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ABSTRACT 

The present paper discusses the application of localized linear models for the prediction of hourly PM10 concentration 
values. The advantages of the proposed approach lies in the clustering of the data based on a common property and the 
utilization of the target variable during this process, which enables the development of more coherent models. Two al-
ternative localized linear modelling approaches are developed and compared against benchmark models, one in which 
data are clustered based on their spatial proximity on the embedding space and one novel approach in which grouped 
data are described by the same linear model. Since the target variable is unknown during the prediction stage, a com-
plimentary pattern recognition approach is developed to account for this lack of information. The application of the 
developed approach on several PM10 data sets from the Greater Athens Area, Helsinki and London monitoring net-
works returned a significant reduction of the prediction error under all examined metrics against conventional fore-
casting schemes such as the linear regression and the neural networks. 
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1. Introduction 

Environmental health research has demonstrated that 
Particulate Matter (PM) is a top priority pollutant when 
considering public health. Studies of long-term expo-
sure to air pollution, mainly to PM, suggest adverse 
long- and short-term health effects, increased mortality 
(e.g. [1,2]), increased risk of respiratory and cardio-
vascular related diseases (e.g. [3]), as well as increased 
risk of developing various types of cancer [4]. Hence, 
the development and use of accurate and fast models 
for forecasting PM values reliably is of immense inter-
est in the process of decision making and modern air 
quality management systems.  

In order to evaluate the ambient air concentrations of 
particulate matter, a deterministic urban air quality 
model should include modelling of turbulent diffusion, 
deposition, re-suspension, chemical reactions and 
aerosol processes. In recent years, an emerging trend is 
the application of Machine Learning Algorithms 
(MLA), and particularly, that of the Artificial Neural 
Networks (ANN) as a means to generate predictions 
from observations in a location of interest. The strength 
of these methodologies lies in their ability to capture 
the underlying characteristics of the governing process 
in a non-linear manner, without making any predefined 

assumptions about its properties and distributions. 
Once the final models have been determined, it is then 
a straight-forward and exceedingly fast process to gen-
erate predictions. However, ANN have also inherent 
limitations. The main one is the extension of models in 
terms of time period and location; this always requires 
training with locally measured data. Moreover, these 
models are not capable of predicting spatial concentra-
tion distributions.  

Owing to the importance and significant concentra-
tions of PM in major European cities, there is an in-
creasing amount of literature concerned with the ap-
plication of statistical models for the prediction of 
point PM values. For the purposes of the EU-funded 
project APPETISE, an inter-comparison of different air 
pollution forecasting methods was carried out in Hel-
sinki [5]. Neural networks demonstrated a better fore-
casting accuracy than other approaches such as linear 
regression and deterministic models.  

In [6], Perez et al. compared predictions produced by 
three different methods: a multilayer neural network, 
linear regression and persistence methods. The three 
methods were applied to hourly averaged PM2.5 data for 
the years of 1994 and 1995, measured at one location in 
the downtown area of Santiago, Chile. The prediction 
errors for the hourly PM2.5 data were found to range 
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from 30% to 60% for the neural network, from 30% to 
70% for the persistence approach, and from 30% to 60% 
for the linear regression, concluding however that the 
neural network gave overall the best results in the predic-
tion of the hourly concentrations of PM2.5.  

In [7], Gardner undertook a model inter-comparison 
using Linear Regression, feed forward ANN and Classi-
fication and Regression Tree (CART) approaches, in 
application to hourly PM10 modelling in Christchurch, 
New Zealand (data period: 1989-1992). The ANN 
method outperformed CART and Linear Regression 
across the range of performance measures employed. The 
most important predictor variables in the ANN approach 
appeared to be the time of day, temperature, vertical 
temperature gradient and wind speed. 

In [8], Hooyberghs et al. presented an ANN for fore-
casting the daily average PM10 concentrations in Bel-
gium one day ahead. The particular research was based 
upon measurements from ten monitoring sites during the 
period 1997-2001 and upon the ECMWF (European 
Centre for Medium-Range Weather Forecasts) simula-
tions of meteorological parameters. The most important 
input variable identified was the boundary layer height. 
The extension of this model with further parameters 
showed only a minor improvement of the model per-
formance. Day-to-day fluctuations of PM10 concentra-
tions in Belgian urban areas were to a larger extent 
driven by meteorological conditions and to a lesser 
extent by changes in anthropogenic sources. 

