
International Journal of Intelligence Science, 2012, 2, 1-8
http://dx.doi.org/10.4236/ijis.2012.21001 Published Online January 2012 (http://www.SciRP.org/journal/ijis)

1

Evaluating Effects of Two Alternative Filters for the
Incremental Pruning Algorithm on Quality of

POMDP Exact Solutions

Mahdi Naser-Moghadasi
Computer Science Department, Texas Tech University, Lubbock, USA

Email: mahdi.moghadasi@ttu.edu

Received September 11, 2011; revised October 1, 2011; accepted October 12, 2011

ABSTRACT

Decision making is one of the central problems in artificial intelligence and specifically in robotics. In most cases this
problem comes with uncertainty both in data received by the decision maker/agent and in the actions performed in the
environment. One effective method to solve this problem is to model the environment and the agent as a Partially Ob-
servable Markov Decision Process (POMDP). A POMDP has a wide range of applications such as: Machine Vision,
Marketing, Network troubleshooting, Medical diagnosis etc. In recent years, there has been a significant interest in de-
veloping techniques for finding policies for (POMDPs).We consider two new techniques, called Recursive Point Filter
(RPF) and Scan Line Filter (SCF) based on Incremental Pruning (IP) POMDP solver to introduce an alternative method
to Linear Programming (LP) filter for IP. Both, RPF and SCF have solutions for several POMDP problems that LP
could not converge to in 24 hours. Experiments are run on problems from POMDP literature, and an Average Dis-
counted Reward (ADR) is computed by testing the policy in a simulated environment.

Keywords: Planning Under Uncertainty; POMDP; Incremental Pruning Filters

1. Introduction

One of the most challenging tasks of an intelligent deci-
sion maker or agent is planning, or choosing how to act
in such of interactions with environment. Such agent/en-
vironment interactions can be often be effectively mod-
elled as a Partially Observable Markov Decision Process
(POMDPs).Operation research [1,2] and stochastic con-
trol [3] are two domains where this model can be applied
for balancing between competing objectives, action costs,
uncertainty of action effects and observations that provi-
de incomplete knowledge about the world. Planning, in
the context for a POMDP, corresponds to finding an opti-
mal policy for the agent to follow. The process of finding
a policy is often referred to as solving the POMDP. In
the general case, finding an exact solution for this type of
problem is known to computationally intractable [4,5].
However, there have been some recent advances in both
approximate and exact solution methods.

In some cases, an agent does not need to know the ex-
act solution of a POMDP problem to perform its tasks.
Over the years, many techniques have been developed to
compute approximate solutions to POMDP problems. The
goal of finding approximate solutions is to find a solution
in a fast way within the condition that it does not become
too far from the exact solution.

Point-based algorithms [6-8] choose a subset of B of
the belief points that is reachable from the initial belief
state through different methods and compute a value func-
tion only over the belief points in B. After the value func-
tion has converged, the beliefpoint set is expanded with
all the most distant immediate successors of the previous
set.

PBVI and Perseus use two opposing methods for ga-
thering the belief point sets B. In larger or more complex
domains, however, it is unlikely that a random walk wou-
ld visit every location where a reward can be obtained.
PBVI attempts to cover the reachable belief space in a
uniform density by always selecting immediate success-
sors that are as far as possible from the B. Perseus, on
other hand, simply explores the belief space by perform-
ing random trajectories. While the points gathered by PB-
VI generate a good B set, the time it takes to compute
these points makes other algorithms more attractive.

However, approximate methods have the drawback that
we cannot precisely evaluate them without knowing the
exact solutions for the problems that we are solving.
Furthermore, there are crucial domains that need exact
solution to control accurately. For example when dealing
with human’s life or controlling an expensive land rover.
Our objective in this paper is to present an alternative so-

Copyright © 2012 SciRes. IJIS

M. NASER-MOGHADASI 2

lver to evaluate approximate solutions on POMDP pro-
blems with small number of states.

