
J. Software Engineering & Applications, 2010, 3: 364-373 
doi:10.4236/jsea.2010.34041 Published Online April 2010 (http://www.SciRP.org/journal/jsea) 

Copyright © 2010 SciRes                                                                                 JSEA 

Study and Analysis of Defect Amplification Index 
in Technology Variant Business Application 
Development through Fault Injection Patterns 

Paloli Mohammed Shareef1, Midthe Vijayaraghavan Srinath2, Subbiah Balasubramanian3 

1Trimentus Technologies, Chennai, India; 2Mahendra Engineering College, Namakkal, India; 3Anna University, Coimbatore, India. 
Email: pmshareef@gmail.com, {sri_induja, s_balasubramanian}@rediffmail.com 

Received December 26th, 2009; revised January 14th, 2010; accepted January 26th, 2010. 

 
ABSTRACT 

Software reliability for business applications is becoming a topic of interest in the IT community. An effective method to 
validate and understand defect behaviour in a software application is Fault Injection. Fault injection involves the de-
liberate insertion of faults or errors into software in order to determine its response and to study its behaviour. Fault 
Injection Modeling has demonstrated to be an effective method for study and analysis of defect response, validating 
fault-tolerant systems, and understanding systems behaviour in the presence of injected faults. The objectives of this 
study are to measure and analyze defect leakage; Amplification Index (AI) of errors and examine “Domino” effect of 
defects leaked into subsequent Software Development Life Cycle phases in a business application. The approach en-
deavour to demonstrate the phasewise impact of leaked defects, through causal analysis and quantitative analysis of 
defects leakage and amplification index patterns in system built using technology variants (C#, VB 6.0, Java). 

Keywords: Fault Injection, Amplification Index (AI), Domino Effect, Defect Leakage 

1. Introduction 

Formulating reliable and fault tolerant software is difficult 
and requires discipline both in specifying system function-
ality and in implementing systems correctly. Approaches 
for developing highly reliable software include the use of 
formal methods [1-3], and rigorous testing methods [4]. 

Testing cannot guarantee that commercial and busi-
ness software is correct [5], and verification requires 
enormous human effort and is subject to errors [6]. Au-
tomated support is necessary to help ensure software 
correctness and fault tolerance. 

Fault injection modelling involves the deliberate inser-
tion of faults or errors into a computer system in order to 
determine its response. It has proven to be an effective 
method for measuring and studying response of defects, 
validating fault-tolerant systems, and observing how 
systems behave in the presence of faults. In this study, 
faults are injected in key phases of software development 
of business application following a typical water fall 
software life cycle viz., SRS, Design and Source code.  

2. Literature Review 

The literature review consolidates the understanding on 

fault injection, associated topics and subsequent studies 
to emphasis the need to fault injections in business soft-
ware application. It also crystallizes the need for aware-
ness, tools and analyzes defect leakage/amplification.  

Even after 20 years of existence the awareness of fault 
injection and associated modelling with tools are very 
rarely used and understood in the commercial software 
industry and used. The usefulness in the defect modelling 
and building fault tolerant software systems are not 
properly preached and/or practiced. Added, the availabil-
ity of appropriate literature and software tools is very few 
and not used in commercial and business application 
design and testing. 

After a detailed review of literature by the researcher it 
was concluded that there is an industrious interest soft-
ware fault injection in the software industry to develop 
commercially reliable software.  

3. Approach 

In recent years there has been much interest in the field of 
software reliability and fault tolerance of systems and 
commercial software. This in turn has resulted in a wealth 
of literature being published around the topic, such as the 



Study and Analysis of Defect Amplification Index in Technology Variant Business Application  365
Development through Fault Injection Patterns 

Fault Injection in the form of the ‘Marrying Software 
Fault Injection Technology Results with Software Reli-
ability’ by Jeffrey Voas, Cigital Norman Schneidewind. 

Many critical business computer applications require 
“fault tolerance,” the ability to recover from errors or 
exceptional conditions. Error free software is very diffi-
cult to create and creating fault tolerant software is an 
even greater challenge. Fault tolerant software must suc-
cessfully recover from a multitude of error conditions to 
prevent harmful system failures. 

Software testing cannot demonstrate that a software 
system is completely correct. An enormous number of 
possible executions that must be examined in any 
real-world sized software system. Fault tolerance ex-
pands the number of states (and thus execution histories) 
that must be tested, because inconsistent or erroneous 
states must also be tested. 