In [9], Ordieres et al. analyzed several neural-network 
methods for the prediction of daily averages of PM2.5 
concentrations. Results from three different neural net-
works (feed forward, Radial Basis Function (RBF) and 
Square Multilayer Perceptron) were compared to two 
classical models. The results clearly demonstrated that 
the neural approach not only outperformed the classical 
models but also showed fairly similar values among dif-
ferent topologies. The RBF shows up to be the network 
with the shortest training times, combined with a greater 
stability during the prediction stage, thus characterizing 
this topology as an ideal solution for its use in environ-
mental applications instead of the widely used and less 
effective ANN. 

The problem of the prediction of PM10 was ad-
dressed in [10], using several statistical approaches such 
as feed-forward neural networks, pruned neural networks 
(PNNs) and Lazy Learning (LL).The models were de-
signed to return at 9 a.m. the concentration estimated for 
the current day. The forecast accuracy of the different 
models was comparable. Nevertheless, LL exhibited the 
best performances on indicators related to average good-
ness of the prediction, while PNNs were superior to the 
other approaches in detecting the exceedances of alarm 
and attention thresholds.  

In view of the recent developments in PM forecasting, 

the present paper introduces an innovative approach 
based on localized linear modelling. Specifically, two 
alternative localized liner modelling approaches are de-
veloped and compared against benchmark models such 
as the linear regression and the artificial neural networks. 
The advantage of the proposed approach is the identifica-
tion of the finer characteristics and underlying properties 
of the examined data set through the use of suitable clus-
tering algorithms and the subsequent application of a 
customized linear model on each one. Furthermore, the 
use of the target variable in the clustering stage enhances 
the coherence of the localized models. The developed 
approach is applied on several data sets from the moni-
toring networks of the Greater Athens Area and Helsinki, 
during different seasons. 

2. Modelling Approaches 

Time series analysis is used for the examination of a data 
set organised in sequential order so that its predominant 
characteristics are uncovered. Very often, time series 
analysis results in the description of the process through 
a number of equations (Equation (1)) that in principle 
combine the current value of the series, yt, to lagged val-
ues, yt-k, modelling errors, et-m, exogenous variables, xt-j, 
and special indicators such as time of the day. Thus, the 
generalized form of this process could be written as fol-
lows: 

yt = f (yt-k, xt-j, et-m | various k,j,m and special indicators) 
(1) 

2.1 Linear Regression 

This approach uses linear regression models to determine 
whether a variable of interest, yt, is linearly related to one 
or more exogenous variable, xt, and lagged variables of 
the series, yt. The expression that governs this model is 
the following: 

   

j

jtj

k

ktkt ycy x        (2) 

The coefficients c, β, γ are usually estimated from a least 
squares algorithm. The inputs should be a set of statisti-
cally significant variables, defined under Student’s t-test, 
estimated from the examination of the correlation coeffi-
cients or using a backward elimination selection proce-
dure from a larger initial set. 

2.2 Artificial Neural Networks (ANN) 

The multi-layer perceptron or feed-forward ANN [11] 
has a large number of processing elements called neurons, 
which are interconnected through weights (wiq, vqj). The 
neurons expand in three different layer types: the input, 
the output, and one or more hidden layers. The signal 
flow is from the input layer towards the output. Each 
neuron in the hidden and output layer is activated by a 
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nonlinear function that relies on a weighted sum of its 
inputs and a neuron-specific parameter, called bias, b. 
The response of a neuron in the output layer as a function 
of its inputs is given by Equation (3), where f1 and f2 can 
be sigmoid, linear or threshold activation functions. 

1 2
1 1

   ( ( ))
l m

i iq qj j j
q j

y f w f v x b b
 

 
  

 
  q        (3) 

The strength of neural networks lies in their ability to 
simulate any given problem from the presented example, 
which is achieved from the modification of the network 
parameters through learning algorithms. In this study, the 
Levenberg-Marquardt [12] algorithm is applied because 
of its speed and robustness against the conventional 
back-propagation. 

