
J. Software Engineering & Applications, 2010, 3: 303-311 
doi:10.4236/jsea.2010.34036 Published Online April 2010 (http://www.SciRP.org/journal/jsea) 

Copyright © 2010 SciRes                                                                                 JSEA 

303

Separation of Fault Tolerance and Non-Functional 
Concerns: Aspect Oriented Patterns and 
Evaluation 

Kashif Hameed, Rob Williams, Jim Smith 
 

University of the West of England, Bristol Institute of Technology, Bristol, UK. 
Email: {Kashif3.Hameed, Rob.Williams, James.Smith}@uwe.ac.uk 
 
Received January 1st, 2010; revised January 30th, 2010; accepted February 1st, 2010. 

 
ABSTRACT 

Dependable computer based systems employing fault tolerance and robust software development techniques demand 
additional error detection and recovery related tasks. This results in tangling of core functionality with these cross cut-
ting non-functional concerns. In this regard current work identifies these dependability related non-functional and 
cross-cutting concerns and proposes design and implementation solutions in an aspect oriented framework that modu-
larizes and separates them from core functionality. The degree of separation has been quantified using software metrics.  
A Lego NXT Robot based case study has been completed to evaluate the proposed design framework. 
 
Keywords: Aspect Oriented Design and Programming, Separation of Concerns, Executable Assertions, Exception  

Handling, Fault Tolerance, Software Metrics 

1. Introduction  

Adding fault tolerance (FT) measures and other non- 
functional requirements to safety critical and mission 
critical applications introduces additional complexity to 
the core application. By incorporating handler code, for 
error detection, checkpointing, exception handling, and 
redundancy/diversity management, the additional com-
plexity may adversely affect the dependability of a safety 
critical or mission critical system. 

One of the solutions to reduce this complexity is to 
separate and modularize the extra, cross-cutting concerns 
from the true functionality. 

Although Rate of Change (ROC) based plausibility 
checks for error detection and recovery have been ad-
dressed by [1,2], unfortunately none of the previous stu-
dies propose the separation of these error handling con-
cerns from true functionality to avoid complexity.  

At the level of design and programming, several ap-
proaches have been utilized that aim at separating func-
tional and non-functional aspects. Component level ap-
proach like IFTC [3], computational reflection and me-
ta-object protocol based MOP [4] have shown that de-
pendability issues can be implemented independently of 
functional requirements.  

The evolving area of Aspect-Oriented Programming & 
Design (AOP&D) presents the same level of independ-

ence by supporting the modularized implementation of 
crosscutting concerns.  

Aspect-oriented language extensions, like AspectJ [5] 
and AspectC++ [6] provide mechanisms like Advice (be-
havioural and structural changes) that may be applied by 
a pre-processor at specific locations in the program 
called join point. These are designated by pointcut ex-
pressions. In addition to that, static and dynamic modifi-
cations to a program are incorporated by slices which can 
affect the static structure of classes and functions. 

The current work thus proposes some generalized as-
pect oriented design patterns representing fault tolerance 
error detection and recovery mechanisms like ROC plau-
sibility checks, exception handling, checkpointing and 
watchdog. Moreover some additional design patterns for 
developing robust mission/safety critical software are also 
presented. Software metrics like coupling, cohesion and 
size have been applied quite successfully to access and 
evaluate the quality attributes of OO software systems [7, 
8]. However separation of concerns (SOC) especially 
cross cutting ones in the light of new abstraction ad-
dressed by AO software development demands some ad-
ditional metrics. The current work reviews these addi-
tional metrics like concern diffusion over the components 
(CDC), concern diffusion over the operations (CDO) and 
concern diffusion over the lines of code (CDLOC). The 



Separation of Fault Tolerance and Non-Functional Concerns: Aspect Oriented Patterns and Evaluation 304 

SOC metric suite is later applied on the proposed AO 
patterns in an empirical case study. This helps evaluating 
the degree to which AOSD modularizes the FT concerns 
and its impact on other quality attributes. 

The validation and dependability assessment of pro-
posed AOFT patterns has already been done in an earlier 
work by the author [9].  

2. Aspect Oriented Exception Handling  
Patterns 

Exception handling has been deployed as a key mecha-
nism in implementing software fault tolerance through 
forward and backward error recovery mechanisms. It 
provides a convenient means of structuring software that 
has to deal with erroneous conditions [10].  