Mailing lists, websites, research and forums have been 
created in which all aspects of this fresh new niche soft-
ware engineering area are discussed. People are inter-
ested, partly because it is a new area but also because the 
whole field of commercial software reliability is in itself 
so interesting; as it holds so many wide ranging disci-
plines, perspectives and logic at its core. Software reli-
ability engineering is uniting professionals in disciplines 
that previously had little to do with one another, it is cre-
ating more opportunities for employment in the online 
environment, and it is changing the face and structure of 
all information that we seek out on the web. In the era of 
economic recession, customer demands reliable, certified 
and fault tolerant commercial and business software ap-
plications. 

In this research, the focus is on software testing tech-
niques that use fault injection. Several potentially pow-
erful existing systems have drawbacks for practical ap-
plication in business application development environ-
ment. We first examine existing fault injection tech-
niques and evaluate their potential for practical applica-
tion for commercial and business software applications. 
Available and accessible literature infrastructure includ-
ing premium subscribed IEEE and ACM resources were 
studied and summarized for literature review from 1986 
(20 years). 

4. Fault Injection Modelling 

Fault Injection Modelling (FIM) involves the deliberate 
insertion of faults or errors into a computer system in 
order to determine its response. It has proven to be an 
effective method for measuring and studying response of 
defects, validating fault-tolerant systems, and observing 
how systems behave in the presence of faults. In this 
study, faults are injected in all phases of software devel-
opment life cycle viz., Requirements, Design and Source 
code. 

4.1 Objectives 

The objectives of conducting these experiments are to 
measure process efficiencies, statistically study, analysis 
and report defect amplification of defects (Domino’s 
effect) across software development phases with a simi-
lar system constructed with technological variation.  

The goal of this research is to understand the behav-
iour of faults and defects pattern in commercial and 
business software application and defect leakage in each 
phase of application development.  

Throughout the literature certain questions reoccur, 
which one would anticipate when a new field emerges in 
commercial software fault tolerance? People are inter-
ested, and want to understand and define commercial 
software reliability and fault tolerance since the work on 
most fault injections and software reliability is found in 
life critical and mission critical application, so we try to 
answer the following questions;  
 Why study Fault Injection Modelling? 
 Why study business software fault tolerance re-

quirements? 
 Why are they called ‘Fault Injection & Error Seed-

ing’? 
 Why review Software Implemented Fault Injection 

(SWIFI)? 
 What work was performed, current status and work 

proposed? 
These questions will be expanded upon throughout the 

research, and seek to bring clarity to those who want to 
find the answers to the above, or to see if there truly are 
any answers! 

4.2 Background Concepts 

A fault is a hardware or software defect, inconsistency, 
transient electrical field, or other abnormal circumstance. 
An error is an invalid internal state, which may or may 
not be detected by the system. 

A failure is an invalid output. Thus a fault or error be-
comes a failure when it propagates to the output. There is 
a natural progression from fault to error to failure. Re-
covery code is the part of a program that is designed to 
respond to error states. Recovery code executes after the 
program recognizes that some erroneous or abnormal 
state has been entered. This code should gracefully re-
store the system to a valid state before a failure occurs. 

Figure 1 shows the progression from faults to errors 
and finally to failures. The recovery code should serve as 
a safety net to prevent the progression from error to fail-
ure. A fault tolerant system should never fail, even if it 
has faults. 

Testing recovery code requires the modeling of bad 
states that accurately simulate exceptional situations. As 
much as 50% of a fault tolerant program can consist of 
recovery code. Although testing might include invalid 

Copyright © 2010 SciRes                                                                                 JSEA 



Study and Analysis of Defect Amplification Index in Technology Variant Business Application  366 
Development through Fault Injection Patterns 

data that executes some of the recovery code, often much 
of this code is never executed during normal testing. 

Any recovery code testing technique must be based 
upon an assumed fault model [7]. We assume that all 
faults will behave according to some specific rules. Any 
fault model can only consider a subset of all possible 
faults.  

For example, a common debugging practice is to insert 
a series of print statements in key positions. This debug-
ging practice assumes a particular fault model.  

Faults will cause the program to execute in the incor-
rect order and will be demonstrated 

Figure 2 illustrates the taxonomy of Fault Injection 
Techniques in the printed output. Clearly, not all faults 
will adhere to this model. 

No one fault model will fit all faults. However, a fault 
model can be very effective in detecting faults that fit the 
model.  

Fault Injection technique of fault injection dates back 
to the 1970s when it was first used to induce faults at a 
hardware level. This type of fault injection is called 
Hardware Implemented Fault Injection (HWIFI) and 
attempts to simulate hardware failures within a system. 
The first experiments in hardware fault injection in-
volved nothing more than shorting connections on circuit 
boards and observing the effect on the system (bridging 
faults). It was used primarily as a test of the dependabil-
ity of the hardware system. Later specialised hardware 
was developed to extend this technique, such as devices 
to bombard specific areas of a circuit board with heavy 
 

 
Figure 1. Fault tolerance terms 

 

 

Figure 2. Taxonomy of fault injection techniques 

radiation. It was soon found that faults could be induced 
by software techniques and that aspects of this technique 
could be useful for assessing software systems. Collec-
tively these techniques are known as Software Imple-
mented Fault Injection (SWIFI) [8]. 