The most important issue concerning the introduction 
of ANN in time series forecasting is “generalization”, 
which refers to their ability to produce reasonable fore-
casts on data sets other than those used for the estimation 
of the model parameters. This problem has two important 
parameters that should be accounted for. The first is data 
preparation, which involves pre-processing and the se-
lection of the most significant variables. The second em-
braces the determination of the optimum model structure 
that is closely related with the estimation of the model 
parameters. Although, there is no systematic approach, 
which can be followed [13], some useful insight can be 
found using statistical methods such as the correlation 
coefficients. 

The second aspect can be jointly tackled under the 
cross-validation training scheme. The data set is split into 
three smaller sets the training (TS), the evaluation or 
validation (ES) and the prediction or testing (PS) sets. 
The model is initialized with a few parameters. The next 
step is to train the model using data from the training set 
and when the error of the evaluation set is minimized, the 
model parameters and configuration are stored. The 
number of parameters is then increased and a new net-
work is trained from the beginning. If ES error is lower 
compared to the previously found minimum, then the 
parameters of this new model are stored. This iterative 
process is terminated when a predefined number of itera-
tions are reached (Figure 1). 

In this study, ES was formed using a Euclidean metric 
withholding a percent value (here 25% is used) of the TS 
data that are located nearest to other data. The strength of 
this approach lies in the fact that TS covers more distinct 
characteristics of the process, thus, allowing for the de-
velopment of a model with better generalization capabili-
ties. 

2.3 Nearest Neighbours 

This class of hybrid models includes a local modelling 
and a function approximation to capture recent dynamics  

 

Figure 1. Iterative cross-validation training 
 
of the process. The underlying aim of these predictors is 
that segments of the series neighbouring under some dis-
tance measure may correspond to similar future values. 
This claim was endorsed by the work of Farmer and Si-
dorowich [14] that showed that the chaotic time-series 
prediction is several orders of magnitude better using 
local approximation techniques rather than universal ap-
proximators. The tricky part in these models is the selec-
tion of the embedding dimension, which effectively de-
termines segments of the series, and the number of 
neighbours. Initially, it is required to estimate the em-
bedding dimension d and time delay τ of the attractor as 
follows: 

  j)(t),)1((),...,()(  x dtytytY      (4) 

In this study, a value of τ = 1 was used and Y(t) had the 
same parameters as the linear regression model. The 
number of neighbours was not pre-determined but was 
set to vary between predefined limits. A small number of 
neighbours increase the variance of the results whereas a 
large number can compromise the local validity of a 
model and increase the bias of results. Once the nearest 
neighbours to Y(t) have been identified, an averaging 
procedure is followed in the present study to generate 
predictions.  

2.4 Local Models with Clustering Algorithms 
(LMCA) 

The idea behind the application of clustering algorithms 
in time series analysis is to identify groups of data that 
share some common characteristics. On each of these 
groups, the relationships amongst the members are mod-
elled through a single equation model. Consequently, 
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each of the developed models has a different set of pa-
rameters. The process is described in the following steps: 

1) Selection of the input data for the clustering algo-
rithm. This can contain lagged and/or future characteris-
tics of the series, as well as other relevant information.  

C(t) = [yt, yt-k, xt-j]. Empirical evidence suggests that 
the use of the target variable yt is very useful to discover 
unique relationships between input-output features. Ad-
ditionally, higher quality modelling is ensured with the 
function approximation since the targets have similar 
properties and characteristics. However, this occurs to 
the expense of an additional process needed to account 
for this lack of information in the prediction stage. 

2) Application of a clustering algorithm combined 
with a validity index or with user defined parameters, so 
that ncl clusters will be estimated. 

3) Assign all patterns from the training set to the ncl 
clusters. For each of the clusters, apply a function ap-
proximation model, , so that 

ncl forecasts are generated. 

( , ) 1...t i t k t j cy f y i n  x , 

Successful application of this method has been re-
ported on the prediction of locational electricity marginal 
prices [15], Mckay Glass and daily electric load peak 
series [16], the A and D series of the Santa Fe forecasting 
competition [17] and hourly electric load [18].  