In [11], the authors addresses the weaknesses of ex-
ception handling mechanisms provided by mainstream 
programming languages like Java, Ada, C++, C#. In their 
experience exception handling code is inter-twined with 
the normal code. This hinders maintenance and reuse of 
both normal and exception handling code.  

Moreover as argued by [12], exception handling is 
difficult to develop and has not been well understood. 
This is due to the fact that it introduces additional com-
plexity and has been misused when applied to a novel 
application domain. This has further increased the ratio 
of system failures due to poorly designed fault tolerance 
strategies.  

Thus fault tolerance measures using exception han-
dling should make it possible to produce software where 
1) error handling code and normal code are separated 
logically and physically; 2) the impact of complexity on 
the overall system is minimized; and 3) the fault toler-
ance strategy may be maintainable and evolvable with 
increasing demands of dependability. 

In this respect, [4] has proposed an architectural pattern 
for exception handling. They address the issues like spe-
cification and signaling of exceptions, specification and 
invocation of handlers and searching of handlers. These 
architectural and design patterns have been influenced by 
computational reflection and meta-object protocol. 

However, most meta-programming languages suffer 
performance penalties due to the increase in meta-level 
computation at run-time. This is because most of the de-
cisions about semantics are made at run-time by the me-
ta-objects, and the overhead to invoke the meta-objects 
reduces the system performance [13]. 

Therefore we propose generalized aspect based pat-
terns for monitoring, error detection, exception raising 
and exception handling using a static aspect weaver. 
These patterns would lead to integration towards a robust 
and dependable aspect based software fault tolerance. 
The following design notations have been used to ex-
press aspect-oriented design patterns shown in Figure 1. 

2.1 Error Detection and Exception Throwing 
Aspect  

Error detection and throwing exceptions has been an an-
chor in implementing any fault tolerance strategy.  This 
aspect detects faults and throws range, input and output 
type of exceptions. The overall structure of this aspect is 
shown in Figure 2. The GenThrowErrExcept join points 
the NormalClass via three pointcut expressions for each 
type of fault tolerance case. 

RangeErrPc: this join points the contexMethod() only. 
It initiates a before advice to check the range type errors 
before executing the contextMethod(). In case the asser-
tions don’t remain valid or acceptable behavior con-
straints are not met, RaneErrExc exception is raised. 

InputErrPc: this join points the contextMethod() fur-
ther scoped down with input arguments of the con- 
textMethod(). It initiates a before advice to check the 
valid input before the execution of the context method. 
Incase the input is not valid it raises InputErrExc. 

OutputErrPc: this join points the contextMethod() 
 

 

Figure 1. Aspect oriented design notations 
 

 

Figure 2. Error detection, exception throwing 

Copyright © 2010 SciRes                                                                                 JSEA 



Separation of Fault Tolerance and Non-Functional Concerns: Aspect Oriented Patterns and Evaluation 305 

further scoped down with results as output of the con-
textMethod(). It initiates an after advice to check the va-
lid output after the execution of the context method. In-
case the output is not valid it raises OutputErrExc. 

2.2 Rate of Change Plausibility Check Aspect 

This aspect as shown in Figures 3 and 4 is responsible for 
checking the erroneous state of the system based on the 
rate of change in critical signal/data values. Once an er-
roneous state is detected, the respective exception is 
raised. Various exceptions are also defined and initial-
ized in this aspect. The pointcut GetSensorData defines 
the location where error checking plausibility checks are 
weaved whenever a critical data/sensor reading function 
is called. The light weight ROC-based plausibility asser-
tions are executed in the advice part of this aspect. 

2.3 Catcher Handler Aspect 

The CatcherHandler aspect as shown shown in Figure 
5(a) is responsible for identifying and invoking the ap-
propriate handler. This pattern addresses two run-time 
handling strategies. 
  The first strategy is designated by an exit_main point- 

 

 

Figure 3. Rate of change aspect pattern structure 
 

 

Figure 4. Rate of change aspect pattern dynamics 

cut expression. It checks the run-time main() function for 
various fatal error exceptions and finally aborts or exits 
the main program upon error detection. This aspect may 
be used to implement safe shut-down or restart mecha-
nisms in safety critical systems to ensure safety, if a fatal 
error occurs or safety is breached. 