Martin defines software fault injections as faults which 
are injected at the software level by corrupting code or 
data. So faults are applicable at the implementation phase 
when the code of the system is available, and it can be 
applied on an application to simulate either internal or 
external faults.  

Internal faults represent design and implementation 
faults, such as variables/parameters that are wrong or not 
initialized, incorrect assignments or condition checks. 
External faults represent all external factors that are not 
related to faults in the code itself but that alter the sys-
tem’s state.  

The injection of failures can discover errors that nor-
mal procedures cannot. First, it tests the mechanisms of 
exception and treatment of failures that in normal cir-
cumstances are not sufficiently proven and, helps to eva-
luate the risk, verifying how much defective can be the 
system behavior in presence of errors. All of the injection 
failures methods are based on concrete hardware or 
software characteristics associated to systems which are 
applied, then, to realize generalizations is a very compli-
cated task. 

4.3 Prior Work on Fault Injection 

Fault injection can be used to modify either a program’s 
source code text or the machine state of an executing 
program. Figure 2 shows taxonomy of the key methods 
of fault injection. Fault injection techniques based on 
static analysis－program source modification－are mod-
eled by the left subtree.  

The most common static fault injection is mutation 
testing. The right subtree in Figure 2 models dynamic 
fault injection techniques where changes are made to an 
actively running program’s state. Much of the recent fault 
injection research is concerned with dynamic injection. 

4.4 Domino’s Effect 

Domino’s effect is the cascading effect of defects from 
the initial stages of the project to all the subsequent stag-
es of the software life cycle. Errors undetected in one 
work product are ‘leaked’ to the child work product and 
amplifies defects in the child work product. This chain 
reaction causes an exponential defect leakage. E.g.: un-
detected errors in requirements leak and cause a signifi-
cant number of defects in design which, in turn, causes 
more defects in the source code. The result of this study 
is to arrive at an “Amplification Index” which will char-
acterize the extent of impact or damage of phase-wise 
defects in subsequent Software Development Life Cycle 

Copyright © 2010 SciRes                                                                                 JSEA 



Study and Analysis of Defect Amplification Index in Technology Variant Business Application  367
Development through Fault Injection Patterns 

(SDLC) phases. 
The defect components in a work product and leakage 

into subsequent phases are illustrated in Figure 3 below: 

4.5 Trimentus Approach for Fault Injection  
Experiments 

Defects were deliberately injected into each phase (work 
product) in the software development life cycle of a typ-
ical application development project and the effect of the 
defects injected was studied subsequently. The injected 
defects are typical defects that are characteristic of the 
software systems of a commercial application on Library 
Management System (LMS) and were chosen from the 
organizational defect database. 

An approach was adopted towards studying the impact 
of defect amplification in a software system was causal 
analysis of the defects occurring in subsequent phases 
caused due to injected defects. 

Fault injection can occur in several ways: 
 Additional code can be linked to the target program 

and executed synchronously with the program flow. 
 A separate process can perform the injection asyn-

chronously with the flow of the target process. 
 Separate hardware can directly access the memory to 

modify the state, thus not affecting the timing char-
acteristics of the target process. 

Overlay faults occur when a program writes into an 
incorrect location due to a faulty destination operand. 
Chillarege and Bowen claim that overlay faults account 
for 34% of the errors in systems programs. The experi-
ment involved the use of failure acceleration, decreasing 
fault and error latency and increasing the probability that 
a fault will cause an error. The experiment applied failure 
acceleration by corrupting a large region of memory in a 
single injection. To inject an overlay fault, all bits in an 
entire page of physical memory are set to one. Because 
the page is in physical memory, the probability that the 
latency will be short is further increased. About 16% of 
the faults immediately crashed the system; about 14% 
caused a partial loss of service, which was usually re-
covered from soon after. 

Half of the faults did not cause failures. These poten-
tial hazards are failures waiting to occur. The injection  

 

Figure 3. Fault injection pattern 

process used was manual and only 70 faults were in-
jected during the entire experiment. 

Software faults introduced include: 
 Initialization faults: incorrectly or uninitialized vari-

ables. They are modeled by dynamically replacing 
the initializing assembly instructions with incorrect 
values or no-ops. 

