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ABSTRACT 

Fixed-free single-walled carbon nanotubes (SWCNTs) have attracted a lot of interest in recent years due to their suit-
ability for a wide range of applications, such as field emission and vacuum microelectronic devices, nanosensors, and 
nanoactuators. Based on a cantilever beam-bending model with a rigid mass at the free end and mode analysis, an ana-
lytical solution is developed in the present study to deal with the resonant frequency and mode shapes of a SWCNT- 
based mass sensor. The resonant frequency shift and mode shape of the fixed-free SWCNTs caused by the addition of a 
nanoscale particle to the beam tip are examined in order to explore the suitability of SWCNTs as a mass detector device. 
The simulation results reveal that the volume of the added particle has little effect on the first resonant frequency. In 
contrast, the second resonant frequency decreases with increasing the volume of the added particle. Furthermore, the 
resonant frequency shift of the first mode is very obvious for the amount of added mass, and the second resonant fre-
quency decreases rapidly with increasing volume of added particle. Therefore, the first and second resonant frequencies 
can be used in the measurement of the mass of added particle and its volume, respectively. 
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1. Introduction 

Since their discovery in 1991 by Ijima, carbon nanotubes 
(CNTs) have demonstrated potential for use in a diverse 
range of applications, such as nanobiological devices and 
nanomechanical systems. Due to their remarkable me-
chanical, physical, and chemical properties, carbon nano- 
tubes may be used as fluid conveyers or potential rein-
forcements in nanocomposite materials [1-3]. Since ex-
periments at the nanoscale are extremely difficult to 
conduct, theoretical modeling of the mechanical response 
of CNTs has been carried out [4,5]. CNTs have been 
utilized as nanoactuators [6] and as nanosensors [7]. 
CNTs are extremely thin tubes whose diameters are on 
the order of a few nanometers, but whose lengths may be 
thousands of times larger. The use of vertically aligned 
single-walled CNTs (SWCNTs) for field emission and 
vacuum microelectronic devices, and as nanosensors and 
nanoactuators, is being actively explored [8,9]. Further-
more, Chen et al. [10] studied the effects of the geomet-
ric structure and an electric field on the electronic and 
optical properties of quasi-zero-dimensional finite CNTs 
using the tight-binding model coupled with curvature 
effects. Hsu et al. [11] developed a model that analyzes 
the resonant frequency of chiral SWCNTs subjected to a 

thermal vibration using the Timoshenko beam model that 
includes the effect of rotary inertia and shear deformation. 

Several studies have investigated the use of CNTs as a 
mass sensor [7,12,13]. Compared to piezoelectric sensors, 
nanotubes provide better precision [12]. Wu et al. [13] 
simulated the mechanical responses of individual CNTs 
treated as cylindrical beams or thin shells using the con-
tinuum mechanics method with commercial FEM soft-
ware. However, these studies adopted either experimen-
tal or numerical approaches, which are inherently time 
consuming and expensive. Saether et al. [14] proposed a 
simple formula of the resonant frequency of the fixed- 
free beam that uses its spring constant, and found that a 
change in the mass of the CNT resonator is indicated by 
a shift in the resonant frequency. The sensitivity and spa-
tial resolution of the device can be varied by changing 
the dimensions of the resonator. In previous studies [15, 
16], the current authors obtained accurate analytical solu-
tions of vibration responses of atomic force microscope 
(AFM) and nanoscale processing using the modal super-
position method. In the present study, a fixed-free 
SWCNT-based mass sensor is simulated as a cantilever 
beam-bending model with a rigid mass at the free end. 
The continuum mechanics method is used to obtain ana-
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lytical solutions of vibration analysis, including the 
resonant frequency and mode shapes. The results show 
that the volume of the added particle has little effect on 
the first resonant frequency. In contrast, the second reso-
nant frequency decreases with increasing the volume of 
the added particle. Furthermore, the resonant frequency 
shift of the first mode is very obvious for the amount of 
added mass, and the second resonant frequency decreases 
rapidly with increasing volume of added particle. There-
fore, the first and second resonant frequencies can be 
used in the measurement of attached mass of added mass 
and its volume, respectively. 