In this study, the k means clustering algorithm was se-
lected [19]. It is a partitioning algorithm that attempts to 
directly decompose the data set into a set of groups 
through the iterative optimization of a certain criterion. 
More specifically, it re-estimates the cluster centres 
through the minimization of a distance-related function 
between the data and the cluster centres. The algorithm 
terminates when the cluster centres stop changing. 

The optimal number of clusters is determined using a 
modified cluster validity index, CVI, [20], which is di-
rectly related to the determination of the user-defined 
(here the number of clusters) parameters of the clustering 
algorithm. Two indices are used for showing an estimate 
of under-partitioning (Uu) and over-partitioning (Uo) of 
the data set: 

min
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MDi is the mean intra-cluster distance of the i-th clus-
ter. Here, dmin is the minimum distance between cluster 
centres, which is a measure of intra-cluster separation. 
The optimum number is found from the minimization of 
a normalized combinatory expression of these two indi-
ces. 

2.5 Hybrid Clustering Algorithm (HCA) 

The hybrid clustering algorithm is an iterative procedure 

that groups data, based on their distance from the hy-
per-plane that best describes their relationship. It is im-
plemented through a series of steps, which are presented 
below: 

1) Determine the most important variables. 
2) Form the set of patterns H(t) = [yt, yt-k, xt-k]. 
3) Select the number of clusters nh. 
4) Initialize the clustering algorithm so that nh clusters 

are generated and assign patterns. 
5) For each new cluster, apply a linear regression 

model to yt using as explanatory variables the remaining 
of the set Ht. 

6) Assign each pattern to a cluster based on their dis-
tance.  

7) Go to 5) unless any of the termination procedures is 
reached. 

The following termination procedures are considered: 
a) the maximum pre-defined number of iterations is 
reached and b) the process is terminated when all pat-
terns are assigned to the same cluster as in the previous 
iteration in 6). The selection of the most important 
lagged variables, 1), is based on the examination of the 
correlation coefficients of the data. 

The proposed clustering algorithm is a complete time 
series analysis scheme with a dual output. The algorithm 
generates clusters of data, the identical characteristic of 
which is that they “belong” to the same hyper-plane, and 
synchronously, estimates a linear model that describes 
the relationship amongst the members of a cluster. 
Therefore, a set of nh linear equations is derived (Equa-
tion (6)). 

hjtjiktkiioit niXbyaay 1   ,ˆ ,,,,    (6)
 

Like any other hybrid model that uses the target vari-
ables in the development stage, the model requires a 
secondary scheme to account for this lack of information 
in the forecasting phase. For HCA and LMCA, the only 
requirement is the determination of the cluster number, 
nh and ncl respectively, which is equivalent to the estima-
tion of the final forecast. 

The optimum number of HCA clusters is found from a 
modified cluster validity criterion. An estimate of un-
der-partition (Uu) of the data was formed using the in-
verse of the average value of the coefficient of determi-
nation (Ri

2) on all regression models. Uo indicates the 
over-partitioning of the data set, and dmin is the minimum 
distance between linear models (Equation (7)). The op-
timum number is found from the minimization of a nor-
malized combinatory expression of these two indices.  
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2.6 Pattern Recognition 

A pattern recognition scheme with three alternative ap-
proaches was then applied to convert the LMCA and 
HCA output to the final predictions. Initially, a conven-
tional clustering (k-means) algorithm was employed to 
identify similar historical patterns in the time series. The 
second was to determine ncl / nh at each time step, using 
information contained in the data of the respective cluster. 

(p1) Select a second data vector using only histori-
cal observations Pt = [yt-k, xt-k] 

(p2) Initialize a number of clusters nk 
(p3) Apply a k-means clustering algorithm on Pt. 
(p4) Assign data vectors to each cluster, so that 

each of the nk clusters should contain km, m = 1,…, nk 
data. 

To obtain the final forecasts the following three alter-
natives were examined: 

(M1) From the members of the k-th cluster find the 
most frequent LMCA / HCA cluster, i.e. ncl / nh number. 

(M2) From the members of the k-th cluster estimate 
the final forecast as a weighted average of the LMCA/ 
HCA clusters. Here pi is the percentage of appearances of 
the LMCA / HCA cluster in the k-th cluster data. 

clh
i

ntit nnnandkiypy or  ,...,1    ,...,1,    

(8) 

(M3) From the members of the k-th cluster estimate 
the final forecast as a distance weighted average of the 
HCA clusters. 