Among current methods for finding exact solutions,
Incremental Pruning (IP) [9] is the most computationally
efficient. As with most exact and many approximate me-
thods, a set of linear action-value functions are stored as
vectors representing the policy. In each iteration of run-
ning algorithm, the current policy is transformed into a
new set of vectors and then they are filtered. The cycle is
repeated for some fixed number of iterations, or until the
value function converges to a stable set of vectors, The
IP filter algorithm relies on solving multiple linear pro-
grams (LP) at each iteration. We consider two new tech-
niques, called Recursive Point Filter (RPF) and Scan Li-
ne Filter (SCF) based on Incremental Pruning (IP) PO-
MDP solver to introduce an alternative method to Linear
Programming (LP) filter. More details about this method
will be explained later.

2. POMDP Problem

2.1. Background

Planning problem is defined as: given a complete and
correct model of the world dynamics and a reward struc-
ture, find an optimal way to behave. In Artificial intelli-
gence, when the environment is deterministic our know-
ledge about our surrender describes with set of precondi-
tions. In that case, Planning can be addressed by adding
those additional knowledge preconditions to traditional
planning systems [10]. However in stochastic domains,
we depart from the classical planning model. Rather than
taking plans to be sequences of actions, which may only
rarely execute as expected, we take them to be mapping
from states—which are situations—to actions that spec-
ify the agent’s behaviour no matter what may happen
[11].

2.2. Value Function

The value iteration algorithm for POMDP was introduc-
ed by [2] first. The value function V for the belief-space
MDP can be represented as a finite collection of |S|—di-
mensional vectors known as α vectors. Thus, V is both
piecewise—linear and convex [2]. Although its initial
success for solving hard POMDP problems, there are two
distinct reasons for the limited scalability of a POMDP
value iteration algorithm. The more widely reason is di-
mensionality [12]; in a problem with n physical states,
POMDP planners must reason about belief states in an (n
– 1) dimensional continuous space. The other reason is,
the number of distinct action—observation histories grows
exponentially with the planning horizon. Pruning is one
proposed [9] solution to whittle down the set of histories
considered.

Value functions are represented by vectors in R|S|,

where each element s ∈ S of a vector represents the
expected long term reward of performing a specific ac-
tion in a corresponding state s. As the agent does not
fully know the state it is currently in, so it would value
the effect of taking an action depending on the belief it
has for the existing states. This results in a linear function
over the belief space for each vector. In other words, the
value function simply determines the value of taking an
action a given a belief b that determines the probability
distribution over S. For example, in a simple problem
with two states, if taking action a costs 100 in state s1,
and –50 for s2 , then if the agent believes 50% to be in s1,
then the value of performing a would be valued as 25.
Thus, it can be formulated as mapping from the belief
space to a real number, which is defined by the expected
reward. This mapping can then be described by functions
of hyperplanes, which are generalized by the following
equation:

  H= x R S : v x =d  (1)

with d ∈ R. In the Equation 1, v.x denotes the scalar
product between vectors v and x. The set of linear func-
tions, when plotted, forms a piecewise linear and convex
surface over the belief space. Finding the exact optimal
policy for a POMDP requires finding this upper surface.
Each vector then, defines an affine hyperplane (1) that
passes through these sets of values or points. From here,
we refer to lines and planes as hyperplanes, and may use
the three terms interchangeably.

2.3. Pruning

A key source of complexity is the size of the value func-
tion representation, which grows exponentially with the
number of observations. Fortunately, a large number of
vectors in this representation can be pruned away without
affecting the values using a linear programming (LP)
method. Solving the resulting linear programs is there-
fore the main computation in the DP update. Given a set
of |S|-vectors A and a vector α, witness region defines as:

    R ,A = x x 0, x 1=x x , A \           ;

This set known as witness region includes belief states
for which vector α has the largest dot product com- pared
to all the other vectors in A. R (α, A) is witness region of
vector α because of any belief b can testify that α is
needed to represent the picewise-linear convex function
given by A ∪ {α}. Having definition of R, Purge func-
tion defines as :

    A A,R , Apurge       ; (2)

It is set of vectors in A that have non-empty witness
regions and is precisely the minimum-size set for repre-
senting the piecewise-linear convex function given by A.