 Assignment faults: incorrect assignment statements. 
Variable names on the right hand side are changed 
by dynamically mutating the assembly code. 

 Condition check faults: missing condition checks, 
for example, failure to verify return values. Condi-
tion checks are either entirely overwritten with 
no-ops, or replaced an incorrect condition check. 

 Function faults: Invalid functions. The assembly 
code for a function is dynamically replaced with the 
assembly code from a manually rewritten alternate 
version. 

Initialization faults can be caught statically with a good 
compiler. The assignment and condition check faults are 
clearly relevant to the testing of recovery code, since an 
incorrect assignment or condition can be a condition that 
should force the execution of recovery code. Function 
faults are also relevant, especially if they could be auto-
matically generated. Unfortunately, manual rewriting of 
sections of code is prohibitive in a large system. 

4.6 Why Study Fault Injection Modelling? 

Fault Injection Modelling has gradually crept into prom-
inence over the last decade as one of the new buzz words 
in software design. However, as Martin observes: 

“The main characteristic of fault injection software is 
that it is capable of injecting failures into any functional 
addressing unit by means of software, such as memory, 
registers, and peripherals. The goal of the fault injection 
software is to reproduce, in the logical scope, the errors 
that are reproduced after failures in the hardware. A good 
characterization of failure model should be allowed that 
this one was as versatile as possible, allowing a major 
number of combinations among the location, trigger con-
ditions, kind of fault and duration, so that the coverage 
was maximum. Recent days, the Fault Injection tech-
nique has been considered as a very useful tool to moni-
tor and evaluate the behavior of computing systems in 
the presence of faults. It’s because the tool tries to pro-
duce or simulate faults during an execution of the system 
under test, and then the behavior of the system is de-
tected.”[9]  

Figure 4 illustrates the relative cost factor in the defect 
resolution as the work product elaborates in the Software 
Development Life Cycle phases; 
 The Carnegie Mellon Software Engineering Institute1 

1Carnegie Mellon Software Engineering Institute, the Business Case for 
Requirements Engineering, RE’ 2003, 12 September 2003. 

Copyright © 2010 SciRes                                                                                 JSEA 



Study and Analysis of Defect Amplification Index in Technology Variant Business Application  368 
Development through Fault Injection Patterns 

reports that at least 42-50 percent of software defects 
originate in the requirements phase. 
 The Defense Acquisition University Program Man-
ager Magazine2 reports that a Department of Defense 
study that over 50 percent of all software errors originate 
in the requirements phase. 

1) MSDN (November, 2005) “Leveraging the Role of 
Testing and Quality across the Lifecycle to Cut Costs and 
Drive IT/Business Responsiveness”.   

2) Direct Return on Investment of Software Inde-
pendent Verification and Validation: Methodology and 
Initial Case Studies, James B. Dabney and Gary Barber, 
Assurance Technology Symposium, 5 June 2003. 

5. Description of Software System 
A Library Management System (LMS) help in automat-
ing functions of the library. It helps in reducing the time 
spent in record keeping and management effectively. The 
management information system application was used to 
conduct the fault injection experiments. The same appli-
cation was developed in the following technologies in 3G 
languages as listed in Table 1 below. 

LMS was simultaneously developed by independent 
project team and were made mutually exclusive. The ap-
plication development for the projects followed the same 
process as described in the quality management system 
for software development of Trimentus. LMS was chosen 
to FIM because common MIS Domain knowledge for the 
application was high; it can be independently managed  

 

Figure 4. Relative cost to fix defects vs. development phases 

Table 1. Library management system (LMS) experiment 
technology variants 

Project 
Id 

Programming 
Language 

RAD Tool Database 

LMS 1 C#.Net Visual Studio 
2005 

SQL Server 
2005 

LMS 2 Visual Basic 6.0 Visual Studio 
6.0 

Ms Access 
2007 

LMS 3 Java (jdk1.5) NetBeans IDE 
5.0 

SQL Server 
2005 

and developed; it covers the entire development life cy-
cle; and the technology used is typical of current com-
mercial applications and technologies in vogue. 

SDLC, technology, exclusiveness allows different 
types of faults to be injected at various phases without 
bias and enables direct comparison.  

In this paper, the system contains injected defects 
common across all projects. The same count of defects (5 
numbers) were introduced in each phase of SDLC. 

6. Results of the Experiments 

The results from the independent experiments are derived 
at each stage of the Software Life Development Cycle 
Phase. The following section describes the detailed ac-
tivities and step-by-step process followed in the intro-
duction of defects in each software work product with 
results output. 