The second strategy returns from the called function as 
soon as the error is detected. The raised exception is 
caught after giving warning or doing some effective ac-
tion in the catch block. This can help in preventing error 
propagation. Using this aspect, every call to critical func-
tions is secured under a try/catch block to ensure effec-
tive fault tolerance against an erroneous state.  

It can be seen in the Figure 5(a) below that exit_main 
pointcut expression join points the main() run-time func-
tion. Whereas caller_return pointcut expression join 
points every call to the contextMethod(). Moreover ex-
it_main and caller_return pointcut expressions are asso-
ciated with an around advice to implement error handling. 
The tjpproceed() allows the execution run-time main() 
and called functions in the try block.  

The advice block of the catcher handler identifies the 
exception raised as a result of in-appropriate changes in 
the rate of signal or data. Once the exception is identified, 
the recovery mechanism is initiated that assign new val-
ues to signal or data variables based on previous trends 
or history of the variable. 

2.4 Dynamics of Exception Handling Aspect 

This scenario shown in Figure 5(b) represents a typical 
error handling case. It simulates two error handling 
strategies. In the first case, control is returned from the 
caller to stop the propagation of errors along with a sys-
tem warning. In the second case the program exits due to 
a fatal error. This may be used to implement shutdown or 
restart scenarios. Moreover the extension of a class 
member function with a try block is also explained. A 
client object invokes the contextMethod() on an instance 
of NormalClass. The control is transferred to Catcher-
Handler aspect that extends the contextMethod() by 
wrapping it in a try block and executes the normal code. 
In case an exception is raised by previous aspect, the 
exception is caught by the CatcherHandler aspect. This 
is shown by the catch message. The condition shows the  
type of exception e to be handled by the handler aspect. 
CatcherHandler aspect handles the exception e. the call-
er_return strategy warns or signals the client about the 
exception and returns from the caller. The client may 
invoke the contextMethod2() as appropriate. In exit_main 
strategy, the control is retuned to client that exits the 
current instances as shown by the life line end status.  

3. Watch Dog Aspect 

A watchdog is a common concept used in real time sys-
tems for detecting and handling errors in real time sys 

Copyright © 2010 SciRes                                                                                 JSEA 



Separation of Fault Tolerance and Non-Functional Concerns: Aspect Oriented Patterns and Evaluation 306 

 
(a) 

 
(b) 

Figure 5. Catcher handler aspect. (a) Structure; (b) Dy-
namics 
 
tems. It is a component that detects error by receiving a 
delayed or null service response. Based on such timing 
faults, it initiates a corrective action, such as reset, shut-
down, alarm to notify attending personnel, or signaling 
more elaborate error-recovery mechanisms. Sometimes 
software watchdogs are more active by performing peri-
odic built-in-tests (BIT). Synchronous tasks are more 
prone to such timing based faults resulting in mission 
failures.  

In this regard we present a watchdog aspect (Figure 6) 
to make such tasks fault tolerant by weaving an advice 
code. Thus every synchronous mission critical task is 
monitored against a deadline that is derived from the 
worst case execution time of the overall task. As the dead 
line is expired, the mission is aborted. The watchdog 
aspect is presented below. It can be seen that every call 

to a contextMethod() of a NormalClass is weaved with 
a timing check to see whether time delay between current 
and previous call exceeds the dead line or not. The 
watchdog aspect communicates with an external clock 
interface to receive time stamps. Thus the watch dog 
aspect separates timing concerns from the true function-
ality. It also localizes the definition and signaling of ex-
ceptions. 

4. Save Data and Checkpointing Aspect 

Some tasks require context related critical data to be 
stored for post analysis and executing recovery mecha-
nisms. Every call to these tasks is weaved with a data 
saving advice. SaveData aspect (Figure 7) provides 
checkpointed stable recovery data to be used in ROC 
based error detection and recovery mechanisms. 

Whenever a critical function is called, SaveData as-
pect stores the contextual state information with the help 
of MemoryInterface.  