Copyright © 2012 SciRes. IJIS

M. NASER-MOGHADASI 3

[12]. We can also consider it as pruning or filtering. With
filtering those useless vectors in the sense that their wit-
ness region is empty are pruned. Since only the vectors
that are part of the upper surface are important, discov-
ering which vectors are dominated is difficult. In In-
cremental Pruning algorithm, linear programs are used to
find a witness belief state for which a vector is optima,
thus the vector is a part of the upper surface. However,
linear programs degrade performance considerably. Con-
sequently, many research efforts have focused on impro-
ving the efficiency of vector pruning.

3. Scan-Line Filter

Most exact algorithms for a general POMDP use a form
of dynamic programming in which a piecewiselinear and
convex representation of one value function is transform-
ed into another.

Value functions are stored in the form of vectors v =
(v1, …, v|S|) which represent hyperplanes over belief
space. Beliefs can also be presented in the form of vec-
tors b = (b1, …, b|S|) with a condition that b1 + b2 + …

+b|S| = 1. Given a value function, v, and a belief, b, we
can calculate the reward associated with b by the fol-
lowing computation:

1 1 2 2 S SR v b v b x b    (3)

Now, assume that we have a set of value functions V =
(V1, …, Vn). What we need to do is, to generate a belief b
and calculate the reward R1, …, Rn associated with b
with respect to V. The value function that generates the
maximum reward, from R1, …, Rn, is recorded and is
considered part of the solution to the policy for the cur-
rent problem.

In this technique, the quality of the solution is affected
by the way the belief, b, is generated and how b is moved
to cover most of the belief space related to the problem.

3.1. Generating the Belief

Instead of generating beliefs that scan the belief space
from left to right or right to left, a different approach was
taken. We generated a set of beliefs B, with the initial
belief b0, set to have equal probability of being in each
existing state, b0 = (1/|S| …, 1/|S|), i.e. b0 was a uniform
distribution over S. Then, a number e is generated with 0
< ε< 1/|S|. To assure that the sum of the probability dis-
tribution in b is equal to 1, we move b in the following way,

   

  

The idea is to make sure that if we add e to x number
of probabilities, then we also subtract e from another x
number of probabilities. The main goal is that each addi-
tion of e should be compensated by a subtraction of e so
that we can keep the sum of probabilities equal to 1. The
number of belief points that will be in the set B depends
on the value of a density parameter a, where 0 < a < 1.

Algorithm 1 shows the algorithm that we have used to
generate belief points. In this algorithm, the array Bel is
initialized with the initial belief point b0, as defined abo-
ve, in all its indices. Line 1 determines the maximum and
minimum boundary of e which are 1/|S| and 0 respec-
tively. In line 1, a is added to e on each iteration until it
reaches the maximum boundary. Lines 2 through 5 spec-
ify the range of indices where values will be increased or
reduced. On lines 9 to 12, we subtract e from the values
in index k to l of the Bel array which has initial belief in
each iteration. After computing new belief values in line
10 we add them to our belief set B. On lines 13 to 16, we
add e to the values in index i to j and insert these values
to B as well. If the number of subtractions by e exceeds
the number of additions by e, then we fix the difference
by adding the value of the number of excess times e to
the final index in lines 17 to 19. We maintain the sum of
addition and subtraction between indices by variables
increased Sum and reduce Sum in each iteration respect-
tively. Belief points are only generated once. The belief
set remains constant through all iterations of the POMDP
algorithm.

3.2. The Scan Line

A parameter β is used to chose the belief points in B that
will participate in the scanning procedure. The value of β
indicates how many belief points from the current one
will be skipped as the scan is performed.

After the set of belief points B is generated, as shown
in Figure 1 for 2 states problem, we take a belief b ∈ B,
calculate the expected rewards associated with b, find the
maximum, and record the corresponding vector (i.e.
value function) that is associated with the maximum re-
ward. This procedure goes on until we have exhausted all
the belief points in B or the number of remaining belief
points is less than the value of β or the set of value func-
tions associated with the maximum rewards is equal to
the set of value functions.

4. Recursive Point Filter (RPF)



   

1 1
B= , 1 ,

1 1
 2 , , 2 ,

1 1
 1 , .