2  and  

or  ,...,1    ,...,1,















a
d

d
t

PPd

nnnandkiyty

i

a
i

a
i

i

iti

clh
i

ntit

(9) 

The optimal number of clusters for the pattern recog-
nition stage was determined using the modified com-
pactness and separation criterion for the k-means algo-
rithm discussed previously in section “Local Models with 
Clustering Algorithms”. 

3. Data Description and Results 

The previously described forecasting methodologies 
were applied to eight different data sets both univariate 
and multivariate. The data sets were hourly PM10 con-
centration values from the monitoring network in the 
Greater Athens Area and in the cities of Helsinki and 
London, spanning over different seasons. It should be 
clarified that meteorological data were available only 
from the Helsinki station. The results returned by the 
applied algorithms for each station are discussed sepa-
rately in the following sections.  

In addition to the combined LMCA / HCA – PR meth-
odology, the ideal case of a perfect knowledge of the ncl / 
nh parameter is also presented. This indicates the predic-
tive potential, or the least error that the respective meth-
odology could achieve. Also, the base-case persistent 
approach (yt = yt-1) is presented as a relative criterion for 
model inter-comparison amongst different data sets. The 
ability of the models to produce accurate forecasts was 
judged against the following statistical performance met-
rics:  

Root Mean Square Error  
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Mean Absolute Percentage Error 







k

i i

ii

O

PO

k
MAPE

1

1
100           (12) 

Index of Agreement  
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3.1 Greater Athens Area – Aristotelous Str 

The selected station from the Greater Athens Area moni-
toring network was Aristotelous Str. It is located at 
23°43΄39΄΄ North and 37°59΄16΄΄ West, at an elevation 
height of 95 m above ground level. It is characterized as 
an urban station, positioned in the city centre with traffic 
dominated emissions. The training and the prediction sets 
covered the periods from 1/7/2001 to 14/8/2001 and 
15/8/2001 to 31/8/2001, respectively.  

The analysis revealed that the most influential vari-
ables were PMt-1, PMt-2, PMt-24, PMt-25 and an indicator 
for the time of the day. This data set was used for the 
development of all methodologies and the input set for 
the pattern recognition scheme. The results on Table 1 
indicate that with the exception of NN, all other conven-
tional approaches demonstrate a reduction of the predic-
tion error by approximately 6% on the basis of the RMS 
error compared to the base case persistent method. The 
difference between LR and ANN was not found to be 
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statistically significant, although the later was marginally 
better under all criteria. 

The application of the local linear models was able to 
reduce the predictive error by an order of magnitude de-
pending on the pattern recognition scheme that was ap-
plied.  Both LMCA and HCA are capable of reaching 
exceedingly lower prediction error, with IA above 0.98, 
if all ncl/nh clusters are predicted correctly at each time 
step. Figure 2 presents a graphical description of the 
prediction error of the HCA-perfect cluster forecast. The 
HCA coupled with the M3 scheme returned the overall 

best prediction error that was approximately 8% lower 
than that of the persistent approach. 

3.2 Greater Helsinki Area – Kallio 

The data from the Helsinki monitoring network were 
from the suburban station of Kallio, with co-ordinates 
25°52΄92΄΄ W and 66°75΄47΄΄ N and elevation height of 
21 m above sea level. The training set was from 3/9/2003 
to 9/11/2003, whereas the unknown prediction set 
spanned from 10/11/2003 to 30/11/2003. 