5. System Configuration & Initialization Aspect 

Most real time systems rely on sensors in-order to attain  

 
Figure 6. Watchdog aspect 

 

Figure 7. Save data & checkpointing aspect 

Copyright © 2010 SciRes                                                                                 JSEA 



Separation of Fault Tolerance and Non-Functional Concerns: Aspect Oriented Patterns and Evaluation 307 

physical information from external environment. These 
sensors need to be configured and initialized depending 
upon the modes of operation. For example a Lego NXT 
robot (Tribot) used in our case study uses light, ultra-
sonic and rotation sensors to carry out tasks. These sen-
sors are mapped on respective ports of the NXT brick. 
Moreover they must be initialized before starting actual 
tasks. It has also been observed that rotation sensors are 
reinitialized as the direction of rotation changes (when 
Tribot start traversing backward). All such requirements 
either cut-across true functional concern or emerges as 
additional non-functional requirement. Such require-
ments have been implemented in an aspect thus separat-
ing them from true functional concern. This aspect is 
weaved as a startup advice in the control flow of main 
program. 

6. Mission Pre-Conditions Aspect 

Mission critical real time systems require some pre-con-
ditions or constraints to be met before starting the core 
task. For example Tribot check the voltage level of bat-
teries and ambient light before staring its mission so that 
it could fulfill its tasks reliably. If the above constraints 
are not met, mission is aborted. Such constraints are 
cross cutting to core functional requirements and thus 
implemented as a separate aspect as shown as shown in 
Figure 8. 

As soon as the software finishes system initialization, 
the said aspect acquires environmental data from the 
SensorInteface and checks against the pre-conditions or 
constraints. If the constraints are not met, an exception is 
thrown and mission is aborted.  

7. Case Study  

In order to evaluate proposed AO design patterns, a case 
study has been carried out using a LEGO NXT Robot 
(Tribot). This uses an Atmel 32-bit ARM processor run-
ning at 48 MHz. Our development environment utilizes 
AspectC++ 1.0pre3 as aspect weaver [6]. 

The Tribot has been built consisting of two front 
wheels driven by servo motors, a small rear wheel and an 
arm holding a hockey stick with the help of some stan-
dard Lego parts. Ultrasonic and light sensors are also 
available for navigation and guidance purposes.   

An interesting task has been chosen to validate our de-
sign. In this example Tribot hits a red ball with its hock-
ey stick avoiding the blue ball placed on the same ball 
stand. It makes use of the ultrasonic and light sensors to 
complete this task. This task is mapped on a goal-tree 
diagram as shown in Figure 9. 

Any deviation in full-filling the OR goals and corre-
sponding AND sub-goals is considered as a mission 
failure. 

8. Aspects Evaluation via Software Metrics 

Although software metrics like coupling, cohesion and 
size has been used to access the software quality for quite 
some time, yet the separation of concerns especially 
cross cutting ones with the aid of aspect oriented soft-
ware development demands some additional metrics 
suite for its assessment. In this regard [14-16] have pro- 
posed additional metric suite for separation of concerns. 
This metric suite has been utilized in [17] to access the 
quality of some large scale software systems.   

These additional metrics measure the degree to which 
a single concern in the system maps to the design com-
ponents (classes and aspects), operations (methods and 
advice), and lines of code. For all the employed metrics, 
a lower value implies a better result. Some of these met-
rics used in our study are explained below. 

8.1 Separation of Concerns Metrics 

Separation of concerns (SoC) refers to the ability to iden-
tify, encapsulate and manipulate those parts of software 
that are relevant to a particular concern. The metrics for 

 

Figure 8. Mission pre-condition aspect 

 
 

Lego NXT 

Hockey Player 

Hit Red Ball Miss Blue Ball 

Move Forward & Stop 

25 cm short of ball post 

Differentiate Ball  

Move Back 

OR

AND AND 

 

Figure 9. Lego NXT robot case study: Goal tree diagram 

Copyright © 2010 SciRes                                                                                 JSEA 



Separation of Fault Tolerance and Non-Functional Concerns: Aspect Oriented Patterns and Evaluation 

Copyright © 2010 SciRes                                                                                 JSEA 

308 

SoC measurement are: 
Concern Diffusion over Components (CDC) 
This metric measures the degree to which a single 

concern in the system maps to the components in the 
software design. The more direct a concern maps to the 
components, the easier it is to understand. It is also easier 
to modify and reuse the existing components. 

Definition: CDC is measured by counting the number 
of primary components whose main purpose is to con-
tribute to the implementation of a concern. Furthermore, 
it counts the number of components that access the pri-
mary components by using them in attribute declarations, 
formal parameters, return types, throws declarations and 
local variables, or call their methods. 