S x S x
S S

S x S x
S S

S x S x
S S

 

 

 


    



     


     



 (4)

In RPF, we begin by pruning completely dominated vec-
tors, which means that we must first eliminate any vector
Vi that satisfies Vi < Vj ∀b ∈ β and j ≠ i. This prop-
erty can hold for collinear planes or for planes that are
dominated component-wise for all states. We can notice
that after eliminating these vectors, we are only left with
intersecting planes.

Copyright © 2012 SciRes. IJIS

M. NASER-MOGHADASI 4

Figure 1. 2D vectors in two states belief space.

4.1. RPF in a 2-States Belief Space

Since pruning eliminates the set of vectors which are not
part of the final solution, it is an important part to make
most of the POMDP solvers faster.

In each recursion of RPF (Algorithm 2), it gets two
real numbers {InterStart, InterEnd} as the inputs and re-
turns the dominated vectors list {PrunedList}. InterStart,
InterEnd are the starting and ending points in the interval
of one dimensional belief space. In the next step, it calcu-

lates MidPnt as the middle point between InterStart, In-
terEnd. It is obvious that initially InterStart, InterEnd are
set to 0 and 1 respectively. If |InterStart-InterEnd| ＜
δ ,δ is a positive parameter set before beginning of the
recursion; it exits before entering into the main loop of
the algorithm. Otherwise, it identifies dominated vectors
within given belief intervals :{InterStart to MidPnt} and
{MidPnt to InterEnd}. We call the dominated vector with
belief value of MidPnt as Vmid, Inter-Start as Vsrt, In-
terEnd as Vend respectively (lines 4 - 6). In the next part
of the algorithm, it compares Vmid with Vsrt; if they are
from the same vectors, it adds Vsrt into PrunedList (line
14), and the witness region is extended by adding the
boundary of dominated vectors. In the next recursion it
gets new intervals InterStart, (MidPnt + InterStart)/2 as
new arguments for 2 the RPF algorithm (line 12). In this
way, it recognizes upper surface vectors from InterStart
to MidPnt. We use the same approach for (MidPnt + In-
terStart)/2, InterEnd (lines 16 - 20), recursively to cover
remaining part of the belief space interval.

Figure 2 shows an incomplete execution of the RPF
for six vectors after four recursive calls. It recognizes
upper surface vectors from belief points between 0 to 0.5
(where δ ← 0.05 is set before the execution) for a 2-
states problem. When RPF is terminated, a list of identifi-
ed dominated vectors will be returned by the PrunedList .

4.2. RPF in Higher Dimensions

In the 2D representation, a horizontal axis is the belief
space while a vertical axis is showing the values of each
vector over the belief space. Since most of the POMDP
problems have more than two states; it makes value
function to be represented as a set of hyperplanes instead
of 2D vectors. In other words, a POMDP problem with
|S| number of states makes (|S|-1) dimensional hyper-
planes for representing in the belief space. A POMDP
policy is then a set of labelled vectors that are the coeffi-

Figure 2. Incomplete execution of RPF over a 2-states belief
space (δ = 0.05).

Copyright © 2012 SciRes. IJIS

M. NASER-MOGHADASI 5

cient of the linear segments that make up the value func-
tion. The dominated vector at each corner of the belief
space is obviously dominant over some region [13]. As
mentioned since RPF receives 2D vectors as the input
arguments; the filter algorithm projects every hyperplane
into 2D planes and then passes 2D vectors set to RPF
algorithm. It sets zero to every component of hyperplane
equations except ones that are in the 2D plane equations.
Hence, the projections of hyperplanes are 2D vectors,
therefore a set of 2D vectors in each plane now can be
passed to RPF for filtering. There are  2

S possible 2D
planes where |S| is the number of states. As shown in
Figure 3, each 3D vector represents value function of

Figure 3. Value function is shown as a plane in a 3-states
POMDP problem.

one action.As indicated, after each projection, RPF gets a
set of 2D vector equations and starts filtering. In filtering
process, in each plane, if any of the 2D vectors is part of
a 2D upper surface, its corresponding hyperplane index is
labelled as dominated vector and its index will add to
final pruned vectors list.