6.1 Requirement Review  

SRS (Software Requirement Specification) document 
was prepared and used as the basis for development of 
for all the experiments. SRS is identified as requirements 
documents. However, after the review of SRS, defects 
were injected into the same document. The SRS contain-
ing the defects were baselined by independent project 
team respectively to be used as basis for the Design. 

The defects injected into the Requirement document 
are given in Table 2. The requirements defects are ana-
lyzed through causal analysis techniques to be classified 
and categorized. 

6.2 Design Phase Analysis 

Design document is prepared with (fault injected) SRS as 
basis. There were several defects observed with “source” 

Table 2. Definition of defect types – requirements 

Action 
taken 

Defect Injected Defect 
severity 

Defect Type

Deleted 
Reports based on clas-
sification by Type of 
books 

High 
Missed Re-
quirement 

Modified

Changed User Login to 
Student ID 
Changed the default 
status of the books 
given from “Pending” 
to “Borrowed” 
Add more records 
option not given as part 
of screen layout 

Medium 
Incomplete, 
Missed Re-
quirement 

Added 
Obtaining the proposed 
date for return of books 

High Ambiguous 

Deleted Set the type of fine High 
Missed Re-
quirement 

Added 
Set the number of times 
a books can be renewed 
by the members 

Medium 
Incorrect 
Requirement 2Defense Acquisition University Program Manager Magazine, Nov-Dec 

1999, Curing the Software Requirements and Cost Estimating Blues 

Copyright © 2010 SciRes                                                                                 JSEA 



Study and Analysis of Defect Amplification Index in Technology Variant Business Application  369
Development through Fault Injection Patterns 

as requirements. The Injected defects were major cause 
for design defects.  

6.2.1 Design Review 
Table 3 lists the number of defects injected independ-
ently in Requirements and inherent defects detected after 
Requirements document review. Further, it lists the de-
fect leakage to the child work product (Design) with in-
herent defects detected after Design review for each ex-
periment. 

6.2.2 Design Defect Amplification: Technology  
Variant  

Figure 5 represents the comparison of Amplification 
Index between the LMS developed on different tech-
nologies. The amplification of design defects caused due 
to the injected requirement defects in LMS is evidenced 
in all technologies and more prominent in VB Microsoft 
technology. 

6.2.3 Amplification Index (AI) for Requirements 
Table 3 and Table 4 represent the methodology that was 
used to calculate Requirement Amplification Index (i.e. 
impact of requirements defects on Design). 

6.2.4 Defects in Design 
Table 5 lists the various types of known design defects 
that were introduced after design review. The defects are 
classified and categorized after causal analysis. 
 

Table 3. Defects injected－requirements to design 

Source 

SRS Design 

 

Injected Inherent Leaked Inherent

LMS 1 5 4 4 8 

LMS 2 5 8 7 6 

LMS 3 5 5 7 9 

 
Table 4. Defects amplification index computation－require- 
ments to design 

Application Formula AI (Requirements on 
Design) 

LMS1 No. of design defects 
caused due to injected 
Requirement Defects / 
No. of injected Re-
quirement defects 

2/5 = 0.5 (rounded) 
 One requirement 
defect leaked causes 
0.5 defect in design in 
C # technology 

LMS2 No. of design defects 
caused due to injected 
Requirement Defects / 
No. of injected Re-
quirement defects 

6/5 = 1.3 (rounded) 
 One requirement 
defect leaked causes 
1.3 defect in design in 
VB technology 

LMS3 No. of design defects 
caused due to injected 
Requirement Defects / 
No. of injected Re-
quirement defects 

4/5 = 0.8 (rounded) 
 One requirement 
defect leaked causes 
0.8 defect in design in 
Java technology 

Table 5. Definition of defect types – design 

Action 
taken 

Defect Injected 
Defect 
severity 

Defect Type 

Removed 
Validation and au-
thentication of au-
thorized students 

High 
Interface, 
Incomplete 

Modified Data Type Changed Medium 
Database, 
Incorrect 

Review 
finding 

Editing of book type 
by borrower 

High Incorrect 

Modified 

There is a possibility 
to add null records 
when no validations 
are made or no ex-
ceptions are handled. 

Medium Incorrect 

Changed 
A datagrid displays 
the content only when 
the recordset is open. 

Low 
Database 
Incorrect 

 

6.2.5 Statistical Analysis and Validation 
Based on the AI derived from the above requirement data 
analysis, a statistical study was carried out to understand 
and analyze the statistical significance and relationship of 
AI across phases. 

A hypothesis was formulated based on the conditions 
of analysis as follows; 

H0 : Requirements Amplification Index is same across tech-
nologies 
H1 : Requirements Amplification Index is different between 
technologies 

Minitab tool was used to analyze the data set of Re-
quirement Amplification Index. A simple T-test was run 
to validate the statistical significance of the requirement 
AI data across technologies. 