Concern Diffusion over Operations (CDO) 
One way of measuring the code tangling is by count-

ing the number of operations affected by concern code. If 
a concern is scattered around more operations, it be-
comes harder to understand, maintain and reuse.  

Definition: CDO is measured by counting the number 
of primary operations whose main purpose is to contrib-
ute to the implementation of a concern. In addition, it 
counts the number of methods and advices that access 
any primary component by calling their methods or using 
them in formal parameters, return types, throws declara-
tions and local variables. Constructors also are counted 
as operations. 

Concern Diffusion over LOC (CDLOC) 
The intuition behind this metric is to find concern 

switching with in the lines of code. For each concern, the 
program text is analyzed line by line in order to count 
transition points. The higher the CDLOC, the more in-
termingled is the concern code within the implementation 
of the components; the lower the CDLOC, the more lo-
calized is the concern code. 

Definition: CDLOC counts the number of transition 
points for each concern through the lines of code. The 
use of this metric requires a shadowing process that par-
titions the code into shadowed areas and non-shadowed 
areas. The shadowed areas are lines of code that imple-
ment a given concern. Transition points are the points in 
the code where there is a transition from a non-shadowed 
area to a shadowed area and vice-versa. An extensive set 
of guidelines to assist the shadowing process is reported 
in [15]. 

8.2 Coupling Metrics 

Coupling is an indication of the strength of interconnec-
tions between the components in a system. Highly cou-
pled systems have strong interconnections, with program 
units dependent on each other [14]. The larger the num-
ber of couples, the higher the sensitivity to changes in 
other parts of the design and therefore maintenance is 
more difficult. Excessive coupling between components 
is detrimental to modular design and prevents reuse. The 

more independent a component is, the easier it is to reuse 
it in another application [14]. The metrics in this cate-
gory are Coupling between Components (CBC) and 
Depth of Inheritance Tree (DIT). 

Coupling between Components (CBC) 
This counts the coupling between classes, classes and 

aspects and between other aspects. It counts the classes 
used in attribute declarations i.e. C2 and C3 depicted in 
figure below. It also counts the number of components 
declared in formal parameters, return types, throws dec-
larations and local variables. Moreover classes and as-
pects from which attribute and method selections are 
made are also included.  

New coupling dimension are also defined in [14] in 
order to support aspect oriented software development 
(AOSD). For e.g. access to aspect methods and attributes 
defined by introduction (couplings C4, C5, C7, C8, C10), 
and the relationships between aspects and classes or oth-
er aspects defined in the pointcut (couplings C6, C9) as 
depicted in Figure 10. Thus overall this metric encom-
passes nine coupling dimensions (from C2 to C10). If a 
component is coupled to another component in an arbi-
trary number of forms, CBC counts only once. 

Depth of Inheritance Tree (DIT) 
DIT is defined as the maximum length from a node to 

the root of the tree. It counts how far down the inheri-
tance hierarchy a class or aspect is declared. This metric 
encompasses the coupling dimensions C1 and C11 illus-
trated in Figure 10. 

8.3 Lego NXT Software Measures Analysis 

Software metrics are attained for the Lego NXT Robot 
case study as shown in Figure 11. In this case study, a 
C++ based true functionality has been made fault tolerant 
by weaving various concerns in 30 places using 7 aspects 
and 10 independent point cut expressions. These 7 as-
pects represent different concerns that otherwise may be 
added to actual true concern making the code more tan-
gled, non maintainable and non reusable. 

Separation of Concern Measures 
Separation of concerns has been evaluated using CDC, 

CDO and CDLOC figures attained in the above case 
study.  

The Concern Diffusion over the components (CDC) 
metrics measures the mapping of a single concern on 
various components. It can be inferred from Figure 12 
below that there is 64% reduction in mapping of true 
concern on the components present in the system due the 
introduction of aspects. Moreover the individual aspects 
implementing cross cutting concerns don’t present large 
CDC figures that means, the aspects are loosely coupled 
with the system and thus can be more powerful candi-
dates for reusability. 

Same behavior has been observed in CDO measures as 
shown in Figure 13. As argued in [15,16], the code tang- 



Separation of Fault Tolerance and Non-Functional Concerns: Aspect Oriented Patterns and Evaluation 309

 

Figure 10. Coupling dimensions on AOSD [14] 

 

 

Figure 11. Lego NXT software metrics 
 
ling may be visualized by observing the diffusion of a 
concern in different operations. Again the true concern 
seems more tangled in different operations as compared 
to cross cutting concerns implemented as aspects. 

