainty in the final stock at young age and 
prognosis. M may be pinned down with assumptions a- 
bout the constancy by age, or functional form of the sur- 
vey selection pattern, but the reduced uncertainty in year 
class strengths that may result from inclusion of surveys 
would in particular better the precision in the estimate of 
M. 

The estimates of M. and F are highly negatively corre- 
lated. Relative changes in F over time are penalized in 
the model and these changes can be made relatively 
smaller with a lower estimate of M and higher values of 
F. This is what causes the negative bias in the estimate of 
M. If M is to be estimated the changes in log(Z) should 
be penalized rather than the changes in f, to avoid this 
bias. This involves changing a single line of code. 

6. Conclusions 

In this simple example the PL method given the prior 
input needed for it to work is outperformed by the IL 
method. In more realistic examples the PL method re- 
quires still more prior input. Estimation of M is not plau- 
sible with the PL method. Post-war variation in fishing 
effort has been low and management objectives aim at 
constant fishing mortality, while the noise in recruitment 
is high for the main commercially exploited species off 
Iceland, so the prospects of estimating M are poor even 
with the IL method. Aanes et al. [10] came to a similar 
conclusion. The IL method allows for estimation of in- 
ternal unobserved variation that improves the precision. 
Such models should be tested, although zero estimates of 
some component of the variation is common (absorbed 
by a different component) and the true variation may be 
significantly less than implied by the reported precision. 
The estimation of the internal unobserved variation likely 
reduces correlation in residuals that may then be ignored. 
However, estimation of a correlation structure is not pro- 
blematic with the IL method, although computationally 
more intensive. Updating the stock with the catch (N − C 
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Appendix 

With natural mortality M and continuous harvesting with 
fishing mortality F. Denote total mortality Z = M + F. 
The stock at start of season t + 1 is calculated as: 

A second order approximation: 

   1 2 1 24 1 2 1 24 2Z F M       F  

  
1 e Z

t tN N 
                              (1) 

   1  e  e 1 e 1 eM M F Z
t t tN N C Z F   


    

is much closer, but too small (early) for large values (by 
>0.01 when Z + F > 3). 

  (2) MacCall [2] improved on Pope’s approximation by 
setting F = 0 in the second equation: 

Can be approximated by removing all the catch at a 
time   of the season t:  1 e e 1 eM M

t t tN N C M  
    M
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      (3) As seen from the second order approximation the ef-

fect of F is double that of M, and F is in many practical 
cases larger than M so in general this improvement is 
small. If the purpose is to eliminate F, then the exact 
form in Equation (2) or (3) (or the second order ap-
proximation) with a reasonable constant value for F by 
age/season should rather be used. 

and will be exact when  is: 

   e 1 e 1 eM FZ F    
Z 
                  (4) 

A first order approximation [1] is: 
  ≈ 1/2 (midseason) which is too large (late) for all F + 
M > 0. 
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