2. Analysis 

Resonant frequency shift-based mass sensors are ex-
plored using a tip mass in the form of a nanoscale parti-
cle, which is attached to fixed-free SWCNTs. Techniques 
that facilitate the development of smaller, faster, cheaper, 
and more sensitive mass sensor devices are required. 
Using a hierarchical modeling scheme, the equivalent- 
continuum modeling technique [17,18] can be used to 
predict the bulk mechanical behavior of nanostructured 
materials, such as the beam shown in Figure 1. A previ-
ous study [12] presented a cantilever-type CNT-based 
mass sensor. The present study considers the case of a 
fixed-free SWCNT with a nanoscale particle attached to 
its tip, as shown in Figure 2. The operation of a cantile-
ver-based mass sensor is based on the fact that mass 
added to the tip causes a measurable shift in the resonant 
frequency of the fixed-free beam. 
 
 

 
(a) 

 

 
(b) 

Figure 1. Computation model of SWCNT: (a) discrete 
model and (b) continuum model. 
 
 

 
(a) 

 

v
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Figure 2. Fixed-free SWCNT with nanoscale particle at its 
tip: (a) discrete model and (b) continuum model. 

Recently, the continuum mechanics method has been 
pplied to analyze the dynamic responses of individual 
CNTs. Based on the Euler-Bernoulli beam model [19], it 
is well known that the equation of motion of a free-vi-
bration rod in the limited to a small amplitude is gov-
erned by the fourth-order wave equation: 

   2 22

2 2 2

, ,
0

v x t v x t
EI m

x x t

  
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      (1) 

where  ,v x t  is the transversal displacement response, 
 is the flexural stiffness, and EI m  is the mass per unit 

length. The natural mechanical resonant frequency is 
induced in a cantilever carbon nanotube when the applied 
frequency approaches the resonant frequency. In this 
study, a SWCNT-based mass sensor is simulated as a 
cantilever beam with a rigid mass at the free end. The 
continuum mechanics method is used to obtain the reso-
nant frequency and the mode shapes of a sensor analyti-
cally by mode analysis method. One form of solution of 
Equation (1) can be obtained easily by the separation of 
variables: 

    ,v x t x Y t                (2) 

where  x  is a specific shape of the free-vibration 
motion with time-dependent amplitude  Y t .  x  
can be expressed as: 

  1 2
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cos sin

cosh sinh
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where 1A , 2A , 3A , and 4A  are real constants that can 
be determined using the boundary condition. 

Consider the cantilever beam with a rigid mass at the 
free end shown in Figure 2 to which a rigid lumped mass 

a  with a rotary moment of inertia a  is attached. The m j
moment and shear are no longer equal to zero at the other 
end due to the presence of the lumped mass. These in-
ternal force components are shown on the free-body dia-
gram in Figure 3 along with the translational and rotary 
inertial force components a  andm L , t  ,aj L t , 
respectively. Under free-vibration conditions with reso-
nant frequency  , acceleration  and its deriva- ,L t 
tive are: 

       2,L t L Y t L Y t               (4) 

       2,L t L Y t L Y t                (5) 

where   is the resonant frequency of the SWCNT. 
Moreover, force and moment equilibrium of the rigid 
mass requires that the following four boundary condi-
tions be satisfied: 

 0 0                   (6) 

 0 0                   (7) 
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Figure 3. Fixed-free SWCNT with nanoscale particle at its 
tip: (a) SWCNT properties; (b) Forces acting on the nano-
scale particle. 
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Substituting Equation (3) and its derivative expres-
sions into these equations gives 
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Making use of cos0 0 , , cosh 0 1 sin 0 0 , and 
sinh 0 0 , Equations (10) and (11) yield 3 1A A   and 

4 2A A 

r m

aj

. Substituting these equalities into Equations 
(12) and (13), changing all signs, and placing the result-
ing expressions in matrix form, one obtains: (see (14)), 
where a  and a  are the radius and the added mass of 
the particle, respectively.  and   can be defined as 
followed: 

 22 41
,

2a a aj m r L EI mL           (15) 

For coefficients 1A  and 2A  to be nonzero, the de-
terminant of the square matrix in this equation must 
equal zero, thus giving the frequency equation: 
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The solution of this transcendental equation provides 
the values of , which represent the frequencies of 
vibration of the cantilever beam with a rigid mass at the 
free end. Either form of Equation (14) can now be em-
ployed to express coefficient A  in terms of 1A ; the 
first gives: 
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This result along with the previously obtained condi-

tions that 3 1A A   and 4 2A A   allows the mode-shape 
expression of Equation (3) to be written in the form of 
Equation (19). 