The developed models for the prediction of PM10 val- 
 

Table 1. Prediction results from Aristotelous 

  RMS NRMS MAPE d FB 
Nu of 
clusters 

Persistent 9.5596 0.3112 13.006 0.9223 –0.0002   

LR 9.0193 0.277 12.6536 0.9007 0.0052   

ANN 8.9311 0.2716 12.3984 0.9152 0.0037   

NN 10.117 0.3485 14.3699 0.892 –0.0094 24 

LCMA           ncl = 4 nk = 32 

Perfect 4.6355 0.0732 7.2108 0.9813 –0.0043   

M1 9.6748 0.3187 13.3351 0.8999 –0.0107   

M2 9.0637 0.2797 12.434 0.9121 –0.0052   

M3 9.0559 0.2793 12.3804 0.9108 –0.009   

HCA               ncl = 8 nk = 13 

Perfect 2.1522 0.0158 2.857 0.9961 –0.0002   

M1 9.6085 0.3144 12.5104 0.9105 –0.0134   

M2 8.8787 0.2684 12.3668 0.915 0.0048   

M3 8.8153 0.2646 12.3368 0.9178 0.0046   

 

 

Figure 2. HCA perfect cluster forecast for the Aristotelous station (Athens) 
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Table 2. Linear regression model details for Helsinki 1 

Variable Coef. St. Error t-stat. Variable Coef. St. Error t-stat.

c 4.7626 1.1361 4.1921 T t-1 1.0627 0.2753 3.8601

PM t-1 0.7611 0.0247 30.8584 T t-2 –1.0446 0.274 –3.8128

PM t-2 0.0622 0.0246 2.5319 u t-1 –0.749 0.2213 –3.3847

PM t-24 0.0232 0.0136 1.7008 u t-2 0.6094 0.2216 2.7493

RH t-1 0.2055 0.0547 3.7582 v t-1 0.6673 0.2242 2.9767

RH t-2 -0.2361 0.0547 -4.317 v t-2 –0.4508 0.2257 –1.9968

 
Table 3. Prediction Results from Helsinki 1 

  
RMS NRMS MAPE d FB 

Nu of  
clusters 

Persistent 5.1208 0.2793 33.3564 0.9301 0.0001   

LR 4.9654 0.2626 36.4317 0.9073 –0.0139   

ANN 5.1722 0.2849 39.5785 0.9085 –0.0591   

NN 5.6876 0.3446 43.8667 0.857 –0.0489 13 

LCMA           ncl = 3 nk = 61 

Perfect 3.033 0.098 18.1484 0.9724 0.0038   

M1 5.1044 0.2775 37.1176 0.9295 –0.0119   

M2 4.892 0.2549 37.5676 0.9193 0.0008   

M3 4.8416 0.2497 36.905 0.9229 0.0049   

HCA               ncl = 7 nk = 19 

Perfect 1.5653 0.0261 8.9912 0.9932 –0.0051   

M1 5.2179 0.29 42.6351 0.9072 0.021   

M2 4.8139 0.2468 37.4036 0.9203 –0.0018   

M3 4.7612 0.2415 36.7128 0.9239 –0.0006   

 
ues from Helsinki contained meteorological parameters 
that were identified using a combination of statistical 
correlation properties and stepwise linear regression, 
discarding all those that were judged statistically as not 
significant under Student’s t-test. The finally selected 
parameters and their estimation from the least squares fit 
are shown on Table 2. 

The prediction results (Table 3) demonstrate that the 
forecasting ability of the conventional models is some-
what similar to that of the base-case persistent approach. 
The large prediction error of the ANN can be partly ex-
plained by the linear nature governing process that relates 
PM10 values to lagged values and from the over-fitting of 
the applied training scheme. The introduction of the 
LMCA and HCA localized models coupled with the M3 
pattern recognition scheme returned the least overall pre-
diction error that was approximately 5.5% and 7% re-
spectively lower on the RMS criterion and double under 
NRMS. Figure 3 shows the values of the prediction error 
of the LMCA-M3 modelling approach. 

 

m
3 ) 

Figure 3. Prediction and error with LCMA – M3 approach 
 

3.3 Greater London Area – Bloomsbury 

The data from the Greater London Area were from the 
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Bloomsbury station located in the city centre of London 
(51°31'24" N, 0°7'54" W), characterised as an urban 
background station. The training set was selected to 
cover the period from 1/9/2005 to 22/10/2205, whereas 
the unknown prediction set comprised data ranging from 
23/10/2005 to 6/11/2005. 