Minitab output on the Hypothesis Testing is listed in 
Table 6 below. 

The statistical rule of elimination is: 
1) If the P- Value > 0.05, Then H0 is true and there is 

no difference in the groups. = Accept H0 
2) If the Value < 0.05, Then H0 is false and there is a 

statistically significant difference. = Reject H0 and Ac-
cept H1 
 

 

Figure 5. Amplification index trend – design 

Copyright © 2010 SciRes                                                                                 JSEA 



Study and Analysis of Defect Amplification Index in Technology Variant Business Application  370 
Development through Fault Injection Patterns 

Table 6. Statistical analysis computation 

One-Sample T:  

Test of mu = 0 vs mu not = 0 
Variable          N      Mean     StDev   SE Mean 
AI               3      0.867     0.404     0.233 

Variable          95.0% CI          T        P 

AI            (–0.137,   1.871)     3.71     0.065 

 
This results in: 0.065 > 0.05; so by the rule, Accept the 

Ho. 
To conclude that, “Requirements Amplification Index 

is same across technologies and there is no statistical 
significant difference on AI across technologies in the 
Library Management System (LMS) developed in dif-
ferent technologies”. 

6.3 Coding Phase Analysis 

Coding was performed with (fault injected) design as ba-
sis. There were several defects observed with “source” as 
Design and Requirements. The Injected defects were the 
major cause for Code defects detected in Code review. 

6.3.1 Code Review 
Table 7 appends to Table 3 with the number of defects 
injected independently with leaked defected in design 
document. Further, it lists the defect leakage from Design 
to Code with inherent defects detected after Code review 
for each experiment. 

6.3.2 Code Defect Amplification: Technology Variant 
Figure 6 represents the comparison of Amplification In-
dex between the LMS developed on different technolo-
gies. 

The amplification of coding defects caused due to the 
injected design defects in LMS is evidenced in all tech-
nologies and more prominent in VB Microsoft technology. 

6.3.3 Amplification Index for Design 
Table 8 illustrates the methodology and computation 
details used to calculate Design Amplification Index (i.e. 
impact of Design defects on Code). 
 

AI Trend - Technology Wise

0.9

1.9

1.6

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

LMS 1 LMS 2 LMS 3

Coding Phase - Technology

A
I

 

Figure 6. Amplification index trend－coding 

Table 7. Defects injected－design to code 

Source 
SRS Design Code 

 

Injected Inherent

Leaked 
+ 

In-
jected 

Inherent Leaked Inherent

LMS 1 5 4 4 + 5 8 7 7 

LMS 2 5 8 7 + 5 6 9 6 

LMS 3 5 5 7 + 5 9 10 6 

6.3.4 Statistical Analysis and Validation 
Similarly, based on the AI derived from the above design 
data analysis, a statistical study was carried out to under-
stand and analyze the statistical significance and rela-
tionship of AI across design phases. 

A hypothesis was formulated based on the conditions 
of analysis as follows; 

H0 : Design Amplification Index is same across technologies 

H1 : Design Amplification Index is different between technologies 

Minitab tool was used to analyze the data set of design 
Amplification Index. A simple T-test was run to validate 
the statistical significance of the design AI data across 
technologies. 

Minitab output on the Hypothesis Testing is listed in 
Table 9 below. 
The statistical rule of elimination is: 

1) If the P- Value > 0.05, Then H0 is true and there is 
no difference in the groups. = Accept H0 

2) If the Value < 0.05, Then Ho is false and there is a 
statistically significant difference. = Reject H0 and Ac-
cept H1 

This results in: 0.038 < 0.05; so by the rule, Reject H0 
and Accept H1. 

To conclude that, “Design Amplification Index is dif-
ferent across technologies and there is a statistical sig- 
nificant difference on design AI across technologies in 

Table 8. Defects amplification index computation－design 
to code 

Application Formula AI (Design on Code)

LMS1 

No. of Code defects 
caused due to injected 
Design Defects / No. of 
injected Design defects 

4.9/5 = 0.9 (rounded) 
 One design defect 
leaked causes 0.9 
defect in code in C # 
technology 

LMS2 

No. of Code defects 
caused due to injected 
Design Defects / No. of 
injected Design defects 

9/5 = 1.9 (rounded) 
 One design defect 
leaked causes 1.9 
defect in code in VB 
technology 

LMS3 

No. of Code defects 
caused due to injected 
Design Defects / No. of 
injected Design defects 

8/5 = 1.6 (rounded) 
 One design defect 
leaked causes 1.6 
defect in code in Java 
technology 

Copyright © 2010 SciRes                                                                                 JSEA 



Study and Analysis of Defect Amplification Index in Technology Variant Business Application  371
Development through Fault Injection Patterns 

Table 9. Statistical analysis computation 

One-Sample T:  

Test of mu = 0 vs mu not = 0 

Variable          N      Mean     StDev   SE Mean 

AI               3      1.467     0.513     0.296 

Variable          95.0% CI           T       P 

AI             (0.192,   2.741)     4.95     0.038 

 
the Library Management System (LMS) developed in 
different technologies”. 