Substituting separately the frequency-equation roots 
for L  into this expression, one obtains the corre-
sponding mode-shape functions. 

3. Results and Discussion 

In this study, a tip mass in the form of a nanoscale parti-
cle is attached to a fixed-free SWCNT, whose behavior 
of the nanotube is investigated using mass sensor mode 
analysis. A resonant frequency shift-based mass sensor is 
made using the fixed-free SWCNT. The dimensions of 
the SWCNT are as follows: inner radius 9.9 nm, outer 
radius 16nm, stiffness , mass per unit length 28.4 Gpa

121.22 10 kg m  and length 6.8 μm. In order to investi- 
gate the effects of attached mass on the resonant frequency, 

a a  and R r L  a aM m mL  were set as the dimen- 
sionless values of radius and added mass, respectively. 

Figure 4 and Figure 5 show the variation in the first 
and second resonant frequencies for fixed-free SWCNT 
with various added mass for various radii, respectively. 
The simulation results in the two figures indicate that the 
first and second resonant frequencies decrease with in-
creasing attached mass. Furthermore, for a constant at-
tached mass, Figure 4 reveals that the volume of added 
mass has little effect on the first resonant frequency. In 
contrast, Figure 5 shows that the second resonant fre-
quency decreases with increasing the volume of added 
mass. 

Figure 6 and Figure 7 show the variation in the first 
and second resonant frequencies for a fixed-free SWCNT 
for various radii and added mass of the particle. The two 
figures show that added mass significantly affects the 
first and second resonant frequencies, especially the for-
mer. Thus, the first resonant frequency can be used in the 
measurement of attached mass, Figure 7 shows that the 
second resonant frequency decreases rapidly with in-
creasing radius of added mass. This is due to the rotating 
effect having a larger effect on the second resonant fre-
quency. Therefore, the second resonant frequency can be  

 

Figure 4. Variation in the first resonant frequency for a 
fixed-free SWCNT with various added mass for various 
radii of the particle. 
 

 

Figure 5. Variation in the second resonant frequency for a 
fixed-free SWCNT with various added mass for various 
radii of the particle. 

 

     

     

     

     

3

3

3

3

3

3

3

3

cos cosh cosh cos
( ) cos sin

sin sinh sinh sin

cos cosh cosh cos
cosh sinh

sin sinh sinh sin

a

a

a

a

aL j
L L L L

mLx x x
aL j

L L L L
mL

aL j
L L L

mLx x
aL j

L L L
mL

   
  

   

L

L

  
 

   

  
 

  

  
 

  



                  (19)

    

Copyright © 2012 SciRes.                                                                              JSEMAT 



Analytical Solution of Vibration Analysis on Fixed-Free Single-Walled Carbon Nanotube-Based Mass Sensor 51

 

 

Figure 6. Variation in the first resonant frequency for a 
fixed-free SWCNT with various radii of the particle for 
various added mass. 
 

 

Figure 7. Variation in the second resonant frequency for a 
fixed-free SWCNT with various radii of the particle for 
various added mass. 

used in the measurement of the radius of added mass. 

4. Conclusion 

The mass sensor mode analysis method was applied to an 
SWCNT-based mass sensor to determine the mass and 
volume of an attached nanoparticle. The first and second 
resonant frequencies decrease with increasing attached 
mass. It was found that the resonant frequency shift of 
the first mode is not obvious when the volume of the 
particle is changed. However, the volume of the added 
nanoparticle significantly affects the second resonant 

frequency. Moreover, the resonant frequency shift of first 
mode is very obvious when the attached mass is changed; 
it is thus suggested that the first resonant frequency be 
used in the measurement of attached mass. Furthermore, 
the second resonant frequency decreases rapidly with 
increasing volume of additional mass; the measurement 
of the volume of added mass can be conducted using the 
second resonant frequency. SWCNTs can thus be used as 
resonant frequency shift-based mass sensors. 
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