Concern diffusion over the lines of code (CDOLC) is a 
measure of how much tangled and inter-winded is the 
code implemented for a component. The larger the value, 
more tangled is the code with other concerns.  

CDLOC for the core functionality (TCS) counts to 2 
that seems a reasonable reduction as compared to non 
aspect oriented implementation. The seven non-fun- 
ctional/cross cutting concerns may add to present a larger 
CDLOC (Figure 14). 

It can also be observed from the CDLOC dispersion 
that there are some indicators of bit code tangling with 
the true functionality especially for the aspects responsi-

ble for error detection and exception handling. Upon  
code reviewing it was observed that some critical con-
textual information is required that resulted in concern 
switching. Apart from that, overall concern switching for 
each component is reasonably small to be considered 
better candidates for reusability and maintainability. 
There were four concerns implemented with null concern 
switching in this study. 

Coupling Measures 
As observed in the study by [17], the coupling be-

tween components for various concerns has not increased 
a lot in our case as well. Coupling between components 
seem to be uniformly distributed with an average value 
of 2 as shown in Figure 15. Apart from core functional-
ity (TCS), the increased coupling has been observed in 
the concerns implementing error detection and recovery 

Copyright © 2010 SciRes                                                                                 JSEA 



Separation of Fault Tolerance and Non-Functional Concerns: Aspect Oriented Patterns and Evaluation 310 

mechanisms. This is due to the fact that aspects imple-
menting these concerns are coupled with the core con-
cern for acquiring contextual information used in error 
detection and recovery mechanisms. 

Exception Throwing & Handling Measures 
It can be seen from Figures 16(a) and 16(b) that ex-

ceptions definition and throwing have been localized in 
the components responsible for error detection like ROC 
plausibility Checks and Watch Dog. Moreover, exception 
handling has also been localized in their respective as-
pects without diffusing any other component. 

  

TCS
36%

EPC
16%

ECI
11%

SD
11%

WD
5%

ROC
5%

EMH
5%

RCH
11%

 

Figure 12. CDC dispersion 
 

TCS
42%

EPC
7%

ECI
7%

SD
8%

WD
8%

ROC
3%

EMH
8%

RCH
17%

 

Figure 13. CDO dispersion 

TCS, 2

EPC, 0

ECI, 0

SD, 0

WD, 0
ROC, 2

EMH, 1

RCH, 1

 

Figure 14. CDLOC dispersion 

9. Conclusions & Future Work 

The current work proposes AO design patterns for de-
veloping fault tolerant and robust software applications.  

The aspect oriented design patterns under this frame-
work bring additional benefits like the localization of 
error handling code in terms of definitions, initializations 
and implementation. Thus error handling code is not du-
plicated as the same error detection and handling aspect 
is responsible for all the calling contexts of a safety 
critical function. Reusability has also been improved 
because different error handling strategies can be plugged 
in separately. In this way, aspect and functional code 
may both be ported more easily to new systems.  

Although a detailed analysis of concerns separation 
through aspects by refactoring large scale software ap- 

 
TCS, 3

EPC, 3

ECI, 2
SD, 3

WD, 1

ROC, 1

EMH, 1

RCH, 3

 

Figure 15. Coupling between components 
     

       

EPC, 2

WD, 1

ROC, 4 OTHERS, 0

 
(a) 

       

EMH, 1

RCH, 2

OTHERS, 0

 
(b) 

Figure 16. (a) Exceptions define & throw; (b) Try/catch 
blocks 

Copyright © 2010 SciRes                                                                                 JSEA 



Separation of Fault Tolerance and Non-Functional Concerns: Aspect Oriented Patterns and Evaluation 

Copyright © 2010 SciRes                                                                                 JSEA 

311

plication has been provided in [17]. Our case study also 
compliments some of the results. It has been observed 
that localization of exception management (definition, 
initialization and throwing) and exception handling im-
proves modularity. It has been observed that fault toler-
ance concerns when implemented as aspects have re-
sulted in considerable reduction in diffusion of concerns 
over the core functionality. The concern diffusion in 
terms of LOC does indicate clear separation and localiza-
tion of error management related issues. However some 
code tangling has been observed with error detection 
based aspects. This is due to the sharing of context in-
formation needed for detecting erroneous states. Apart 
from that CDLOC measures too small in the true func-
tionality. Coupling has been increased in the components 
responsible for error detection. Thus overall there has 
been an improvement in separation of concerns at the 
cost of slightly increased coupling. 