5. Experimental Results

5.1. Empirical Results

Asymptotic analysis provides useful information about
the complexity of an algorithm, but we also need to pro-
vide an intuition about how well an algorithm works in
practice on a set of problems. Another disadvantage of
Asymptotic analysis is that it does not consider constant
factors and operations required outside the programs. To
address these problems, we have run SCF, LP, RFP on
the same machine which had

1.6 GHz AMD Athlon Processor with 2 Gb RAM on a
set of the benchmark problems from the POMDP litera-
ture. These problems are obtained from Cassandra’s On-
line repository [14].

For each problem and method we report the following:
1) size of the final value function (|V|);
2) CPU time until convergence;

)
3) resulting ADR;
The number of states, actions and observations are

represented by S, A and Z.
As with most exact methods, a set of linear action-

value functions are stored as vectors representing the po-
licy. In each iteration of running algorithm, the current
policy is transformed into a new set of vectors which are
then filtered in three stages. As mentioned in chapter 2,
each stage produces a unique minimum size set of vec-
tors. This cycle is repeated until the value function con-
verges to a stable set of vectors. The difference between
two successive vector sets make an error bound. The al-
gorithms are considered to have converged when the
error bound is less than a threshold of convergence (For
example, The ε parameter in LP algorithm). However, a
final set of vectors after convergence does not guarantee
an optimal solution until the performance of the policy is
considered under a simulator of the POMDP model.
Changing ε to a higher value would lead to a non-optimal
solution, and on the other hand if it is set to a lower value;
it may loop between two sets of vectors because of nu-
merical instability of solvers. Although 0.02 may not be
the absolute minimum value for ε, but we believe that it is
small enough to provide the precision for evaluating
policies in the simulator.

Table 1 shows parameter values of α, β, ε and δ for
each POMDP problem in the SCF,LP and RPF algo-
rithms. Each of these parameters are initialized to base
value depending on the quality of the final POMDP solu-
tion and the characteristic of each POMDP model. As

Copyright © 2012 SciRes. IJIS

M. NASER-MOGHADASI 6

stated above, dynamic programming update is divided in-
to three phases in all POMDP solvers. Therefore, we
have the same structure of Incremental Pruning in our
solvers that are different in their filtering algorithms.

We have evaluated based on their average CPU time
spent to solve each problem. All POMDP solvers were
allowed to run until they converged to a solution or they
exceed a 24 hours maximum running time. Previous re-
search on the POMDP solvers [9], has shown that PO-
MDP exact solvers for the classical test-bed problems
either find a solution before 12 hours or they can-not con-
verge. Our hypothesis is, because of the numerical insta-
bility they may oscillate between two successive itera-
tions.

Table 2 summarizes the experiments for all three PO-
MDP solvers. In this table RPF was compared to linear
programming filtering (LP) and scan line filtering (SCF)
techniques. An x on the table means that the problem did
not converge under the maximum time limit set to per-
form the experiment; therefore we are unable to indicate
how many vectors (i.e. Value functions) form the final
solution. The Vector column on the table indicates how
many vectors form the final solution and the Time colu-
mn shows average CPU time in second over 32 execu-
tions. Having higher number of vectors in the final solu-
tion and less convergence time are two major positive
factors that are considered in our evaluation. We define
the term better in our evaluation when a POMDP solver
can find solution of a problem in lesser time with more
final value functions (|V|) than others.

Table 1. α, β, ε and δ parameters for the SCF, LP and RPF
algorithms.

 SCF LP RPF

Problems α β ε δ
Tiger 0.05 1 0.02 0.02

Shuttle 0.01 5 0.02 0.02
Example 0.001 5 0.02 0.02
Network 0.001 5 0.02 0.02
Hanks 0.001 5 0.02 0.02
Saci 0.001 5 0.02 0.02
4 × 3 0.001 5 0.02 0.02

Table 2. Experiment I descriptions and results presented as
the arithmetic mean of 32 run-times.