6.4 Testing Phase Analysis 

Testing was performed with (fault injected) code as basis. 
There were several defects observed with “source” as 
Coding, Design and Requirements. The injected defects 
were the major cause for Code defects detected in Testing. 

6.4.1 Testing  
Table 10 appends to Table 7 with the number of defects 
injected independently with leaked defected in Code. 
Further, it lists the defect leakage from Code to Test 
Cases with inherent defects detected after Test Case re-
view for each experiment. 

6.4.2 Test Defect Amplification: Technology Variant 
Figure 7 represents the comparison of Amplification In-
dex between the LMS developed on different technologies. 
The amplification of test defects caused due to the injected 
code defects in LMS is evidenced in all technologies and 
more prominent in VB Microsoft technology. 

6.4.3 Amplification Index for Code 
Table 11 illustrates the methodology and computation 
details used to calculate Test Amplification Index (i.e. 
impact of Code defects on Test results). 

6.4.4 Statistical Analysis and Validation 
Similarly, based on the AI derived from the above code 
data analysis, a statistical study was carried out to under-
stand and analyze the statistical significance and rela-
tionship of AI across test phase. 
 

Table 10. Defects injected－code to test 

Source 

Design Code Testing 
 

Leaked 
+ 

Injected 

Inher-
ent 

Leaked 
+ 

Injected

Inher-
ent 

Leaked
Inher-

ent 

LMS1 4 + 5 8 7 + 5 7 9 0 

LMS2 7 + 5 6 9 + 5 6 14 4 

LMS3 7 + 5 9 10 + 5 6 15 2 

Table 11. Defects amplification index computation－code to 
test 

Application Formula 
AI (Code on Test 

results) 

LMS1 

No. of Test results de-
fects caused due to in-
jected Code Defects / No. 
of injected Code defects 

9/5 = 1.9 (rounded)  
One code defect leaked 
causes 1.9 defect in 
test results in C # 
technology 

LMS2 

No. of Test results de-
fects caused due to in-
jected Code Defects / No. 
of injected Code defects 

11/5 = 2.1 (rounded) 
 One code defect 
leaked causes 2.1 
defect in test results in 
VB technology 

LMS3 

No. of Test results de-
fects caused due to in-
jected Code Defects / No. 
of injected Code defects 

7/5 = 1.5 (rounded)  
One code defect leaked 
causes 1.5 defect in 
test results in Java 
technology 

A hypothesis was formulated based on the conditions 
of analysis as follows; 

Ho : Code Amplification Index is same across technologies 

H1 : Code Amplification Index is different between technologies

Minitab tool was used to analyze the data set of Code 
Amplification Index. A simple T-test was run to validate 
the statistical significance of the code AI data across 
technologies. 

Minitab output on the Hypothesis Testing is listed in 
Table 12 below. 

The statistical rule of elimination is: 
1) If the P- Value > 0.05, Then Ho is true and there is 

no difference in the groups. = Accept Ho 
2) If the Value < 0.05, Then Ho is false and there is a 

statistically significant difference. = Reject Ho and Ac-
cept H1 

This results in: 0.009 < 0.05; so by the rule, Reject Ho 
and Accept H1. 

To conclude that, “Code Amplification Index is dif-
ferent across technologies and there is a statistical sig-
nificant difference on design AI across technologies in 
the LiBrary Management System (LMS) developed in 
different technologies”. 
 

AI Trend - Technology Wise

1.9
2.1

1.5

0.0

0.5

1.0

1.5

2.0

2.5

LMS 1 LMS 2 LMS 3

Testing Phase - Technology

A
I

 
Figure 7. Amplification index trend－testing 

Copyright © 2010 SciRes                                                                                 JSEA 



Study and Analysis of Defect Amplification Index in Technology Variant Business Application  372 
Development through Fault Injection Patterns 

Table 12. Statistical analysis computation 

One-Sample T:  

Test of mu = 0 vs mu not = 0 

Variable          N      Mean     StDev   SE Mean 

AI               3     1.833     0.306     0.176 

Variable          95.0% CI            T      P 

AI             ( 1.074,   2.592)    10.39    0.009 

 

7. Conclusions 

AI Trend Analysis 
The Amplification Index indicates the extent of dam-

age caused by a defect in various phases of the project. 
The index increases with every step in the life cycle of 
the project. This is evident in the case of Microsoft tech-
nologies (VB and C#.net) but AI in the case of open 
source technologies such Java, the AI increases in re-
quirements and design but in code, it is found have mar-
ginal decrease compared to other technologies. It is also 
seen that defects amplification in the VB Technology 
show substantial increase in the amplification index 
across phases compared to other selected technologies. 