The stepwise regression with a threshold value for the 
t-statistic of  1.96, corresponding to the 95% confidence 
interval, revealed as the most significant values PMt-1, 
PMt-2, PMt-24. Additionally, an indicator for the time of 
the day was utilized. That data set was used for the de-
velopment of all methodologies while the input set for 
the pattern recognition scheme. The analysis of the re-
sults (Table 4) indicated that none of the conventional 
forecasting approaches managed to return consistently 
lower prediction errors than the base case persistent ap-
proach. The least prediction error was returned from the 
ANN that was 3.6% lower than the persistent approach 
on the basis of the RMS error. 

The developed localized linear model (HCA) has sig-
nificant forecasting potential, as it can be observed in 
Figure 4, under the assumption of a perfect knowledge 
of the future cluster in the pattern recognition stage. The 
percentage improvement over the bench-mark persistent 
approach ranged from 40-70%. Similar results were 
found for the other two data sets 

4. Discussion 

The development and application of accurate models for 
forecasting PM concentration values in a rather fast and  
 

efficient manner is of primary concern in modern air 
quality management systems. The applied LR and ANN 
are nowadays mature approaches that have been inte-
grated in many operational systems and could be used for 
the benchmarking of novel methodologies. The results of 
this work yielded that for the majority of the examined 
data sets, the linear approach marginally outperforms 
ANN. This indicates that the underlying process could 
possess predominantly linear characteristics.  

The main focus of this work was the development and 
application of novel localized linear models. These were 
based on clustering algorithms as a means to identifying 
 

 

Figure 4. Index of agreement for HCA – perfect cluster 
forecast 

Table 4. Prediction results from London Bloomsbury 

 RMS NRMS MAPE d FB Remarks 

Persistent 4.4165 0.272 16.4202 0.9282 –0.0007   

LR 4.3119 0.2593 17.281 0.9257 0.0206   

ANN 4.256 0.2526 16.9101 0.9266 0.0221   

NN 5.1193 0.3655 22.466 0.8933 0.0075 14 

LCMA       ncl = 4 nk = 16 

Perfect 4.1665 0.2421 17.0711 0.9324 0.0193   

M1 4.4947 0.2817 17.9071 0.9137 –0.0136   

M2 4.2704 0.2543 17.051 0.9228 0.0069   

M3 4.3005 0.2579 17.9051 0.9229 0.021   

HCA        ncl = 7 nk = 29 

Perfect 1.2401 0.0214 5.1061 0.9945 0.0064   

M1 4.3246 0.2608 16.8142 0.8877 –0.0188   

M2 4.2795 0.2554 16.8375 0.9163 0.0097   

M3 4.2513 0.2521 16.9179 0.8812 0.0046   
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similar properties of the time series. The LMCA identi-
fied clusters based on their proximity on the embedding 
space, whereas HCA identified grouped points that were 
described by the same linear model. As both approaches 
included the target variable in the model development 
stage, a pattern recognition scheme was needed to ac-
count for this lack of information in the prediction stage.  

The final prediction model was reached with the use of 
the modified CVI coupled with a pattern recognition 
scheme. The results suggested M3 as the most effective 
choice, because it produced consistently the least predic-
tion error, under all metrics. For the RMS and MAPE 
errors, the improvement over the persistent approach 
ranged from 3.5% (London) to 7.7% (Athens and Hel-
sinki). This value was almost doubled for NRMS and IA 
for the respective data sets. The HCA produced the least 
prediction error on every single examined data set, com-
pared both to conventional approaches and the LCMA. 

5. Conclusions 

This paper introduced the application of localized linear 
models for forecasting hourly PM10 concentration values 
using data from the monitoring networks of the cities of 
Athens, Helsinki and London. The strength of this inno-
vative approach is the use of a clustering algorithm that 
identifies the finer characteristics and the underlying re-
lationships between the most influential parameters of 
the examined data set and subsequently, the development 
of a customized linear model. The calculated clusters 
incorporated the target variable in the model develop-
ment phase, which was beneficial for the development of 
more coherent localized models. However, in order to 
overcome this lack of information in the prediction stage 
a complementary scheme was required. For the purposes 
of this study, a pattern recognition scheme based on the 
concept of weighted average distance (M3) was devel-
oped that consistently returned the least error under all 
examined metrics. The calculated results show that the 
proposed approach is capable of generating significantly 
lower prediction error against conventional approaches 
such as linear regression and neural networks, by at least 
one order of magnitude. 
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