 Vector Time(second)

Problem |S| |A| |Z| LP RPF SCF LP RPF SCF

Tiger 2 3 2 7 9 9 4.68 8.625 9.78

Network 7 4 2 x 83 x x 203.031 x

Hanks 4 4 2 5 9 x 1.843 3.875 x

Shuttle 8 3 5 22 35 5 44.68 101.031 977.75

Saci 12 6 5 x 43 x x 600.938 x

4 × 3 16 4 2 x 436 x x 72006.625 x

Example 2 2 3 x 4 5 x 1.9062 14.75

From the Table 2 we can see that RPF found solution
on POMDP problems Network, Scai, 4 × 3 while SCF and
LP were not able to converge to a solution before 24 hour
limit. In the term of size of the final value function (|V|),
RFP had more vectors than both SCF and LP in the Shut-
tle, and more than LP in Hanks and the Tiger problems. It
also shows RPF is faster than SCF in Tiger, Shuttle and
the Example but slower than LP approach in the prob-
lems that LP solved: Tiger, Hanks and Shuttle. RPF is
better than the others in POMDP problems Network, Scai
and 4 × 3.

5.2. Parameter Testing of SCF Filter with the
Tiger Problem

Our SCF filter has two adjustable parameters, α and β. α
is the density parameter and is also the value used to
check whether or not two rewards are significantly dif-
ferent. The value of β indicates how many belief points
will be skipped at each iteration of the scan. In the Tiger
problem, each value of α corresponds to a specific num-
ber as illustrated by Table 3.

Here, our goal was to find the values for α and β under
which our approach would be faster on solving the tiger
problem. Table 4 expresses the results of this experiment,
which was performed on a 2 Ghz Intel Core 2 processor.

From Table 4, we can see that setting α = 0.1 and β =
1 resulted in shorter run time than any other setting. For
the tiger problem, our approach seems to perform fastest
by considering 67 belief points in total.

Table 3. Relation between α and number of belief points in
tiger problem.

α Number of belief points

0.1 67

0.01 551

0.001 5510

0.0001 55,012

Table 4. Varying α and β in order to determine the best
setting to solve the tiger problem.

β α Time to find solution

1 0.1 0.394 sec
10 0.1 No solution
1 0.01 8.1065 sec
5 0.01 No solution
10 0.01 No solution
1 0.05 0.996 sec
10 0.05 No solution
1 0.001 8 min 6.3873 sec
10 0.001 9.7034 sec
50 0.001 1.6462 sec

100 0.001 1.2928 sec
1 0.0001 496 min 50.3 sec
10 0.0001 9 min 48.7 sec
50 0.0001 1 min 31 sec

100 0.0001 1 min 15 sec

Copyright © 2012 SciRes. IJIS

M. NASER-MOGHADASI 7

5.3. Simulation

One way to evaluate the quality of policy is to run it un-
der simulator and observe accumulated average of the
discounted reward that agent received over several trials.
A POMDP policy is evaluated by its expected discounted
reward over all possible policy rollouts. Since the exact
computation of this expectation is typically intractable,
we take a sampling approach, where we simulate inter-
acttions of an agent following the policy with the envi-
ronment. A sequence of interactions, starting from b0, is
called a trial. To calculate ADR, successive polices are
tested and rewards are discounted, added and averaged
accordingly. Each test starts from an arbitrary belief state
with a given policy, Discounted reward is added for each
step until the maximum steps limit is reached. The test is
repeated for the number of trials. Steps are added among
all the trials. The ADR is represented in the form of
(mean ± confidence interval) among all tested policies. In
our implementation of ADR, confidential interval is 95%

#
0 0

#

trials steps j
i j r

trials
j  

 (5)

We computed the expected reward of each such trial,
and averaged it over a set of trials, to compute an esti-
mation of the expected discounted reward.

In this experiment, we have computed ADR for a sub-
set of POMDP problems where the RPF algorithm and
either LPF or SCF techniques have solutions. Since ADR
values are noisy for the less number of trials, we have
tested different number of trials starting with 500. After
several tries, we saw that the difference between ADR
means with 2000 trials and 2500 are small enough to
chose 2000 as the final number of trials in our experiment.
We tested such policies in the simulator with 500 steps
for each POMDP problem over 2000 trials as shown in
Table 5.