The relative growth of AI across phases in Java tech-
nology is less compared to Microsoft technology. This 
indicates a better fault tolerance for Java technology. 

It was concluded and validated statistically that; 
 Requirement defects amplification index across on 

identified technologies remains are same.  
 Design and Code defects amplification index across 

on technologies vary based on technologies for the 
common application developed in the same domain. 

Figure 8 illustrates the consolidated Amplification 
Index trend across technologies classified under each 
phase of SDLC; 

The defect leakage analysis emphasizes the impor-
tance of thorough and systematic reviews in the early 
stages of a software project with an emphasis on defect 
prevention. The analysis indicates a high increase of cost 
and effort to remove the defects at later stages. The 
number of defects increases exponentially as a direct 
result of defects leaked from previous stages.  

Figure 9 consolidated the defect leakage pattern 
across technologies distributed each SDLC phase. 

8. Future Experiments 

Currently, the study is being extended to analyze the ef-
fect of the defects and amplification index in the devel-
opment phases of the different domain based projects 
developed with same technology. 

Guidelines for review time and effort estimation are 
being computed by analyzing and defining the review 
and test stop criteria. Error seeding during testing can be 

AI Trend - Technology Wise

0.8

1.6
1.5

1.3

1.9
2.1

0.5

0.9

1.9

0.0

0.5

1.0

1.5

2.0

2.5

Req Design Coding

Phases

A
I

Java

VB

C#.Net

 

Figure 8. Amplification index trend – technology wise 
 

 

Figure 9. Defect leakage 
 
carried out to define the test stop criteria. 

9. Limitations of Experiments 

The following are the limitations of the experiments: 
 Causal analysis is relatively subjective to understand 

the cause of amplified defect. This required detailed 
review and discussion with project team and techni-
cal/technology experts. 

 Defect removal efficiency percentage used for ex-
periments in different technologies are based on a 
test in a sample requirement, design and code with 
known defects provided to project members and re-
view efficiency percentage derived from the defects 
detected. 

 It is verified that the skill set of the analysts and 
programmers working in the projects are same 
and/or similar across technologies. 

The experiments do not consider specialized auto-
mated tools and techniques used in the development of 
software work products which could have impact of the 
work product output quality. 

REFERENCES 

[1] A. Hall, “Seven Myths of Formal Methods,” IEEE Soft-
ware, September 1990, pp. 11-19. 

[2] C. B. Jones, “Systematic Software Development Using 
VDM,” Prentice-Hall International, London, 1986. 

Copyright © 2010 SciRes                                                                                 JSEA 



Study and Analysis of Defect Amplification Index in Technology Variant Business Application  
Development through Fault Injection Patterns 

Copyright © 2010 SciRes                                                                                 JSEA 

373

[3] S. J. Garland, J. V. Guttag and J. J. Horning. “Debugging 
Larch Shared Language Specifications,” IEEE Transac-
tions on Software Engineering, September 1990, pp. 
1044-1057. 

[4] W. Howden, “A Functional Approach to Program Testing 
and Analysis,” IEEE Transactions on Software Engi-
neering, October 1986, pp. 997-1005. 

[5] L. J. White, “Basic mathematical Definitions and Results 
in Testing,” In: B. Chandrasekaran and S. Radicchi, Ed., 
Computer Program Testing, North-Holland, 1981, pp. 
13-24. 

[6] R. DeMillo, R. Lipton and A. Perlis, “Social Processes 
and Proofs of Theorems and Programs,” Communications 
of the ACM, May 1979, pp. 803-820. 

[7] B. W. Johnson, “Design and Analysis of Fault-Tolerant 
Digital Systems,” Addison-Wesley, Massachusetts, 1989. 

[8] D. Dreilinger and L. J. Lin, “Using Fault Injection to Test 
Software Recovery Code,” November 1995. 

[9] N. G. M. Leme, E. Martins and C. M. F. Rubira, “A 
Software Fault Injection Pattern System,” Proceedings of 
the 9th Brazilian Symposium on Fault-Tolerant Comput-
ing, Florianópolis, 5-7 March 2001, pp. 99-113. 

 

 

 