This further probes the need for incorporating an error 
masking strategy like Recovery Blocks and N-Version 
Programming. An aspect oriented design version of these 
strategies is also under consideration. 

REFERENCES 

[1] M. Hiller, et al., “Executable Assertions for Detecting 
Data Errors in Embedded Control Systems,” Proceedings 
of the International Conference on Dependable Systems 
& Networks, New York, June 2000, pp. 24-33. 

[2] M. Hiller, “Error Recovery Using Forced Validity As-
sisted by Executable Assertions for Error Detection: An 
Experimental Evaluation,” Proceedings of the 25th EU-
ROMICRO Conference, Milan, Vol. 2, September 1999, 
pp. 105-112. 

[3] P. A. C. Guerra, et al., “Structuring Exception Handling 
for Dependable Component-Based Software Systems,” 
Proceedings of the 30th EUROMICRO Conference (EU-
ROMICRO’04), Rennes, 2004, pp. 575-582. 

[4] A. F. Garcia, D. M. Beder and C. M. F. Rubira, “An Ex-
ception Handling Software Architecture for Developing 
Fault-Tolerant Software,” Proceedings of the 5th IEEE 
HASE, Albuquerque, November 2000, pp. 311-332. 

[5] AspectJ Project Homepage. http://eclipse.org/aspectj/ 

 

 

  

[6] AspectC++ Project Homepage. http://www.aspectc.org 

[7] S. Chidamber and C. Kemerer, “A Metrics Suite for Ob-
ject Oriented Design,” IEEE Transactions on Software 
Engineering, Vol. 20, No. 6, June 1994, pp. 476-493. 

[8] V. Basili, L. Briand and W. Melo, “A Validation of Ob-
ject-Oriented Design Metrics as Quality Indicators,” 
IEEE Transactions on Software Engineering, Vol. 22, No. 
10, October 1996, pp. 751-761. 

[9] K. Hameed, R. Williams and J. Smith, “Aspect Oriented 
Software Fault Tolerance,” Proceedings of 4th Interna-
tional Conference on Computer Science & Education 
(WCE09), London, Vol. 1, 1-3 July 2009. 

[10] L. L. Pullum, “Software Fault Tolerance Techniques and 
Implementation,” Artech House Inc., Boston, London, 2001. 

[11] F. C. Filho, et al., “Error Handling as an Aspect,” Work-
shop BPAOSD’07, Vancouver, 12-13 March 2007. 

[12] A. Romanovsky, “A Looming Fault Tolerance Software 
Crisis,” ACM SIGSOFT Software Engineering Notes, Vol. 
32, No. 2, March 2007, p. 1. 

[13] K. Murata, R. N. Horspool, E. G. Manning, Y. Yokote 
and M. Tokoro, “Unification of Compile-Time and 
Run-Time Metaobject Protocol,” ECOOP Workshop in 
Advances in Meta Object Protocols and Reflection 
(Meta’95), August 1995.  

[14] C. Sant’Anna, et al., “On the Reuse and Maintenance of 
Aspect-Oriented Software: An Assessment Framework,” 
Proceedings of the 17th Brazilian Symposium on Soft-
ware Engineering, Salvador, October 2003, pp. 19-34. 

[15] A. Garcia, et al., “Agents and Objects: An Empirical 
Study on Software Engineering,” Technical Report 06-03, 
Computer Science Department, PUC-Rio, February 2003. 
ftp://ftp.inf.puc-rio.br/pub/docs/techreports/(file03_06_ga
rcia.pdf) 

[16] A. Garcia, et al., “Agents and Objects: An Empirical 
Study on the Design and Implementation of Multi-Agent 
Systems,” Proceedings of the SELMAS’03 Workshop at 
ICSE’03, Portland, May 2003, pp. 11-22. 

[17] F. C. Filho, et al., “Exceptions and Aspects: The Devil in 
Details,” Proceedings of the 14th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engi-
neering, Portland, 5 November 2006. 

 

 
 