In general, RPF has the near close ADR values to other
approaches. This implies RPF policy has a performance
similar to SCF and LP for the set of problems we chose.
Although LP is the winner in term of the ADR for the
Tiger, but it has smaller ADR mean value for the rest of
the problems than RPF. One hypothesis is size of |V| in
LP policy in Table 2 for these problems is smaller than
RFP; and it also shows that the value of computed ADR

Table 5. Experiment II: average discounted reward.

 Average Discounted Reward

Problem |S| |A| |Z| LP SCF RPF

Tiger 2 3 2 20.74 ± 0.65 18.78 ± 0.6793 18.12 ± 0.696

Hanks 4 4 2 3.147 ± 0.039 x 3.178 ± 0.039

Shuttle 8 3 5 32.7116 ± 0.1064 33.05 ± 0.104 32.74 ± 0.103

Example 2 2 3 x 51.87 ± 0.16 49.92 ± 0.12

mean under a policy is proportional to the size of the fi-
nal value function (|V|). However, the policies of SCF in
the Shuttle and LP in the Tiger problem are two excep-
tions that with less (|V|) we have observed nearly same or
better ADR mean values than with higher (|V|). We be-
lieve that it may come from characteristics of the PO-
MDP model. Therefore, since these values are nearly clo-
se to each other further experiments need to be done to
prove our guesses.

6. Conclusions

6.1. Discussion

We considered two new filtering techniques, called Re-
cursive Point Filter (RPF) and Scan Line Filter (SCF for
Incremental Pruning (IP) POMDP solver to introduce an
alternative method for Linear Programming (LP) filter.
As suggested in the original work on Incremental Prun-
ing technique, filtering takes place in three stages of an
updating process, we have followed the same structure in
our implementation to have a fair evaluation with previ-
ous approaches. RPF identifies vectors with maximum -
values in each witness region known as dominated vec-
tors. The dominating vectors at each of these points then
become a part of the upper surface. We have shown that
a highquality POMDP policy can be found in the less
time in some cases. Furthermore, RPF had solutions for
several POMDP problems that LP and SCF were not able
to converge in 24 hours. As discussed in the paper, the
quality of POMDP solutions of LP approach depends on
the numerical stability of LP solver. Also, LP based filter
requires LP libraries, which can be expensive, especially
the powerful ones. Because of these reasons, we pro-
posed the idea of filtering vectors as a graphical operator
in POMDP solver. In each iteration of the algorithm,
vectors that are not part of the uppersurface would be
eliminated. SCF and RPF use the same concept but with
different algorithmic ways. Although SCF had better per-
formance in some POMDP problems, but it is dependent
on the parameters (α, β) for each POMDP problem. It
means that SCF parameters have direct effect on the qua-
lity of solution and convergence time for each POMDP
problem. RPF was superior on several POMDP problems
while SCF was not able to converge to solutions before
24 hours or had lesser number of vectors in the final so-
lutions with some values for α, β.

We also included Average Discounted Reward in our
evaluation for a sub-set of POMDP problems where the
RPF, LP or SCF techniques have solutions. We tested
such policies in the simulator with 500 steps for the PO-
MDP problems over 2000 trials. The promising result is,
RPF and SCF have a closer ADR mean value than other
approaches. This implies RPF and SCF policy have a per-
formance similar to LP for the set of problems we chose.

Copyright © 2012 SciRes. IJIS

M. NASER-MOGHADASI

Copyright © 2012 SciRes. IJIS

8

Although RPF worked better in the small classical PO-
MDP problems, but it has poor performance on bigger
sized POMDP problems such as: Mini-hall, Hallway, Mit
[14]. Because of this reason and also our paper consid-
eration on smaller size problems, we believe that for
large POMDP problems like those discussed above, ap-
proximate techniques would be a better option to choose.
If the complexity of a POMDP problem is close to our
set of evaluation, then LP, with the condition that the size
is close enough to the Tiger problem, is suggested. If LP
is not available, or is expensive and the size of the
POMDP problem is not close to the ones that LP was
winner in, then RPF and SCF are recommended. Al-
though RPF was superior to SCF in some cases but it
does not strongly show that with all values of α, β this
condition would be held. However, SCF Parameter Tun-
ing is essential for more consideration of finding solu-
tions in POMDP problems where it has poor perform-
ance.

6.2. Future Works

Since SCF parameters have important rules either in fin-
ding POMDP solution or increasing the size of the final
Value function (|V|), we will improve SCF with a dyna-
mic setting parameters approach and compare results
with RFP on the sub-set of the POMDP problems where
RPF was a winner.

Our initial objective in this research was to present an
alternative solver to evaluate approximate solutions on
POMDP problems with small number of states. We are
going to extend our implementation to use parallel proc-
essing over CPU nodes to test RPF on larger POMDP
problems like Hallway to evaluate solutions of approxi-
mate techniques. We also intend to log the number of
pruned vectors in each iteration of the algorithms for
more consideration on how well each algorithm performs
pruning on average after a large number of iterations and
when the convergence threshold changes.

REFERENCES
[1] G. E. Monahan, “A Survey of Partially Observable

Markov Decision Processes,” Management Science, Vol.
28, No. 1, 1982, pp. 1-16. doi:10.1287/mnsc.28.1.1

[2] R. D. Smallwood and E. J. Sondik, “The Optimal Control
of Partially Observable Markov Processes over a Finite
Horizon,” Operations Research, Vol. 21, 1973, pp. 1071-
1088. doi:10.1287/opre.21.5.1071

[3] P. E. Caines, “Linear Stochastic Systems,” John Wiley,
New York, 1988.

[4] M. T. J. Spaan, “Cooperative Active Perception Using
POMDPs,” AAAI 2008 Workshop on Advancements in
POMDP Solvers, 2008.

[5] J. Goldsmith and M. Mundhenk, “Complexity Issues in
Markov Decision Processes,” Proceedings of the IEEE
Conference on Computational Complexity, New York,
1998.

[6] J. Pineau, G. Gordon and S. Thrun, “Point-Based Value
Iteration: An Anytime Algorithm for POMDPs,” Pro-
ceedings of the International Joint Conference on Artifi-
cial Intelligence, Acapulco, 2003.

[7] T. Smith and R. G. Simmons, “Heuristic Search Value
Iteration for POMDPs,” Proceedings of the International
Conference on Uncertainty in Artificial Intelligence,
Banff, 2004.

[8] M. T. J. Spaan and N. Vlassis, “Randomized Point-Based
Value Iteration for POMDPs,” Journal of Artificial Intel-
ligence Research, Vol. 24, 2005, pp. 195-120.

[9] A. Cassandra, M. L. Littman and N. L. Zhang, “Incre-
mental Pruning: A Simple, Fast, Exact Algorithm for Par-
tially Observable Markov Decision Processes,” Proceed-
ings of the 13th Annual Conference on Uncertainty in Ar-
tificial Intelligence, Brown, 1997.

[10] R. Moore, “A Formal Theory of Knowledge and Action,”
In: J. Hobbs and R. Moore, Eds., Formal Theories of the
Commonsense World, Norwood, 1985, pp. 319-358.

[11] A. R. Cassandra, L. P. Kaelbling and M. L. Littman,
“Acting Optimally in Partially Observable Stochastic
Domains,” Proceedings of the 12th National Conference
on Artificial Intelligence, Seattle, 1994.

[12] M. Littman, A. Cassandra and K. L. P, “Efficient Dy-
namic-Programming Updates in Partially Observable
Markov Decision Process,” Brown University, Provi-
dence, 1996.

[13] L. D. Pyeatt and A. E. Howe, “A Parallel Algorithm for
POMDP Solution,” Proceedings of the 5th European
Conference on Planning, Durham, 1999, pp. 73-83.

[14] A. R. Cassandra, “Exact and Approximate Algorithms for
Partially Observable Markov Decision Process,” PhD
Thesis, Brown University, Brown, 1998.

http://dx.doi.org/10.1287/mnsc.28.1.1
http://dx.doi.org/10.1287/opre.21.5.1071

